
Frameworks for Enhancing Temporal
Interface Behaviour through Software

Architectural Design

Devina Ramduny-Ellis

A thesis submitted in partial fulfilment of the
requirements of Staffordshire University for the

degree of Doctor of Philosophy

December 2002

 i

Abstract

Frameworks for Enhancing Temporal Interface
Behaviour through Software Architectural Design

Devina Ramduny-Ellis
A thesis submitted in partial fulfilment of the requirements of Staffordshire
University for the degree of Doctor of Philosophy

December, 2002

The work reported in this thesis is concerned with understanding aspects of temporal
behaviour. A large part of the thesis is based on analytical studies of temporal properties
and interface and architectural concerns. The main areas covered include:

(i) analysing long-term human processes and the impact of interruptions and delays

(ii) investigating how infrastructures can be designed to support synchronous fast pace
activity

(iii) design of the Getting-to-Know (GtK) experimental notification server

The work is motivated by the failure of many collaborative systems to effectively manage the
temporal behaviour at the interface level, as they often assume that the interaction is taking
place over fast, reliable local area networks. However, the Web has challenged this
assumption and users are faced with frequent network-related delays. The nature of
cooperative work increases the importance of timing issues. Collaborative users require
both rapid feedback of their own actions and timely feedthrough of other actions.

Although it may appear that software architectures are about the internals of system design
and not a necessary concern for the user interface, internal details do show up at the surface
in non-functional aspects, such as timing. The focus of this work is on understanding the
behavioural aspects and how they are influenced by the infrastructure. The thesis has
contributed to several areas of research:

(a) the study of long-term work processes generated a trigger analysis technique for task
decomposition in HCI

(b) the analysis of architectures was later applied to investigate architectural options for
mobile interfaces

(c) the framework for notification servers commenced a design vocabulary in CSCW for
the implementation of notification services, with the aim of improving design

(d) the impedance matching framework facilitate both goal-directed feedthrough and
awareness

In particular, (c) and (d) have been exercised in the development of the GtK separable
notification server.

 ii

Acknowledgements

I would like to thank my supervisor, Alan Dix, for his guidance and support throughout the
duration of this research. His critical comments on drafts of this thesis have been invaluable.

I would also like to share this achievement with my parents and parents-in-laws who have
been wondering what I have been doing for so many years.

Finally, a special thank you to my husband, Geoffrey, for his patience and encouragement. I
am also very grateful for his useful suggestions on the final draft of this thesis.

 Table of contents

 iii

Table of contents

Abstract ..i
Acknowledgements..ii
Table of contents..iii
List of figures ...xi
List of tables ..xiv

Chapter 1 Introduction..1
1.1 Background to the problem...2
1.2 Objectives of the work..4
1.3 Approach of the work...4
1.4 Novel characteristics of the work ..7
1.5 Contributions to the research area ...7
1.6 Structure of the thesis..8

Chapter 2 Time and Interactivity..11
2.1 Background..12

2.1.1 The Human memory..12
2.1.1.1 Working memory..12
2.1.1.2 Long-term memory...13
2.1.1.3 Effect of interruptions ..13

2.1.2 Cognitive models ..13
2.1.2.1 GOMS Model..13
2.1.2.2 Keystroke-Level Model..14

2.2 Time and the interactive process..15
2.2.1 Response time ..15
2.2.2 Impact of delays ...17
2.2.3 Need for feedback..18
2.2.4 Types of feedback..19

2.2.4.1 Alert box..19
2.2.4.2 Progress Indicator...19

2.2.5 Coping strategies ..19
2.3 Interaction over the Web...20

2.3.1 Problem areas...21
2.3.1.1 Response time...21

 Table of contents

 iv

2.3.1.2 Network latency...21
2.3.1.3 Collaborative interaction..21

2.3.2 Coping Strategies..22
2.3.3 Potential solutions ...23

2.4 Temporal properties of interactive systems...23
2.4.1 Interface behaviour ...23

2.4.1.1 Events, status and agents ...23
2.4.1.2 Mediating status ..24

2.4.2 Pace of Interaction..24
2.4.2.1 Pace of communication channel.......................................25
2.4.2.2 Pace of task..25
2.4.2.3 Pace of users ..25
2.4.2.4 Delays ..26
2.4.2.5 Coping with delays..26
2.4.2.6 Time granularity...27

2.5 Summary..28

Chapter 3 Single-user Interface and Architecture Issues ...30
3.1 Requirements..30

3.1.1 Separation..31
3.1.2 Direct manipulation...31
3.1.3 Feedback ...31
3.1.4 Consistency..32

3.2 Architectural models ...32
3.2.1 Seeheim model...32
3.2.2 Arch/Slinky model..33
3.2.3 Model-View-Controller ..34
3.2.4 Presentation-Abstraction-Control..36

3.3 Analysing architectural models...37
3.3.1 Conceptual architecture...37
3.3.2 Physical architecture..38

3.4 Interface development tools...39
3.4.1 Windowing systems ..39
3.4.2 Toolkit..40
3.4.3 User Interface Management Systems...40
3.4.4 User Interface Development Environments.......................................41

3.5 Design paradigms..41
3.5.1 Event-based ...41

 Table of contents

 v

3.5.2 Object-oriented..42
3.5.3 Constraint-based ..42
3.5.4 Callback...43

3.6 Summary..44

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration.............46
4.1 Requirements..47

4.1.1 Separation..47
4.1.2 Feedback ...47
4.1.3 Feedthrough ...48
4.1.4 Awareness..48
4.1.5 Sharing...49
4.1.6 Control...50

4.2 Architectural models ...50
4.2.1 Centralised architecture...51

4.2.1.1 Rendezvous Abstraction-Link-View architecture..............51
4.2.2 Replicated architecture..52
4.2.3 Hybrid architecture ...54

4.3 Interface development tools...56
4.3.1 Shared window systems..56
4.3.2 Shared object systems ..57
4.3.3 Groupware toolkits ...59
4.3.4 Multi-user User Interface Management Systems59
4.3.5 Multi-user interface generator..61

4.4 Design paradigms..61
4.4.1 Constraints ...61
4.4.2 Callbacks ...62
4.4.3 Active values ..62

4.5 Summary..63

Chapter 5 Why, What, Where, When: An analysis of Collaborative
Architectures on the Web...65

5.1 Overview of the Web..66
5.1.1 Architecture..66
5.1.2 Limitations ..67

5.1.2.1 Asymmetric nature ..68
5.1.2.2 Lack of awareness ..68
5.1.2.3 Restrictive architectural arrangement68
5.1.2.4 Feedback delays ...68

 Table of contents

 vi

5.1.2.5 Unreliable transmission..68
5.1.2.6 Poor user interface..69

5.1.3 Improving functionality..69
5.1.3.1 Using CGI scripts..69
5.1.3.2 Implementing dedicated servers and clients69
5.1.3.3 Augmenting Web interface...69
5.1.3.4 Enhancing network protocol..70

5.2 Analytic focus ...71
5.3 Why – behavioural issues..72

5.3.1 Feedback ...72
5.3.2 Feedthrough ...72
5.3.3 Awareness..72
5.3.4 Shared objects..73
5.3.5 Control...73

5.4 What – architectural components...73
5.4.1 Presentation..73
5.4.2 Shared data ..74
5.4.3 Control...74
5.4.4 Notification...74

5.5 Where – placement decisions ..75
5.5.1 Replication and Caching..75
5.5.2 Control...76
5.5.3 Notification...78
5.5.4 Different kinds of remoteness ..78

5.6 When – moving information and code..79
5.6.1 Moving data ...79
5.6.2 Moving code ..80

5.7 Narrowing down options for the Web ...80
5.7.1 Remote execution and use...81
5.7.2 Local execution and use..81

5.8 Impact on research ...82
5.8.1 Behavioural considerations ..83
5.8.2 Influence on architecture..83

5.9 Summary..84

Chapter 6 Exploring the Design Space for Notification Servers86
6.1 Need for notification mechanism..87
6.2 Status-Event analysis...87

 Table of contents

 vii

6.2.1 Key concepts ...88
6.2.2 Mediation...88

6.3 Status change discovery..89
6.3.1 Case 1: watch...89
6.3.2 Case 2: tell..90
6.3.3 Case 3: ask...90
6.3.4 Case 4: gatekeeper ...90
6.3.5 Source vs. Initiative...91

6.4 Notification Servers as Mediators..92
6.4.1 Change discovery options without a Notification Server...................92
6.4.2 Change discovery options with a Notification Server........................93

6.5 Taxonomy of notification servers ...95
6.5.1 Possible arrangements...96
6.5.2 Location of notification server..98

6.6 Notifying users..99
6.6.1 Layering ...99

6.7 Notification models ...100
6.7.1 Event-based ...100
6.7.2 Status-oriented ...100

6.8 Summary..101

Chapter 7 Impedance Matching: Coping with Limited Resources103
7.1 Need for impedance matching...104
7.2 Where to control pace of feedthrough..105

7.2.1 Interaction without notification server...105
7.2.2 Interaction with notification server..106

7.3 Impedance Matching Policies..107
7.3.1 Pace Impedance ...107
7.3.2 Volume Impedance...108
7.3.3 Impedance matching vs. QoS..108
7.3.4 Implementation Issues...108

7.4 Exploring pace policies..109
7.4.1 Fixed time interval...110
7.4.2 Time delay..111
7.4.3 Volume of messages ...111
7.4.4 Message size ..112

7.5 Scenarios for impedance matching...112
7.5.1 Bulletin board system..112

 Table of contents

 viii

7.5.2 Multi-user chat system..113
7.5.2.1 Applying impedance matching..115

7.5.3 Avatar-based chat system...115
7.5.3.1 Applying impedance matching..116

7.6 Further issues..118
7.6.1 Impact of rich media ...118
7.6.2 Ordering of events ..119
7.6.3 Priority of notification..121
7.6.4 Generating notification of non-events ...122
7.6.5 Optimising the timing of notification delivery.....................................123
7.6.6 Impedance matching in other areas..123

7.7 Summary..125

Chapter 8 Getting-to-Know: An experimental Notification Server.........................127
8.1 Basic architecture..128
8.2 Messaging and event layer...128

8.2.1 Messaging protocol...129
8.2.2 Message format ..130

8.2.2.1 Message class...130
8.2.2.2 Event handler..131

8.2.3 Message exchange..132
8.3 Notification Manager ..134

8.3.1 Main functions ..135
8.3.2 Managing interests ..136

8.3.2.1 Add interest ..137
8.3.2.2 Remove interest ..137

8.3.3 Broadcasting events ..137
8.3.3.1 Tell All..138

8.3.4 Illustrating type translation...138
8.4 Augmenting GtK for Impedance Matching...140

8.4.1 Pace parameters ...140
8.4.1.1 Frequency class ..140

8.4.2 Managing interests with frequency...141
8.4.2.1 Add interest ..142
8.4.2.2 Remove interest ..142

8.4.3 Event queue management ..144
8.4.3.1 Tell all...144
8.4.3.2 Alarm process...145

 Table of contents

 ix

8.4.4 Altering pace parameters...146
8.4.4.1 Change frequency...146

8.5 Example real-time online conferencing application..147
8.6 Summary..149

Chapter 9 Demonstration through an Exemplar..151
9.1 Evaluation criteria..151
9.2 Interface behaviour ...152

9.2.1 Connect to application..152
9.2.2 Register with application..153
9.2.3 Create new conference ...154
9.2.4 Join conference...154
9.2.5 Add contribution...155
9.2.6 Interact with multiple conferences..156
9.2.7 Leave conference..157
9.2.8 Quit application...157

9.3 Application implementation..158
9.3.1 Connect to Conference Manager...158
9.3.2 Register with Conference Manager..158
9.3.3 Create new conference ...160
9.3.4 Join conference...162
9.3.5 Add contribution...166
9.3.6 Leave conference..168
9.3.7 Quit application...169

9.4 Pace controlled feedthrough..170
9.4.1 Set frequency levels ..170
9.4.2 Track users focus..171
9.4.3 Register pace interest ..171
9.4.4 Illustrating pace impedance matching ...172

9.5 Summary..183

Chapter 10 Architectural Evaluation..185
10.1 Flexibility...185

10.1.1 Current notification arrangement ..186
10.1.2 GtK as a pure notification server ...188
10.1.3 Further architectural possibilities..189

10.2 Distribution..191
10.2.1 Existing physical location...191

 Table of contents

 x

10.2.2 Possibility for supporting multiple data sources.................................192
10.3 Mobility...193

10.3.1 Introducing mobility in the GtK framework193
10.3.1.1 Point of Presence..194
10.3.1.2 Interaction through the PoP ...194

10.3.2 Pace issues in mobile interaction..196
10.4 Event Management...197

10.4.1 Event ordering in the GtK framework..198
10.4.2 Maintaining event ordering with impedance matching........................199

10.4.2.1 Limitations ..199
10.5 Interacting with existing data...200
10.6 Summary...201

Chapter 11 Conclusion..203
11.1 Issues raised by analytical studies..204
11.2 Meeting the objectives of the work...208
11.3 Broader research themes..213

11.3.1 Trigger analysis ...213
11.3.2 Analysing architectural options for mobile interfaces.........................214
11.3.3 Requirements for notification mechanisms ..214

11.4 Final remark...216

References ..215

Appendix Case Study of Long-term Interaction..235
1. Problems of long-term interaction...235
2. Analytic method ..237
3. Details of the study..239
4. Findings of the study..244
5. Related approaches...247
6. Design implications ..249
7. Summary...251

 List of figures

 xi

List of figures

Figure 1.1 Collaborative interaction...1

Figure 1.2 Temporal context...5

Figure 1.3 Thesis structure ...9

Figure 2.1 Norman’s interaction cycle ...15

Figure 2.2 Factors influencing pace of interaction...25

Figure 3.1 Logical components of Seeheim model ..33

Figure 3.2 Arch/Slinky model ...34

Figure 3.3 Model-View-Controller model..35

Figure 3.4 Presentation-Abstraction-Control model..36

Figure 4.1 Centralised architecture ..51

Figure 4.2 ALV architecture ...52

Figure 4.3 Replicated architecture ..53

Figure 4.4 Suite hybrid architecture ...54

Figure 4.5 (a) Output and (b) Input structure of a shared window system.............57

Figure 4.6 Run-time ALV architecture ..60

Figure 5.1 Web client-server architecture ...66

Figure 5.2 (a) Caching and (b) Replication..76

Figure 5.3 Data Usage vs. Data Storage ...79

Figure 5.4 Code Usage vs. Code Storage ..80

Figure 5.5 Linked matrices...81

Figure 6.1 Status-agent interaction..89

Figure 6.2 Source v/s Initiative...91

Figure 6.3 Client-data interaction without notification server................................92

Figure 6.4 Client-data interaction with notification server......................................94

Figure 6.5 Notification server communicating with active client and data.............94

Figure 6.6 Notification server relaying change to passive client............................95

Figure 6.7 4x2 matrix for change discovery and propagation.................................96

Figure 6.8 Notification server taxonomy ...96

Figure 6.9 Location of notification server..98

 List of figures

 xii

Figure 7.1 Update propagation...104

Figure 7.2 (a) broadcast and (b) peer-to-peer interaction.....................................106

Figure 7.3 Using notification server as mediator...106

Figure 7.4 Time-space diagram without impedance matching110

Figure 7.5 Time-space diagram with fixed time interval110

Figure 7.6 Time-space diagram with time delay..111

Figure 7.7 Time-space diagram with volume of messages....................................111

Figure 7.8 Time-space diagram with message size ..112

Figure 7.9 Example bulletin board system layout..113

Figure 7.10 Example Babble screenshot..114

Figure 7.11 Example Xchat screenshot..114

Figure 7.12 Example chat session with impedance matching................................115

Figure 7.13 Example avatar-based chat room...117

Figure 7.14 Example avatar-based chat room with impedance matching.............117

Figure 7.15 Timing diagram with point-to-point ordering of events......................119

Figure 7.16 Example conferencing system transcript ...120

Figure 7.17 Monitoring the occurrence of non-events ..122

Figure 8.1 GtK infrastructure ...128

Figure 8.2 Interest table ...136

Figure 8.3 Flow of events between client and server objects................................139

Figure 8.4 Effect of pace impedance on interest table ..141

Figure 8.5 Conferencing exemplar on GtK infrastructure148

Figure 8.6 Event vs. message ...148

Figure 8.7 Event and message exchange in conferencing exemplar....................148

Figure 9.1 Typical client applet ..153

Figure 9.2 User registration..153

Figure 9.3 Create new conference..154

Figure 9.4 Join conference..154

Figure 9.5 Pop-up conference window..155

Figure 9.6 Add contribution..155

Figure 9.7 Overlapping conference windows ...156

Figure 9.8 Leave conference ..157

Figure 9.9 Notification of departure ...157

 List of figures

 xiii

Figure 9.10 Client object registers with Conference Manager.............................159

Figure 9.11 Conference Manager sends conference list to client object160

Figure 9.12 Create new conference and broadcast updated list...........................162

Figure 9.13 Join conference..163

Figure 9.14 Send greeting message ...164

Figure 9.15 Another user joins conference ..165

Figure 9.16 User adds contribution..166

Figure 9.17 Contributions from multiple users ..167

Figure 9.18 Leave conference ..169

Figure 9.19 (a) Example scenario...173

Figure 9.20 (b) Adding contributions ..174

Figure 9.21 (c) Managing contributions ...176

Figure 9.22 (d) Queue flush time reached..178

Figure 9.23 (e) Adding contributions ..180

Figure 9.24 (f) Change in conference focus ...182

Figure 10.1 Revisiting the 4x2 matrix..186

Figure 10.2 Main components of conferencing exemplar.....................................186

Figure 10.3 Flow of events during change propagation...187

Figure 10.4 GtK within the conferencing exemplar...187

Figure 10.5 GtK as a pure notification server...188

Figure 10.6 Additional location for GtK...189

Figure 10.7 Physical structure of conferencing exemplar.....................................191

Figure 10.8 GtK framework with heterogeneous data servers192

Figure 10.9 Logical components of GtK framework ...194

Figure 10.10 Point of Presence ...194

Figure 10.11 Logical components in mobile environment195

Figure 10.12 Pace impedance matching in mobile environment197

Figure 10.13 Star configuration in GtK framework...198

Figure 10.14 Possibility of race condition with peer-peer network.......................198

Figure 10.15 Event ordering with impedance matching...199

Figure 11.1 Chapter structure ..203

 xiv

List of tables

Table 3.1 Summary of functionalities offered by architectural models38

Table 3.2 Mapping of components between architectural models..........................38

Table 4.1 Centralised vs. Replicated architecture ..56

Table 4.2 Collaboration transparency vs. Collaboration aware..............................59

Table 11.1 Summary of issues raised in analytical studies...................................207

Table 11.2 Summary of how objectives have been met...212

Table 11.3 Comparing GtK with other notification systems215

1

Chapter 1 Introduction

The rapid growth in worldwide communications has enabled users to collaborate and
access shared resources remotely. Most systems assume that the network communications
are fast enough to give the illusion of communicating over local networks. However, these
assumptions do not always hold true and this may give rise to unexpected behaviour for the
users. This thesis deals with the issues of time and collaboration and looks at how temporal
factors affect collaborative work, particularly when it involves interaction over a wide area
network.

Consider an example where a number of remote users are collaborating through a chat
system. Each user’s contribution to a certain topic has to be broadcast to all other users
who are interested in that particular chat session. This implies that the contributions have to
be sent across the network. If the network suffers from delays, the interested users will not
be able to see the contributions within an acceptable time. The flow of conversation can
easily get out of synchronisation and users will be confused. On the other hand, if the
contributions are sent rapidly over a very fast network, users may find it too distracting to
cope with many contributions simultaneously, especially if they have launched several chat
sessions on different topics. It is therefore desirable that users see the contributions to each
chat session in a timely manner.

Temporal properties have traditionally been linked to the system response time, in other
words, the delay between a user’s action and the system displaying results back on the
screen. In single-user interaction, feedback is the dominant temporal property. Feedback
is the rate at which users see the effects of their own actions. But with collaborative
interaction (figure 1.1), there is another major temporal property in addition to feedback.
Feedthrough is the rate at which users see the effect of other group members’ actions.

 ☺ ☺

Collaborative
System

feedback
and control

feedthrough

direct
communication

Figure 1.1 Collaborative interaction

Collaborative work introduces delays and lags as users have to wait for both feedback and
feedthrough information. Furthermore, interaction over a communication channel increases
the likelihood of delays as a result of high network traffic, low bandwidth or remote site
failures. Even a high bandwidth connection will affect the system response time during peak

Chapter 1 Introduction

 2

network usage. The unreliability of timely responses increases user frustration and
application errors, and can eventually lead to a complete breakdown in the work process.

Collaborative users require both feedback and feedthrough information at a fast enough rate
to allow the flow of collaboration to take place successfully. However, the provision of
feedthrough is more problematic in a distributed environment as the application may execute
on a completely different server from the local user interface through which each user is
interacting with. Components placed at different locations face higher communication costs
and delays than those at the same location.

There is this fallacy when building infrastructures that we can ignore the implementation
details so long as the platform has sufficient capability. The infrastructure is very often
treated as a ‘black box’. However, the way that things are implemented does actually
matter, as the underlying infrastructure tends to show up in non-functional aspects,
particularly in timing, for instance during network delays.

Both temporal factors and implementation infrastructures are therefore very important issues
in Computer Supported Collaborative Work (CSCW). This thesis will partly consider the
issues surrounding temporal properties and collaboration but the principal focus is on the
underlying infrastructure that enables the construction of temporally coherent collaborative
applications.

This work does not attempt to overcome the problems of communication delays by
constructing an effective network protocol. It accepts that delays are likely to occur even
over fast networks within a collaborative context and it uses this fact to drive the
development of an underlying infrastructure that provides remote users with satisfactory
temporal behaviour at the interface.

1.1 Background to the problem

Although the temporal properties of interaction are theoretically essential, they have been
poorly investigated with the exception of a few studies (Dix, 1987), (Dix, 1992a), (Dix,
1994a), (Gray et al., 1994). There is also a sociological tradition of studying temporal
phenomena that has recently been used in some ethnographic studies (Hudson et al., 2002),
(Reddy and Dourish, 2002). Temporal properties in system design have traditionally been
associated with the system response time (Miller, 1968), (Card et al., 1991), (Nielsen,
1993). However, the response time is not the only temporal property of interactive
systems. This research uses two additional properties as its foundation for assessing
temporal problems that users perceive at the interface.

The first lies in the interface behaviour. The user interface can be expressed though Status-
Event analysis (Dix, 1991), (Abowd and Dix, 1994), (Dix and Abowd, 1996a) in terms of
events and status behaviour. Status-Event analysis has been developed for tackling various
user interface issues. Temporal problems at the interface are said to occur whenever any
constraints between the status of the interface is broken. The idea of mediation between
status is key to the understanding of delays in this research.

Chapter 1 Introduction

 3

The second temporal property lies in the issues surrounding pace of interaction. The pace
of interaction is the rate at which users interact with computer systems, the physical world
and one another (Dix, 1992a), (Dix, 1994a), (Dix, 1995a). The pace of interaction is
influenced by three factors: the pace of the communication channels, the pace of the shared
task and the pace at which users operate. A mismatch between either one of these factors
and the resulting pace of interaction generates delays. Unlike bandwidth, which gives a
measure of the amount of information that is transmitted, pace indicates the frequency of
communication.

Thinking about pace makes one concentrate on the timescale over which interaction occurs.
This may take place over different lengths of time. When users interact with computer
systems they normally expect the delay between their actions and the system feedback to be
rather short. For example, in direct manipulation interfaces, the feedback needs to be in the
order of 100ms. However, people across organisations often have to interact over a much
longer timescale, which may range from hours to days. As a result, the interaction is likely
to suffer from frequent interruptions, thus intensifying the temporal problems that people may
have to face.

The emergence of the Web as an interactive environment has increased the significance of
the temporal properties of interaction. The Web provides an information infrastructure that
is universally accepted and this influences our everyday interaction through the Internet. The
focus of this interaction is mainly on the communication infrastructure rather than the devices
that access it; hence we tend to make inherent assumptions about the architecture of the
infrastructure.

Over the last few years, various techniques have been developed for the analysis of CSCW
and groupware (Benford and Fahlén, 1993), (Dix, 1994b), (Dix, 1994a). Also, there are
many existing architectures for single-user interfaces and multi-user collaborative interfaces
(Pfaff and Hagen, 1985), (Bentley et al., 1994), (Hill et al., 1994). However, most of these
architectures are based on assumptions that will be broken once the software is no longer
running on a single machine or even on a local network. However, these existing
architectures form an essential starting point for this work.

Collaborative users require two important temporal requirements − feedback and
feedthrough. The provision of feedthrough is more challenging in a collaborative application
that executes over a distributed environment such as the Web. For example, rapid user
interface feedback on the Web can be promoted by running code locally as downloaded
Java applets; however local data updates may conflict with the needs of feedthrough.
Feedthrough is an essential feature of cooperative interfaces but there is often little support
for it, from either existing applications or the Web protocol itself.

Feedthrough allows participants to see an up-to-date version of the shared task while
preventing inconsistent updates. These concerns have led to some considerable work on
algorithms for synchronous editing and for merging versions of asynchronously edited
material. Feedthrough also promotes the awareness between group members. This has
always remained an informal interest in CSCW, but some formal analysis of 'awareness'

Chapter 1 Introduction

 4

models (Benford et al., 1993), (Rodden, 1996) have emerged largely due to work on
Collaborative Virtual Environments (CVE).

The analytic focus of this research is driven by the need for optimising temporal
performance. The motivation lies in the timeliness of information, as informed by the
temporal requirements of collaborative users and the design considerations of the underlying
system architecture.

1.2 Objectives of the work

The primary objective of the work reported in this thesis was to develop the existing
analysis of temporal problems and use this analysis to drive the development of software
architectures for widely distributed groupware systems. This objective can be broken down
into the following sub-goals:

• To develop an architectural framework that enables the construction of
collaborative applications that satisfy appropriate temporal properties.

• To demonstrate the feasibility of the conceptual framework by using it as a basis for
developing an exemplar that provides collaborative users with a temporal behaviour
that meets their pace of interaction.

• To evaluate the effectiveness of the approach embodied by the model.

A major goal of this research was to support the construction of distributed collaborative
applications that effectively manage the temporal behaviour at the interface level. The
architectural requirements of this research are therefore driven by the desired temporal
performance of the user interface. The next section shows how these goals have been
addressed.

1.3 Approach of the work

The issues surrounding the temporal properties of interaction are first explored. Interaction
covers a wide time scale from short-term discrete activities to long-term human processes in
organisations. Although the temporal properties addressed in this thesis are driven by user
needs on relatively short periods of interaction by focussing on architecture and interface
issues (figure 1.2), the processes involved in collaborative long-term interaction were also
investigated. The findings of a case study carried out to investigate the temporal problems
that arise during long-term interaction are presented in the Appendix.

Chapter 1 Introduction

 5

 short-term
interaction

long-term
interaction

human
processes

architecture
and interface

Appendix

Thesis

Figure 1.2 Temporal context

Software architecture is about dividing systems into components to perform certain
functionalities and then linking the components together in such a way that they can
communicate effectively. Although it may at first seem that software architectures are
related to the internals of system design and not a necessary concern for the user interface,
internal details manifest themselves at the surface. As a result, the consideration of the
physical architecture becomes unavoidable. Architectural decisions directly influence the
behaviour of the user interface and the most significant behavioural implication on a
distributed platform is often the temporal impact.

Interface requirements and architectural models for both single-user applications and multi-
user collaborative applications are analysed based on the existing body of literature. This
architectural analysis is then extended to the Web, an environment that is predominantly
subjected to delays. However, the Web also offers immense potential for the development
of distributed collaborative applications, despite the fact that its protocol were originally
designed and used largely for accessing anonymous static or slowly changing information.

The Web forces the concern between the location of the data and that of the control, thus
generating various alternatives for the placement of architectural components. Location
decision is decisive in determining the users rates of feedback and feedthrough. In order to
clarify the various architectural options and their effects on the temporal properties offered
by the interface, a framework for analysing cooperative architectures on the Web is
presented.

Feedthrough is an intrinsic temporal limitation in collaborative applications in general.
Furthermore, the needs for feedthrough on the Web conflict with those of feedback.
However, feedthrough is crucial for maintaining collaboration and promoting awareness.
There are two key requirements for feedthrough − firstly, the ability to access and update
shared data, and secondly knowing when that data has been updated. The former lies
behind the design of shared data repositories, either bespoke systems designed for CSCW
or off-the-shelf databases and shared object stores. The latter requires notification
mechanisms, the key element in informing people about status and change.

In order to investigate the different ways in which notification servers can be implemented, a
framework for the design space of notification services is presented. The design space also
generates a taxonomy for notification servers. The Status-Event analytic framework
(Section 1.1) is used as a foundation to explore the ways in which the notification server can
become aware of changes to the data and how it in turn, makes this available to the client

Chapter 1 Introduction

 6

applications. The notification server can thus mediate feedthrough information between
end-user clients.

Users involved in cooperative work often have to interact with a large number of shared
objects. It may not always be possible to provide a fast rate of feedthrough for each
object, as there is not enough network and computational resources available. Even if the
network was infinitely fast and there was an infinite amount of memory, a maximum rate of
feedthrough will generate further network congestion. The extra computational load implies
delays for all the objects including the ones that are of higher interests to the users.
Furthermore, from a cognitive viewpoint, collaborative users may find it too distracting to
cope with a fast rate of updates.

This research therefore proposes that the notification server, through its central mediating
role between end-user clients, is ideally placed to provide collaborative users with an
effective level of feedthrough by matching the supplied pace of updates with the users
required pace of updates. This matching has been called impedance matching.
Feedthrough demands can be reduced by subsequently reducing the pace of updates (pace
impedance) and the volume of updates (volume impedance).

The principles of notification server design and the issues surrounding impedance matching
have been employed to develop the Getting-to-Know (GtK) purpose-built separable
notification server. GtK is based on a distributed object infrastructure and it is largely an
example to show how a controlled pace of feedthrough can be achieved in practice. GtK
only supports pace impedance matching given the interests on pace issues in this research.

In order to demonstrate the practicality of the GtK notification server further, an example
real-time Web conferencing application has been constructed using the GtK infrastructure.
The application offers functionalities that are common in most Web-based chat systems.
However, its novel feature lies in its ability to enable collaborative users to interact with
multiple conferences simultaneously while adjusting the pace of feedthrough to match their
rates of interests.

The main stance of this research lies on an architectural framework that manages the paced
delivery of information at the user interface. It is often problematic to evaluate a framework
embodied in code. The demonstration via the real-time Web conferencing exemplar acts as
a technical evaluation of the GtK framework. Also, an architectural evaluation has been
carried out to assess the benefits and limitations of the GtK framework.

Chapter 1 Introduction

 7

1.4 Novel characteristics of the work

The work reported in this thesis represents a novel integration of user interface and
architectural issues to provide distributed collaborative users with effective temporal
behaviour. Software architecture is very often driven by implementation reasons rather than
the desired user-level behaviour. In contrast, this work lays particular emphasis on a user-
oriented approach in establishing the requirements of a collaborative architecture.

The method of providing collaborative users with a controlled pace of feedthrough through
impedance matching is innovative in CSCW. It emerges from the extensive analytic focus of
this research, which also demonstrates that a careful placement of architectural components
can facilitate explicit notification mechanisms that match the users’ pace of interaction.

This work also generated a novel method of analysing work processes through the 4Rs
framework, which emerged from the study into long-term interaction. The 4Rs (Request,
Receipt, Response, Release) recurrent pattern of activities is a fundamental unit of long-term
work, as the same sequence repeats itself with similar triggers and similar failure modes.
The 4Rs framework and the triggers for activities can be applied to assess the reliability of
individual parts of a work process during system design.

1.5 Contributions to the research area

There have been a number of publications that this work has generated both in the HCI and
CSCW research community. The interests of this research were presented to a panel of
experienced researchers and practitioners at a doctoral colloquium session in a past CSCW
conference (Ramduny, 1996).

The case study into long-term interaction led to a technical report (Dix et al., 1995), a short
conference paper (Dix et al., 1996) and a journal paper (Dix et al., 1998). The trigger
analysis technique that emerged from this study has also been proposed as a technique for
task decomposition (Dix et al., 2003) that can be applied in conjunction with other task
analysis or workflow methods.

The architectural framework for developing Web-based collaborative applications was
published as a full conference paper (Ramduny and Dix, 1997a) and a poster (Ramduny
and Dix, 1997b). The analytic technique was employed in a later research project1 to
investigate software architecture options for mobile user-interfaces and the findings were
published as a journal paper (Dix et al., 2000).

1 Interfaces and Infrastructure for Mobile Multimedia Applications research project − as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

Chapter 1 Introduction

 8

The structured analysis of the design space of notification servers also led to a full
conference paper (Ramduny et al., 1998). This is an important contribution to the CSCW
discipline as the last few years have seen the beginnings of a literature of notification servers
in their own rights.

Finally, the issues surrounding impedance matching for providing effective user-level
feedthrough were discussed at a day conference (Ramduny, 1999) and the findings were
recently published as a full conference paper (Ramduny and Dix, 2002).

1.6 Structure of the thesis

Figure 1.3 shows the overall structure of the thesis. A series of analytical studies are
presented in Chapters 2 − 7 which provide an understanding of the nature of temporal
problems, infrastructure issues and design considerations. These analytical studies lead to
the GtK framework that provides pace impedance matching. Chapters 8 − 10 describe the
development of the GtK infrastructure, its use through the GtK notification server and
evaluation via a real-time Web conferencing exemplar.

Chapter 2 starts by investigating the issues surrounding the temporal properties of
interaction. It examines the impact of delays and interruptions on the interactive process
and explores the temporal problems that users face on the Web. The foundations of
interface behaviour and the issues of pace of interaction are applied to analyse the temporal
problems that users perceive at the interface. The results of a case study that was carried
out to check the completeness of the existing analysis on the pace of interaction and to
identify the temporal problems faced during long-term interaction are discussed in the
Appendix.

Chapter 3 considers the interface and architectural concerns involved in designing single-
user applications. The analysis is based on examining architectural and temporal
requirements for user interfaces, exploring mature architectural models, reviewing some of
the tools that assist in the design and development of user interfaces and the various design
paradigms employed in architectural and interface development. Similar issues for multi-
user collaborative applications are discussed in Chapter 4.

Chapter 5 extends the investigative approach to the Web platform. It provides a systematic
analysis that examines the behavioural issues and the architectural components that are
necessary for Web-based collaborative applications. The placement options for the
architectural components are also considered and the issues surrounding code and data
mobility are explored. The findings of the analysis narrows down the behavioural focus of
this work.

Chapter 1 Introduction

 9

Chapter 2
 Time and Interactivity

Temporal issues

Appendix
Long-term Interaction:

A Case Study

Chapter 3
Single-user Interface

and Architecture Issues

Chapter 4
Multi-user Interface and
Architecture Issues for

Collaboration

Chapter 5
Why, What, Where, When:
An analysis of Collaborative

architectures on the Web

Chapter 7
Impedance Matching:
Coping with limited

resources

Chapter 6
Exploring the Design
Space for Notification

Servers

Chapter 8
Getting-to-Know: An

experimental notification
server

Chapter 9
Demonstration through

an exemplar

Chapter 10
Architectural Evaluation

Infrastructure issues Design concerns Implementation details

analytic studies

Figure 1.3 Thesis structure

Chapter 6 explores and clarifies the design space for notification servers by adopting an
analytical approach similar to that applied in Chapter 4. A taxonomy of the design space
for notification servers is also presented. Status–Event analysis (discussed in Chapter 2) is
used as the foundation for examining issues of change propagation. The analysis also
confirms the important role of the notification server as a mediator of updates between
collaborative users in a distributed setting.

Chapter 7 proposes impedance matching as a method for providing collaborative users with
an effective user-level behaviour. Due to its mediator role, the notification server is ideally
placed for supporting impedance matching by controlling the frequency of notification to
match the users pace of interaction. The issues surrounding impedance matching and the
related implementation details are thoroughly examined.

Chapter 8 describes the Getting-to-Know (GtK) separable notification server that has been
built on a distributed layered architecture to support pace impedance matching. The
protocol employed for passing messages between different communication objects within
the basic layered infrastructure are examined and the main functions of the GtK notification
server are discussed.

Chapter 1 Introduction

 10

Chapter 9 shows how an example real-time Web conferencing application has been
constructed on the GtK framework in order to explore the practicality of the GtK
notification server as an impedance matcher.

Chapter 10 complements the technical critique in Chapter 9 through an architectural
evaluation of the GtK framework. The GtK framework is measured against some important
architectural parameters such as the ease of flexibility, possibility for migration, support for
dynamic mobility, event management and interaction with existing data.

Finally, Chapter 11 reflects on this work and highlights the broader research themes that this
work has already contributed to.

11

Chapter 2 Time and Interactivity

Time plays an important role in computer systems in general and even more so in
establishing the quality of human-computer interaction. Early approaches developed to
analyse interaction such as GOMS (Card et al., 1983), TAKD (Diaper, 1989) and
production rules (Newell and Simon, 1972) mainly concentrated on identifying operator
tasks and examining traces of interaction. These cognitive models largely ignored the
temporal properties of interaction because the main focus then was on single-user
interaction with stand-alone systems.

Over the last few years, the development of groupware applications like conferencing
systems and shared text editors has shifted the focus to multi-user collaborative systems. In
addition, there has been a significant growth of distributed information sources using Internet
facilities. In particular, the rapid growth of the World Wide Web has promoted a new
category of applications to be developed on a distributed platform – Web-based
collaborative applications.

Unlike single-user applications, the requirements for cooperative applications are far more
complex, both in computational terms and in meeting the needs of the user. This has
undoubtedly increased the importance of the temporal properties of interaction. Group
users not only need to see the response of their own actions (feedback) within a reasonable
time limit, but they must also be able to see the effect of others actions (feedthrough)
promptly to allow successful collaboration through the artefact.

The unreliability of timely responses can lead to user frustration and application errors. In
the worse case it can cause a complete breakdown in the work process. Furthermore,
interaction over a network increases the likelihood of delays between the transmission and
reception of users actions, thus affecting the system’s response. Remote site failures, high
network traffic and slow bandwidth intensify user frustration and error.

Although it is desirable that users perceive system responses almost instantaneously, this is
not always possible due to processing time, network delays or delays in the pace of
interaction between group users. Clearly, the absence of timely feedback and feedthrough
will have a negative impact on group interaction. A thorough understanding of temporal
issues will inform system design and development. This chapter investigates the issues
surrounding the temporal properties of interaction.

Section 2.1 starts with a brief review of the human memory and looks at the effects of
delays and interruptions as informed by cognitive psychology. Section 2.2 analyses the role
that time plays on the interactive process. It first considers the issues of response time and
then examines the impact of delays during interaction. The need for feedback is also
established. A similar analysis is then applied in Section 2.3 to explore the temporal
problems that users face on the Web. Finally, Section 2.4 uses the foundations of interface

Chapter 2 Time and Interactivity

 12

behaviour and pace of interaction to analyse the temporal problems that users perceive at
the interface.

2.1 Background

The cognitive psychology literature provides a good foundation for understanding the
temporal properties of interaction from a user-centred perspective. These studies examine
how the human memory functions and consider the impact of delays and interruptions on
our short-term and long-term memory. With the widespread use of computers, usability
issues have become a major concern and usability guidelines have for long been informed by
cognitive psychology.

Indeed, there is a very close link between human-computer interaction (HCI) and cognitive
psychology (Norman, 1988). Cognitive modelling is used in HCI to get a better
understanding of how people interact with computer systems and identify aspects of the
system that are easy or difficult to use and/or learn. The areas where people are most likely
to make persistent errors can also be anticipated.

This section will first consider the aspects related to the human mind and the effects of
interruptions, before looking at some common cognitive models that have been developed
to represent the way the user of a computer system thinks.

2.1.1 The Human memory

The human mind is an information-processing system (Card et al., 1983) that can be divided
into three interacting sub-systems consisting of memories and processors:

(a) perceptual system − this carries sensations of the physical world detected by the body’s
sensory system into internal representations of the mind by using integrated sensory
systems. Our visual system is a good example of this (Card et al., 1983). Although the
eye receives the visual scene over a wide angle, detail is only obtained over a narrow
region, the fovea. The rest of the retina provides peripheral vision for orientation and
whenever the target is more that 30 degrees away from the fovea, head movements
occur to reduce the angular distance. The central vision, the peripheral vision, eye
movements and head movements function altogether as an automatic integrated system
to provide a persistent representation of the visual scene.

(b) motor system − this translates our thoughts into action by activating patterns of voluntary
muscles. The arm-hand-finger system and the head-eye system are the two most
important sets of effectors in computers users (Card et al., 1983).

(c) cognitive system − this connects inputs from the perceptual system to the correct
outputs of the motor system. The cognitive system has two important memories, a
working memory and a long-term memory.

2.1.1.1 Working memory

Chapter 2 Time and Interactivity

 13

Working memory or short-term memory as it is also known, only holds information that is
under current consideration and the representations produced by the perceptual system. It
consists of a subset of activated elements from long-term memory, called chunks. Chunks
can be related to other chunks and thus be organised in large units.

Short-term memory can be accessed very rapidly but it also decays at a fast rate. The
chunks of information can only be held temporarily for a short amount of time, usually in the
order of 200 milliseconds (Dix et al., 1993). Furthermore, short-term memory has a limited
capacity for retaining information. The classic paper (Miller, 1956) stated that in general,
people have the capacity to memorise approximately seven chunks of information at a time
and that information can be held in short-term memory for about 15 to 30 seconds.

2.1.1.2 Long-term memory

Long-term memory stores knowledge for future use and unlike short-term memory, it has
unlimited capacity for storing information. However, retrieving information from long-term
memory usually takes longer, in the range of a tenth of a second and its success usually
depends on whether associations between chunks can be found (Card et al., 1983).

People tend to cope with complex problems by chunking them down to simple components.
The size of a chunk depends on an individual’s knowledge, experience and familiarity with
the material (Shneiderman, 1992). Furthermore, there is little decay with long-term memory
as recalling information after minutes takes just as long as retrieving it after hours or days.

2.1.1.3 Effect of interruptions

Both long-term memory and short-term memory are highly volatile but the latter is almost
instantly affected during interruptions. It is very difficult to recall recently stored information
when people are interrupted. If there are long delays, the memory may need to be
refreshed. However, people may still resume their work after an interruption if they
proceed immediately and record their solution in short-term memory. If instead they record
their solution in long-term memory, such as on a piece of paper or on a complex device, the
probability for errors increase and the pace of work may slow down considerably
(Shneiderman, 1992).

2.1.2 Cognitive models

Cognitive models attempt to represent users’ interaction with an interface by taking into
account some aspect of the users’ understanding, knowledge, intentions or processing (Dix
et al., 1993). The cognitive aspect of HCI focuses on the cognitive capacities of users in
general and also how these affect the users’ ability to carry out specific tasks with computer
systems. Very often, this is explained in terms of mental processes expressed in
computational terms, as shown by two well-known cognitive models discussed below.

2.1.2.1 GOMS Model

Chapter 2 Time and Interactivity

 14

The GOMS model was one of the first cognitive models that described how users perform
and coordinate tasks. A GOMS analysis involves describing the task structure and
decisions made by users in terms of Goals, Operators, Methods and Selection rules
(GOMS) (Card et al., 1983). A goal is something the user wants to achieve. Operators
are low-level actions (perceptual, motor or cognitive acts) the user can perform. Methods
are the procedures (sequence of operators) required to achieve the goal. Selections are the
choices that the user can make between alternative methods of achieving a goal.

A typical GOMS analysis of a particular task involves decomposing an overall goal into
sub-goals, each of which can in turn be decomposed into further sub-goals until ultimately
these are reduced to basic operators. The actions required to complete the task are
arranged into a hierarchical network of goals, sub-goals and operators. GOMS is well
suited for analysing routine tasks where the users know all the relevant information about the
system they are working with (in other words, expert users) and the tasks can be described
into procedures.

The GOMS analysis has been applied to measure performance. The stacking depth of a
goal structure can be used to estimate short-term memory requirements. By calculating the
time it takes to perform each basic operator and then aggregating the operator times for all
operators involved in the task, the total time for completing the tasks can be predicted.
Although the GOMS model makes total time predictions, it is not appropriate in situations
where errors and interruptions occur (Card et al., 1983).

2.1.2.2 Keystroke-Level Model

Like GOMS, the Keystroke-Level model (Card et al., 1983) only predicts error-free
expert behaviour. But unlike GOMS, the Keystroke-Level model needs the method as
input (it has no goals or method selection rules) and it only predicts the time to execute a
task. User performance is based on key tasks during an interaction, such as the execution
of simple commands. The Keystroke-Level model assumes that users first divide complex
tasks into subtasks before they are mapped into physical actions.

The Keystroke-Level model decomposes unit tasks into four different physical-motor
operators, one mental operator and a system response operator. The total time taken to
execute a particular unit task is calculated by adding the time for each keystroke of the
various operators. If the user has to wait for a response from the system then an
appropriate time is added, which is measured by observing the system; otherwise the
system response is assumed to be zero.

Experiments have shown that the Keystroke-Level model can predict performance fairly
accurately but the range of applications it covers is limited. Although it is very useful for
predicting micro-interactions, it does not do so well in large-scale dialog. Furthermore, the
results depend heavily on the approximations made initially. The Keystroke-Level Model is
considered to be a very low-level GOMS model, which has been simplified to produce a
usable version (Card et al., 1983).

Chapter 2 Time and Interactivity

 15

Both GOMS and Keystroke-Level models analyse interaction based on identifying operator
tasks and examining traces of interaction. The temporal properties are largely ignored in
these cognitive models perhaps because at the time they were developed, the interface
requirements mainly involved single-users interacting with software that execute on a single
machine. The temporal nature in such a mode of interaction is primarily related to the
response time following users actions. But even at the single-user level, delays in receiving
feedback have a negative effect on interaction and disrupt our mental processing ability.
The next section analyses the impact of time and delays on the interactive process.

2.2 Time and the interactive process

The impact of delays is typified by Norman’s interaction cycle (Norman, 1984), (Norman,
1986), (Norman, 1988) (figure 2.1). It describes user activity as consisting of four different
stages − intention, selection, execution and evaluation. When users interact with a
computer system during problem solving, they usually have a goal, they formulate certain
actions to further that goal (plan), execute the actions and then evaluate the results of those
actions against the expected outcome and the goal.

This model only works if one assumes that the results of the users actions are immediately
available. If the delay between executing the actions and observing the results is greater
than short-term memory times, the evaluation stage becomes far more difficult. This
problem is referred to as the ‘broken loop of interaction’ and users may be forced to either
re-formulate their plans or continue to wait for a response.

 goal

system

execution evaluation

Figure 2.1 Norman’s interaction cycle

When delays are predictable or expected, the interaction cycle will not necessarily be
affected as users can incorporate known delays into their plans. But when delays are
unpredictable, users may forget part of the plan and they may be forced to review the plan
continually, thus causing a breakdown in the interactive process. Furthermore, when
unexpected delays impede a task progress, many people become frustrated, annoyed and
eventually angry (Shneiderman, 1992).

2.2.1 Response time

The primary way in which time is of relevance to interactive systems is through response
time. This is defined in terms of the length of time (number of seconds) between a user
initiating an action and the computer system displaying the results back on the screen.

Chapter 2 Time and Interactivity

 16

Traditional human factors research into response times suggests three time levels that
provide different effects on interaction and for almost thirty years, the same norm has been
observed (Miller, 1968), (Card et al., 1991), (Nielsen, 1993):

0.1 second − this is the required limit that allows users to feel that the system is reacting
instantaneously.

1.0 second − this limit is necessary to avoid interruptions in the users flow of thoughts,
although they will notice the delay. No special feedback is usually required for delays in the
range of 0.1 − 1.0 second, but users may lose the feeling of operating directly on the data.

10 seconds − this limit is essential for keeping users attention focussed on the dialogue. If
the delay is longer, users will perform other tasks while waiting for the results of their
actions. Therefore, they should be given some form of feedback to indicate when the
computer expects to complete the task.

The above limits do not specify how the interaction process is affected if the delay in
receiving a response lies between 1.0 − 10 seconds, a range where many responses actually
fall. Also, they do not deal with the factors that can alter the way in which interaction is
affected by response times. For instance, some studies have shown that novices prefer and
are more productive with a slower response time (Shneiderman, 1992) while others have
shown that novices, like expert users, tend to make more errors with longer response times
(Long, 1976), (Kuhmann et al., 1987).

Furthermore, user expectations may vary depending on their previous experience and the
task at hand. Users can also change their interaction mode with the artefact as they become
more familiar with it or as their perception and skills change (Thomas, 1998) but more
importantly, users may change their work strategies to adapt to different response times. It
is therefore very difficult to assess whether the timing of an interactive activity is too fast or
too slow as there are too many user, task and environment variables at play to determine
any generally acceptable rate of interface response (Shneiderman, 1992).

Although shorter response times are more beneficial to users, it is possible for the computer
to react so fast that the user cannot keep up with. For example, a scrolling list may move so
fast that the user cannot stop it in time for the required element to stay within the available
window. The fact that computer can be too fast suggests that user-interface changes should
be timed according to the real-time clock and not as an indirect effect of the computer’s
execution speed (Nielsen, 1993). A fast interaction sequence can inhibit users from
formulating a solution plan correctly (Shneiderman, 1992). Conversely, users can pick up
the pace of a rapid interaction sequence and consequently they may learn less, read with
lower comprehension and commit more errors (Shneiderman, 1992).

It is generally agreed that response times should be as fast as possible, preferably within 0.1
second, to limit the effect of delays and maintain users confidence and satisfaction with the
system. But in practice, this is not always possible. It is however essential to ensure that

Chapter 2 Time and Interactivity

 17

the interface stays usable and this can only happen if the response time is fast enough to
match the task at hand.

2.2.2 Impact of delays

A number of studies (Dix, 1987), (Johnson and Gray, 1995), (Nielsen, 1993), (Smith and
Mosier, 1986), (Shneiderman, 1992) have considered the effects of delays on user
performance and on the behaviour of single-user applications. A delay of more than a
fraction of a second in mouse-based interfaces has been found to reduce the success of the
interaction. With the emergence of timesharing systems in the early 1960’s, other studies
(Miller, 1968), (Smith, 1983) investigated the effects of system delay on multi-user
performance. Delays of the order of 100 milliseconds have been found to be disruptive
within some collaborative virtual environment applications (Macedonia et al., 1994).

The increasing popularity of the Web, both as an interaction and a development platform,
has widened the number and types of users and tasks. The changeable nature of the users
and the tasks makes it even more difficult to have a single model that relates response time
with user performance. Most research assumes that user productivity increases with faster
system response times. For example, a study showed that user performance is
systematically affected by system delays and users tend to choose task strategies that best
suit a given system delay (Teal and Rudnicky, 1992). However, the task that the users
were given in the study was relatively straightforward data entry. It may therefore be more
difficult to characterise the relationship between response time and user strategy when users
are engaged in more complex tasks.

It is generally agreed in the research literature that delays in the system response increase
users’ frustration, as they are left wondering whether the system is still working or not. If
the users do eventually receive a response after a long delay, their attention may have
wandered and they may forget which action the machine is responding to. The absence of a
system response can therefore be very disconcerting to the user and in the worst case, she
may suspect a complete system failure, with consequent disruption and/or termination of the
interaction sequence.

Although rapid response times should be regarded as an explicit design goal, it is important
to ensure that the user interface matches the rate at which the computer operates. For some
frequent user actions, such as function keys or menu selections, a few seconds delay may
prove to be intolerable. However, users may accept a relatively slow processing time for
instance, during a repetitive form filling dialogue (Smith and Mosier, 1986).

Some experts argue that the consistency of the system response time may be more
important in preserving user orientation than the absolute value of the delay. They even
suggest that designers should delay fast responses deliberately in order to make them more
consistent with occasional slow responses, hence allowing users to adapt to slow response
times. A few studies (Shneiderman, 1992), (Conn, 1995) have showed that delays might
be acceptable if users are accustomed to them.

Chapter 2 Time and Interactivity

 18

However, most studies agree that in order to improve the usability of a user interface, it is
more effective to make all responses uniformly fast. In cases where this is not possible,
some form of feedback should be used (Smith and Mosier, 1986), (Myers, 1989). As a
result, a slow response would become predictable to the user even if it were inconsistent
with other responses.

2.2.3 Need for feedback

Our innate ability to act and communicate with each other depends heavily on the feedback
we get from the environment and from one another (Dix, 1995a). Studies investigating the
effect of delays on user performance (Johnson and Gray, 1995), (Nielsen, 1993), (Dix,
1994a), (Teal and Rudnicky, 1992) emphasise the need for feedback during delays.
Feedback information is very important for maintaining users’ orientation when they interact
with the system. It allows users to know where they are, what they have done and whether
the task was successful or not. Feedback is vital in situations where the response times are
likely to be highly variable, such as over a network.

When a user is faced with some delay, it is usually hard to ascertain the source of that delay.
In traditional interface design, the underlying system architecture and computation tend to be
hidden from the users. Although in some cases, information abstraction and hiding enable
the design of the user interface to be focussed on user-centred requirements, in other
situations, it may have a negative effect. For instance, when a user clicks on a hyperlink or
a button on a Web browser either to move to a different page or to download a file, the
response time for such an action to complete may vary, depending on the size or location of
the file. If the user is not informed of the location or file size prior to requesting the
information, it is difficult to estimate the likely response time.

Another problem during interface design is that users cannot distinguish between actions that
may lead to different system behaviours and hence different response times. For example,
when a user clicks on a button on a menu bar, there is no indication of the complexity of the
underlying computation or the expected response time. At the same time, the user may be
faced with inconsistent response times when clicking on several buttons that look similar.
The difference in the functionality and computation may be obvious to an expert user but
less so to a novice user. Feedback is therefore required at two levels − the interface level,
to register the user’s action (e.g. a button press) and the application level, to show the effect
of the action (e.g. a window pops up).

The provision of feedback information not only depends on the length of the delay in
receiving a response but it also relies on the nature of the task. So, if a transaction usually
processes immediately, delays of the order of a few seconds can be disturbing.
Consequently, users should be given some intermediate feedback. Similarly, in transactions
where the output must be deferred awaiting the results of a computer search and/or
calculation, the expected delay should be indicated to the user. If the interaction is over a
network, short lag times may not require an immediate interface feedback, however
anything above a few hundred milliseconds are considered to be unacceptable.

Chapter 2 Time and Interactivity

 19

2.2.4 Types of feedback

Different types of feedback have been recommended in the research literature to help users
cope with inconsistent response times and lengthy delays.

2.2.4.1 Alert box

The alert box is one of the most frequent forms of feedback that provides users with the
necessary assurance that everything is working well. It is usually an interim message that
pops up on the screen to let the user know that processing has been initiated or a signal that
appears while the system is processing the input.

2.2.4.2 Progress Indicator

A progress indicator or percent-done indicator is a form of continuous feedback that is
recommended when the computer cannot provide a fairly immediate response or for
operations that take longer than 10 seconds (Myers, 1985). Besides reassuring users that
the system has not crashed and that there is an ongoing activity, progress indicators also
inform users approximately how long they may have to wait. This allows users to plan their
time more effectively and perhaps perform other tasks during long waits.

When the processing load cannot be estimated in advance, a running progress feedback can
be used to reassure the user by displaying the absolute amount of work done. For example,
when a system is performing a search on an unknown number of remote databases, a
running progress feedback would be in the form of a list of name of each database as it is
processed (Nielsen, 1993). However, a progress indicator is unsuitable for operations that
execute reasonably fast, between 2 to 10 seconds (Nielsen, 1993) as users will be unable
to keep pace with rapidly flashing changes on the screen. A less conspicuous progress
feedback can therefore be used, for example by combining a "busy" cursor with a rapidly
changing number in a small field in the bottom of the screen to indicate how much work has
been done (Nielsen, 1993).

If a running progress indicator is not suitable, a less specific progress indicator can be used,
such as a spinning ball, a busy bee flying over the screen, dots printed on a status line or any
other mechanism that shows that the system is working but not necessarily what it is doing
(Myers, 1985). Non-obtrusive auditory signals like a chime can also be used to notify users
when the display output is complete.

Feedback information is vital but it has to be carefully presented to the users to ensure that
they are not dealing with seemingly inconsistent interface behaviour. However, some
systems still fail to provide the necessary feedback and in such cases, users attempt to deal
with delays themselves by adopting coping strategies (Dix, 1992a).

2.2.5 Coping strategies

Chapter 2 Time and Interactivity

 20

Multi-tasking is a common coping strategy that users have applied for a long time during
consistent real-time delays in the system response. Users perform multiple tasks in parallel
to speed up their rate of completion. Web users also tend to run multiple browser sessions
in parallel to cope with the boredom of delays.

A few studies (Cypher, 1986), (Miyata and Norman, 1986), (Conn, 1995) have even
suggested that in the event of delays, an appropriate alternative task must be proffered by
the interface, together with some support for users to resume the suspended task at an
“appropriate” time. However, enforcing such a strategy at the interface level can add an
extra burden on the task at hand and cause interference between the different tasks.
Although people are adaptable, there are situations where such task management techniques
would fail, especially during synchronous collaboration as users interact closely and their
contributions undoubtedly overlap.

Most single-user systems are designed to perform certain defined tasks in a specified
manner. Often, the data processing loads can be anticipated and integrated in user interface
design to provide adequately fast response for all transactions.

However, when task performance requires data exchange and/or interaction with other
users over a communication channel, then every participant must be provided with status
information about each other (Smith and Mosier, 1986). The support for fast response
times therefore becomes more problematic. For instance, in the Quake2 arena-like game,
instead of waiting to know if there were enemies round the corner, users were found to turn
corners and shoot even before receiving the feedback from their own actions (Knight and
Munro, 1998).

The next section will now analyse the temporal problems that users may face when they
interact over the Web, an environment that is predominantly subjected to delays. Some
potential solutions will also be discussed.

2.3 Interaction over the Web

A number of factors contribute to delays over the Web − network problems due to high
network traffic, slow bandwidth or remote site failures, low processing power of host and
client machines and poorly designed Web site interfaces. Although there are many high-
speed computers appearing on the market and the network capacity is increasing daily, the
problems of delays still remain. This tends to affect users’ interaction in Web applications in
general, but even more so in collaborative Web-based applications.

The length of delays experienced on the Web varies and unpredictable delays have a worse
effect on interaction than consistent response times (Section 2.2.2). According to a pilot
study (Byrne and Picking, 1997), Web users are critical of delays and regard time-related
factors to be of importance to Web usability. The Web is therefore an ideal environment to

2 http://www.quake.com/quake2/index.html

Chapter 2 Time and Interactivity

 21

study the effect of response time and the role that time plays on the interactive process.
Note that, issues directly related to Web site design will not be considered here as the
discussion centres on the Web infrastructure.

2.3.1 Problem areas

Traditional interface design tends to hide the underlying system architecture and
computations from the users (Section 2.2.3). Web interface design seems to adopt the
same policy, thus reducing its usability. For example, when a user visits a Web site, it is
impossible to tell how long the browser will take to load the whole page. This obviously
depends on the size of the page, any associated graphics or computations that must be
carried out on the local machine and the network speed. However, users are not usually
provided with such a level of detailed information, which will allow them to make informed
decisions.

2.3.1.1 Response time

Like traditional human factors research into response times (Section 2.2.1), research on
Web systems has also shown that users need response times of less than 1.0 second when
moving from one page to another if they are to navigate freely through an information space
(Nielsen, 1995). Web users are not currently getting sub-second response times; hence
they get frustrated (Nielsen, 1997). A response time of no more than 10 seconds has been
recommended as the limit for keeping users attention focussed while waiting for Web pages
to download.

Often, the Web browser affords users an understanding of the progress in the computer
activity whilst they are waiting, through a progress indicator. Although this enable users to
tolerate delays, browsers should provide useful progress bars that communicate what
percentage of the entire download for a page has been completed (Nielsen, 1997).

2.3.1.2 Network latency

On the Web, the latency of the network is the most obvious cause for delays. A faster
network connection only tend to increase the Web performance by a small factor. For
instance, upgrading from a dialup modem to an ISDN line only doubles the performance
(Nielsen, 1997). Even if a high bandwidth connection to the Internet is used at both user-
end and server-end, the response time will increase during network bottlenecks, especially
for cross-continent connections and for use at peak hours. In extreme cases, the
communication may be broken for longer periods if not completely, for instance during
mobile work (Dix, 1995a).

2.3.1.3 Collaborative interaction

The nature of collaborative work itself introduces further delays. Group users do not only
have to wait for feedback of their own actions but they must also wait for the effects of
others actions − feedthrough. User feedback and feedthrough may improve by using a

Chapter 2 Time and Interactivity

 22

faster network connection, but if the cooperative task requires many short network
interchanges, additional delays will occur due to buffering and processing at remote and
local sites.

Irrespective of the source, delays disrupt user interaction in general, and in particular they
affect the nature of the work process during collaborative activities over the Web.

2.3.2 Coping Strategies

Users also adopt coping strategies on the Web to deal with delays when they are seeking
for information, but the strategies tend to vary depending on the users knowledge.

A study (McManus, 1997) showed that when users were aware of the location of the Web
page they were trying to reach and they had some knowledge of the hardware and/or
browser being used, they tried to reach the desired information as efficiently as possible by
performing some of the following actions:

• multi-threading

• download pages to the local machines for browsing at a later stage

• expand the cache to allow quicker access to pages viewed earlier in the session

• deactivate automatic image loading

However, when users had little knowledge of the information they were looking for, they
minimised the time spent locating that information by carrying out some of the following
actions:

• use a site or author they trust and follow their links

• avoid sites that contain a large number of graphics or frames

• use search engines

• use personal information feedback or agent

• use FTP

Another interesting observation from the study (McManus, 1997) was the fact that users
actions varied depending on the granularity of the interaction. For instance, when users’
interaction were over a long time scale they would adopt measures such as, download
pages to the local machine, expand the cache or use personal agents. But in short time
scale interaction, users would rather deactivate automatic image loading or avoid sites that
contained lots of graphics and frames.

The underlying Web infrastructure does not assist users when they adopt coping strategies.
Users could be provided with some help to overcome the problems of delays in some
cases. However, it is not always desirable to support all the strategies that users undertake,
as this adds an extra burden on the task at hand and may interfere with the different tasks
that the users are performing (Section 2.2.5).

Chapter 2 Time and Interactivity

 23

2.3.3 Potential solutions

A number of suggestions have been made in the research literature to improve usability on
the Web despite its intrinsic delays. Because it is not always possible to control the
occurrence of delays, the impact of delays can be reduced by providing users with a greater
control over temporal issues, such as Web page loading times. For example, the browser
may open some form of dialogue that queries the course of action the user wishes to take,
thus creating a sense of rhythm during the interaction (Kutar, 2001).

Other research have suggested that users should be able to decide beforehand whether the
value of the information they are trying to download outweighs the cost in retrieving it. For
example, small chunks of ‘meta-data’ about a link can be downloaded and the size and type
of information at the link location can be provided to the users via a pop-up right button
menu (Bentley, 1997). Similarly, the browser could render images as thumbnails to allow
users to evaluate the cost and benefit of viewing those images.

A slow but consistent interface with a regular response time may be preferable to an
inconsistent interface with occasional fast responses (Section 2.2.2). However, the notion
of slowing down our ever fast computing power is seen as an outrage in a world where
speed is increasingly more important (Gleick, 2000).

2.4 Temporal properties of interactive systems

The speed of the response time is not the sole temporal factor of interactive systems. This
section applies the foundations of interface behaviour and pace of interaction to analyse the
temporal problems that users perceive at the interface.

2.4.1 Interface behaviour

An understanding of the user interface is very important. Temporal problems at the
interface are said to occur whenever any constraints between the status of the interface are
broken (Abowd and Dix, 1994), (Dix and Abowd, 1996b). This is most likely to occur
when fast computation and communication is not available, thus creating a lag between the
source of a change and its display, which may eventually lead to parts of the interface to
become inconsistent. The user interface can be specified in terms of events and status
behaviour (Dix, 1991), (Dix, 1992b), (Dix et al., 1993).

2.4.1.1 Events, status and agents

Events are things in the interface, such as a keystroke or a mouse movement, that occur at a
particular time. Events carry a time-scale that is inherited from the task that prompted them.
Status, on the other hand, always has a value associated with some interface object, for
example, the screen contents or the mouse position (Dix and Abowd, 1996b). Agents are
responsible for communicating events to other agents and they do so by changing the value
of the status.

Chapter 2 Time and Interactivity

 24

Potential temporal problems can be exposed by investigating the status and event
occurrences in the interface elements and analysing the way in which agents mediate events
through the status.

2.4.1.2 Mediating status

Consider an email delivery system. The file system (status) acts as the mediator between
the agent that actually receives the email (e.g. sendmail) and the user’s email agent or client
(e.g. Microsoft Outlook). Similarly, the email agent highlights an icon (status) to notify the
user (another agent) of the arrival of a new e-mail. So in an email system, there are a few
occurrences where an agent informs another agent of an event by changing a mediating
status (Dix et al., 1993), (Dix, 1992b).

Delays frequently occur when agents are affected by events. If an event involves some form
of communication between agents such as sending a message, then it is likely to be a time
consuming activity, which may probably be unreliable (Dix, 1991). Furthermore, a lag
between the status changing its value (the status change event) and the change being noticed
(the perceived event) also causes delays. In order to achieve an acceptable temporal
behaviour, it has been recommended that the lag between the actual events and the
perceived event should be short relative to the pace of the task at hand (Dix, 1992a).

The idea of mediation between status is key to the understanding of delays at the interface.
Its primary contribution to this research lies in the analysis of notification mechanisms in
Chapter 6.

2.4.2 Pace of Interaction

The pace of interaction is defined as the rate at which users transmit information when they
perform an action and receive a feedback through a communication channel (Dix, 1992a).
Pace is a useful measure of the rate of interaction and it is different from response time. The
issue of pace is based on the notion that during interaction, the channels of communication
between the user and the computer are more often used intermittently and not at a constant
rate. Pace is therefore a better measure of communication than bandwidth, which assumes
continuous transmission.

The notion of pace can be both measured and quantified. It can be used to provide an
understanding of how individuals interact with some data and also how collaborative users
interact with computer systems, the physical world and other group members (Dix, 1994a).

The pace of interaction (Dix, 1992a) is influenced by three main factors (figure 2.2):

(a) the intrinsic pace of the communication channel(s)

(b) the pace of the tasks (collaborative) and

(c) the pace at which user(s) operate(s)

Each of these factors will now be considered in turn.

Chapter 2 Time and Interactivity

 25

channels tasks

users

pace

Figure 2.2 Factors influencing pace of interaction

2.4.2.1 Pace of communication channel

When users interact with each other or with the computer, information is very often
transmitted through the communication channel(s) in chunks, with some periods of inactivity
in between. Consequently, the intrinsic pace of the communication channel is more
appropriate to measure the rate at which chunks of information are transmitted instead of
the bandwidth.

Bandwidth measures the amount of information that is transmitted whereas pace measures
the frequency of communication through the channel. For example, when analysing the rate
at which two individuals exchange emails, the bandwidth will only give a measure of the
average number of messages transmitted over a given period, but the pace would indicate
the rate at which individual messages are produced. In addition to pace, issues such as the
time taken to compose a message, the lag between transmission and reception and the time
taken to perceive a message should also be taken into account. However, these properties
are in some ways inherent in the pace of the channel.

2.4.2.2 Pace of task

Each task has an associated pace which should match the pace of interaction. For example,
during collaborative interaction, a large proportion of cooperative work takes place through
the artefact (Dix, 1992a) and different users have control of different (or shared) aspects of
the artefact. Collaborative users therefore expect to receive both feedback from their own
actions and feedthrough of others actions through the changes in the shared artefact (Dix,
1994b). The pace of the collaborative interaction is thus closely linked to the task at hand.

2.4.2.3 Pace of users

There is no clearly defined limit on the pace of activities that individuals can perform. Our
mental and physical capabilities are more suited to a certain pace of activity than others.
Also, our ‘natural’ pace varies for different kinds of tasks. For instance, hand-eye
coordination tasks have a pace of around 100 ms and this puts a limit on our reaction time.
So, computer feedback for hand-eye coordination tasks must be within this timescale.

Chapter 2 Time and Interactivity

 26

Furthermore, short-term memory fades over a similar timescale unless refreshed by constant
rehearsal.

2.4.2.4 Delays

Delays occur whenever there is a mismatch between any of the above factors affecting pace
and the resulting pace of interaction (Dix, 1994a). The most obvious cause of delay is when
the communication channel is too slow due to network latency. For example, if a large
amount of data is transmitted, the bandwidth determines the pace of interaction, but if the
task requires a high number of small network exchanges then, even a low latency network
can appear to be slow. Similar problems arise when the intrinsic pace of the channel is too
fast for the task at hand.

The context of the interaction and the nature of the task in particular can determine whether
a channel is too fast or too slow (Dix et al., 1998). It is sometimes possible to change the
nature of the task by speeding it up or slowing it down to fit the channel. However, the
pace of the task is typically less flexible, especially in collaborative tasks, due to physical
and computational constraints that limit the maximum or minimum pace. The pace at which
communication takes place through the shared artefact will therefore affect the task being
carried out and delays will arise whenever there is a mismatch between the pace of the
communication channel and the pace of the cooperative task.

Collaborative users are more likely to be faced with a mismatch in feedback. This occurs
when the pace of each individual interaction with the artefact is greater than the feedthrough
of other users’ actions. So, if the users do not notice others feedthrough or even when their
own feedback is required, their interaction with one another will slow down considerably.
The nature of the interface can however determine the effective pace for collaborative
interaction.

2.4.2.5 Coping with delays

A way round the problem of mismatch is to adopt some technical or social solutions (Dix,
1994a). For example, if the pace of the task is greater than that allowed by the
communication channel, a potential technical fix is to keep local copies of the shared
information in order to minimise network transactions and allow users to perform tasks by
using the locally available data. However, if the pace of interaction is greater than that of the
task, then the task has to be restructured via some social protocol.

Some studies (Dix, 1992a), (Miyata and Norman, 1986) have also shown that cooperative
users, like single users, may adopt coping strategies when the pace of the channel is too fast
or too slow. For instance, cooperative users may change the nature of the task by
increasing the amount of information sent through each chunk of communication if the pace
of the channel is too slow. Also, they may delegate certain aspects of the tasks to other
users and establish roles. Coping strategies therefore enable users’ actions to become more
predictable to one another, thus reducing the need for continuous feedback.

Chapter 2 Time and Interactivity

 27

Users can also be made explicitly aware of delays in order to encourage the adoption of
natural coping strategies. A recent work (Vaghi, 2002) in Collaborative Virtual
Environment (CVE) investigated some techniques for dealing with a poor rate of
feedthrough in an example multi-user VR pong game, where delays in the ball’s movement
made the game unplayable. A proposed solution showed ghostly versions of where the
system predicted the ball would be, assuming no users hit the ball. This was found to be an
effective mechanism in supporting players in their future moves.

2.4.2.6 Time granularity

In order to understand the impact of temporal issues on the pace of interaction, it is
important to consider the time scale over which interaction takes place.

Fine-grained levels of time granularity occur in direct manipulation interfaces where the pace
of interaction is of the order of 100ms. Coarse-grained levels of time granularity involve a
pace of interaction of the order of minutes or hours, such as in batch processing. Another
example is the rate of messages turnaround by an email system over a period of hours, days
or weeks.

Both fine-grained and coarse-grained levels of granularity make demands on our memory.
A study of the use of electronic paper diaries (Payne, 1993) showed that a varied time
granularity is relevant both in terms of the user’s interaction with the system and the system’s
functionality. The way in which electronic diaries uses time granularity has a strong impact
on usability.

At fine-grained levels of time granularity, issues such as status-status mapping are
encountered at the interface (Section 2.4.1). Coarser levels of time granularity are a
potential source of difficulty as variations in users actions are more likely to be seen
(Thomas, 1998). Users tend to change their course of actions in the long term. This is
usually motivated by either a mandatory action, which require users to perform a completely
new action, or by the user perceiving some benefit, such as time saving.

Different time granularities have different effects on the interactive process. Most work in
human-computer interaction (HCI) focuses on tasks that take a few seconds or minutes to
accomplish and where individual actions receive almost instantaneous feedback. However,
a significant proportion of collaborative activities occur over weeks or months and users
normally have to wait for hours or days before getting some form of response to their
actions. The slow pace of interaction implies that the tight cycle of action and feedback is
broken.

Although this work is driven by users’ needs during relatively short periods of interaction, an
analysis of temporal problems during long-term human processes was also carried out by
applying the issues surrounding pace of interaction. The results of this empirical case study
are described in the Appendix. The study was undertaken to expose the problems of
delays and interruptions during long-term collaborative interaction, thus uncovering potential
design irregularities.

Chapter 2 Time and Interactivity

 28

2.5 Summary

This chapter has investigated the importance of time during interaction. The brief review on
cognitive psychology provided an insight into the human memory and looked at the effects
of delays and interruptions on our short-term and long-term memory. Delays and
interruptions constitute inappropriate timing and may cause a failure in the users immediate
expectation, thus giving rise to usability problems.

Traditional human factors research identifies three response time limits that affect interaction.
These limits however, do not consider the factors that can alter the way in which interaction
is affected by response time. Consequently, issues such as the users’ level of experience
and familiarity with the system or even the speed of the interaction sequence are not taken
into account. Whilst it is generally agreed that the response time should be as fast as
possible, it is even more important to maintain a consistent interface by matching the
response time with the task at hand.

The impact of delays on the interactive process and the resulting influence of usability were
also discussed. Untimely responses can render the task at hand more complex and may
eventually cause a breakdown in the work process. So, when responses cannot be made
uniformly fast, it is vital to provide users with some form of feedback to assist them in their
tasks. Often in situations where feedback is inexistent or badly implemented, users tend to
adopt their own strategies to cope with the frustrations of delays.

The Web was then used as an example to analyse the problems that users may face during
interaction. The Web environment is largely subjected to delays due to network latency.
However, with Web-based collaborative applications, there are additional delays that are
introduced by the nature of collaborative work. Collaborative users require both feedback
of their own actions and feedthrough of the effects of others actions. Delays therefore
intensify user frustration and errors and can easily disrupt group interaction.

The foundations of interface behaviour and pace of interaction were applied to analyse the
temporal problems that users perceive at the interface. The interface behaviour deals with
issues such as status, events and agents. Temporal problems at the interface is said to occur
whenever any constraints between the status of the interface are broken. Pace is a measure
of the rate of interaction and it includes factors like the pace of the communication channel,
the pace of the task and the pace at which users operate. A mismatch between any of these
factors and the resulting pace of interaction will inevitably cause delays. Both the interface
behaviour and the pace of interaction play an important role in the understanding of
temporal problems in this research.

The most obvious cause of delay during collaborative work arises when there is a mismatch
between the pace of the communication channel and the pace of the cooperative task.
Furthermore, collaborative users will more likely face a mismatch in feedback. This
happens when the pace of each individual interaction with the artefact is greater than the
feedthrough of others actions. Users’ interaction will slow down significantly if they do not

Chapter 2 Time and Interactivity

 29

notice each other’s feedthrough or even when their own feedback is required. The nature
of the interface can however determine the effective pace for cooperative interaction.

The pace of interaction spans over different time granularities, from hundreds of milliseconds
in direct manipulation interfaces, to minutes or hours in office-based environments. Long-
term interaction poses different problems to high paced interaction. Although this thesis
focuses on technological and architectural issues dealing with short-term interaction, a
broader analysis of temporal systems would be incomplete without addressing the concerns
of long-term interaction. An empirical study was thus carried out to analyse how users’
interaction may be affected over long periods of time. The findings of this study are
presented in the Appendix.

30

Chapter 3 Single-user Interface and
Architecture Issues

This research aims to develop an architectural framework that satisfies appropriate temporal
properties for distributed systems, particularly Web-based collaborative systems. The
temporal issues that arise during interaction were investigated in Chapter 2. We will now
consider the interface and architectural concerns that are involved in designing a software
application, starting with single-user interfaces in this chapter and followed by multi-user
interfaces in Chapter 3.

An important issue in the design of a software application is its overall architecture, which
includes the nature of the components of the application and the way the components
communicate with each other. The user interface is one of the major architectural
components as it is responsible for managing the interaction between the user and the
application, by handling input from the user and sending output to the display.

The user interface deals with the hardware and the software that enable users to interact
with the computer. It embodies elements that are related to both the user and the system
and the methods of communicating information between them. The task of implementing a
user interface is complex and code intensive. The user interface has to control a number of
devices and their input streams, in addition to performing interaction tasks such as displaying
data, parsing input and reporting errors (Myers, 1989).

A fundamental problem in designing a user interface lies with understanding the users and
the tasks that need to be supported. Some studies have shown that users are extremely
diverse and the wide range of functionalities that have to be satisfied tend to make the
application inherently complex (Curtis et al., 1988), (Gillian and Breedin, 1990). Several
tools have been developed over the years to speed up the process of building user
interfaces and simplify the task of creating and maintaining interfaces.

This chapter gives an overview of interface and architectural issues for single-user
applications based on the existing body of literature. Section 3.1 starts by looking at the
important architectural and temporal requirements that a single-user interface should satisfy.
Section 3.2 explores some mature architectural models for single-user interfaces, such as
Seeheim, Arch/Slinky, Model-View-Controller and Presentation-Abstraction-Control.
These architectural models are analysed further in Section 3.3, in terms of their conceptual
and physical structure. Section 3.4 reviews some of the tools that assist in the design and
development of user interfaces, including toolkits and interface development environments.
Finally, Section 3.5 explores the various design paradigms employed in architectural and
interface development.

3.1 Requirements

Chapter 3 Single-user Interface and Architecture Issues

 31

Although there are a number of requirements for a single-user interface, usability and
performance are considered to be most desirable. Usability deals with how well the
interface satisfies its functionality and is related to the consistency of the interface.
Performance is instead primarily governed by the temporal properties embodied by the
interface. The focus of this research is on the performance aspect of the user interface and
this has a direct impact on the way that users interact with the application.

This section considers some of the main architectural and temporal requirements that an
interface should satisfy, including issues such as separation, direct manipulation, rapid
semantic feedback and consistency.

3.1.1 Separation

Separation is an important architectural requirement that involves separating the abstractions
of the application from those of the interface (Edmonds, 1992). The abstract objects can
communicate with each other but each object should not depend on the specific
implementation details of the other. There are several advantages that can be gained by
separating the application semantics from the user interface (presentation) components.

Firstly, separation promotes customisation − certain parts of the application may be
changed without redesigning the whole interface. Secondly, it facilitates re-use − the
interface can be altered without changing the underlying application code, thus allowing
parts of the interface to be used for other applications with just some minor modifications.
Finally, separation enhances portability − an application can easily run on multiple platforms
with different interfaces.

Many current design paradigms such as object-oriented, distributed and model-based
systems promote separable user-interfaces. However, separation is hard to achieve
especially in direct manipulation interfaces where the interface is often tightly bound to the
application. Moreover, separation conflicts with the needs of rapid semantic feedback, an
essential temporal property. Once the application semantics and the presentation
components are separated, they have to be linked in such a way that they can communicate
effectively with each other (Edmonds, 1992).

3.1.2 Direct manipulation

Direct manipulation interfaces have increased in popularity over the years due to the
naturalness of the physical metaphors employed. Direct manipulation interfaces allow users
to interact directly with the objects displayed on the screen and manipulate them by using
devices such as the mouse or the keyboard, thus enabling rapid, reversible incremental
actions (Schneiderman, 1983). However, direct manipulation interfaces are more difficult to
implement as they frequently involve elaborate graphics, many alternatives for a single
command, several input devices and a mode-free interface which allow users to enter any
command at virtually any time (Myers, 1989).

3.1.3 Feedback

Chapter 3 Single-user Interface and Architecture Issues

 32

From the user’s point of view, the performance of the interface is very influential during
interaction. An interface is said to exhibit acceptable temporal properties if it ensures that
there is no perceived lag between the user’s actions and the system’s response. In other
words, the response time between the user interface and the application should be almost
instantaneous. Feedback is basically the response a user receives from the display after
performing an action; for instance, a button is highlighted when the user clicks on the mouse.
Feedback may depend on the semantics of the underlying application.

Direct manipulation interfaces promote rapid semantic feedback by providing almost
instantaneous response to users actions. But these interfaces also require information to be
exchanged extensively between the user interface and the application to provide semantic
feedback. Such a level of communication does not favour dialog independence and
consequently hinders the run-time separation between the application and the interface
components.

3.1.4 Consistency

Consistency is another important architectural property that increases the predictability of an
interface (Gram and Cockton, 1996). A consistent interface allows users to transfer
knowledge from one context and apply it in new situations. Users can therefore anticipate
what the system will do, thus encouraging the development of behaviour patterns.
Consistency also increases the ease of use of a system and speeds up the user’s learning
process.

It is easier to produce a consistent interface by splitting a system into various components
and letting each component handle a particular functionality. The components can then
interact with each other by sharing their behaviour. If a user interface is instead bound to its
architecture, some degree of interaction may still be possible between the components, but
consistency is not necessarily guaranteed.

The discussion in this section has highlighted the pros and cons of each requirement and
shown how the needs for some requirements conflict with others. Although all the above
requirements are desirable, they are influenced by the architectural solution that is adopted.

3.2 Architectural models

Most of the architectural models for single-user applications support the partitioning of the
application semantics and the user interface functionality. This section looks at the main
architectural models that have been used over the years for building single-user applications.

3.2.1 Seeheim model

The earliest significant work which supported the separation between the application and
the presentation was Newman’s Reaction Handler (Newman, 1968). However, the first
explicit architecture that was developed was the Seeheim model (Pfaff and Hagen, 1985).

Chapter 3 Single-user Interface and Architecture Issues

 33

☺ Presentation Dialogue
Control

Application
Interface
Model

Lexical Syntactic Semantic

fast-switch

¿

Figure 3.1 Logical components of Seeheim model

Figure 3.1 shows the logical components of the Seeheim model (Pfaff and Hagen, 1985).
The functionalities of each component are:

• Presentation − this component is responsible for the external appearance of the user
interface and accepts users input and generates output on the display screen.

• Application Interface Model − holds the data and defines the semantics of the
application. It also provides a view of the application semantics at the interface by
mapping a subset of the application entities onto the user interface code.

• Dialogue Control − this component is mainly responsible for mediating the interaction
between the user and the application to provide semantic feedback. It manages the
input sequence from the presentation component and the output sequence from the
application interface model.

The Seeheim model has often been criticised for the linear nature of communication between
the components. This is seen as a bottleneck for direct manipulation user interfaces where
rapid semantic feedback is required. But some argue that this statement is only true if the
architecture is implemented naively or if very fine-grained communications are required
(Sawyer and Mariani, 1995).

However, the fast-switch represented by the lower box in figure 3.1 allows the application
to bypass the dialogue component when its state is not affected by output events. The
application can therefore communicate directly with the presentation component to provide
rapid feedback. But unlike the other functional components, the fast-switch is less well
defined and correspondingly more difficult to implement as an architectural feature.

3.2.2 Arch/Slinky model

The Arch/Slinky model (Gram and Cockton, 1996) recognises the fluidity of boundaries
between the user interface and the application functionality, which constitute its two
endpoints. In between these endpoints there are three additional component layers as
illustrated in figure 3.2.

Chapter 3 Single-user Interface and Architecture Issues

 34

Functional
Core

Dialog
Logical

Interaction

Physical
Interaction

Functional
AdapterCore

Figure 3.2 Arch/Slinky model

The interaction between the components and their functionalities are explained below.

• Functional Core − this component controls, manipulates and retrieves the application
data. It uses the application data and operations to provide functionalities that are not
directly associated with the user interface.

• Functional Core Adapter − acts as a mediator between the functional core and the
dialog component. It augments the functionality of the functional core component to
provide a service that is associated with the user interface and is thus related to the
presentation of the information.

• Dialog − this component controls task sequencing between the user and the portion of
the application domain that depends on the user to ensure consistency.

• Logical Interaction − mediates the interaction between the dialog and the physical
interaction component. It controls users interactions without depending on the toolkit
objects and includes descriptions of the data to be presented to the user and events to
be generated by the user.

• Physical Interaction − implements the interaction with the end-user via hardware and
software. It deals with input and output devices and is typically realised as a user-
interface toolkit or an interface library.

In order to clarify the functionalities of the above component, let us consider an employee
database as an example. The functional core component will be responsible for retrieving a
set of employee names and salaries by gender from the database. The functional core
adapter will instead allow a list of employee details to be viewed to display parts of the
records. The logical interaction component may present the list of employees and salaries in
a tabular form. Finally, the physical interaction component can present users with two radio
buttons to allow them to select an employee with a particular salary.

3.2.3 Model-View-Controller

In addition to architectures that divide the entire system into a small number of large
components, there are many agent-based or object-oriented user interface architectures.
However, these either identify individual agents as belonging to one of the traditional layers
or include a layering within each agent. One of the earliest object-oriented user interface
architectures was the Model-View-Controller (MVC) (Lewis, 1995), which was initially
implemented in the Smalltalk (Krasner and Pope, 1988) programming environment.

Chapter 3 Single-user Interface and Architecture Issues

 35

The MVC architecture separates the application object − the model, from the way it is
represented to the user − the view, and the way the user controls it − the controller. The
decoupling of these objects gives MVC a greater flexibility and promotes re-use, modularity
and encapsulation. MVC also provides a powerful way to organise systems that support
multiple presentation of the same information by using different views. Models, Views and
Controllers form triads of cooperating objects that are fully aware of each other’s existence.
Each view-controller pair is associated with only one model but a particular model can have
many view-controller pairs.

View

Controller

Model ☺
¿

7
8

Figure 3.3 Model-View-Controller model

The link between the objects is built up in units by means of the MVC triad (figure 3.3).
The functionalities of each object are described below.

• Model − implements the state and the behaviour of the application domain. It holds the
data that is relevant to the application and acts upon it in ways defined only by the
application thus enabling different user interfaces to use the same model functionality.
The model is not aware of how the data is to be displayed or even what actions are
used to manipulate it.

• View − requests data held in the model objects and presents the information to the user
in a graphical and/or a textual mode. The different view objects have no bearing on the
intrinsic behaviour of the model.

• Controller − provides an interface between the model, its associated view objects and
the interactive user interface devices. It handles users input by tracking input devices
movements and sends messages to the model.

A simple example of a model could be a clock object, whose intrinsic behaviour is to keep
track of the time by updating an internal record of the time after each second. One view
object can therefore display the time as an analogue clock while another can show it as a
digital clock. When the clock is reset directly by typing the current time into the digital
clock display, the controller object associated with the view will know that a new time has
been entered and it will call the relevant method of the model object.

Chapter 3 Single-user Interface and Architecture Issues

 36

In order to produce an output, the view has to ask the model for the appropriate data and it
can only do so if it has prior knowledge of the object whose data it has to display. This
information is gathered through the view-controller link. If a controller is linked to several
view objects and the user updates some data on a particular view, the controller must know
exactly which view will be affected to perform the necessary changes on the model.
However, in some cases, the controller may interact directly with the view without going
through the model. For example, the view may consist of a list of information and the
controller can make a request for the data to be displayed in alphabetical order. For such a
simple re-formatting operation, the data need not be updated on the model.

It is sometimes impossible to partition the functionalities between models, views and
controllers. Consequently, 'view-like' functionality might leak into models, for instance,
where the model has to know about the screen layout. Similarly 'model-like' functionality
could leak into controllers, for example, where it is more convenient to deal with mouse
clicks.

3.2.4 Presentation-Abstraction-Control

The Presentation-Abstraction-Control (PAC) model (Coutaz, 1987) is an agent-based user
interface architecture that is partially built on the Seeheim model. The user interface in PAC
is structured on agents or interactive objects at the top level and each interactive object is
decomposed into semantic, syntactic and pragmatic chunks (figure 3.4).

Abstraction

Control

☺Presentation

Figure 3.4 Presentation-Abstraction-Control model

The functionalities of each component in PAC are described below.

• Presentation − defines the syntax of the application, in other words the input and the
output behaviour of the application as perceived by the user.

• Abstraction − represents the application semantics and implements the applications’
functionalities.

• Control − maintains the dialogue and the consistency between the abstraction and the
presentation components. It manages the overall interaction between the user and the
application.

The PAC interface is constructed as a hierarchy of interactive objects or agents. The link to
the application is made via recursive calls from a PAC object to another at each level of
abstraction of the user interface, where each presentation component of an interactive

Chapter 3 Single-user Interface and Architecture Issues

 37

object maps onto another interactive object. The whole interactive application can be
treated as being a PAC entity.

The notion of interactive objects makes PAC conducive to an object-oriented approach
and thus offers several advantages. For instance, an interactive object can be customised
without changing its presentation or its related abstract interface(s). Similarly, the interfaces
can be altered independently without causing any side effects. The interactive objects may
be regarded as active entities that communicate with each other through some form of
inheritance mechanism which enables concurrent multiple input and output.

3.3 Analysing architectural models

An architectural model can be viewed in two ways − either as a conceptual (or logical)
architecture or as a physical architecture. This section will discuss the similarities and
differences between the Seeheim, Arch/Slinky, MVC and PAC models from both
conceptual and physical perspectives.

3.3.1 Conceptual architecture

A conceptual or logical model prompts us to think about user interface development issues
in general. Table 3.1 summarises the main functionalities offered by the different
architectural models for building single-user applications.

The Seeheim model is often criticised for relying on the user interface functionality to be
decoupled from the application functionality. Like Seeheim, Arch/Slinky considers the
system as a whole and partitions it into distinct application data and user interface
components. However, the Arch/Slinky model recognises the fluidity of boundaries by
maintaining the central role of layering and separability (in fact adding additional layers), but
it also accepts that the precise placement of these layers into coded modules may vary
between systems and even between parts of the same system.

Functionalities Seeheim Arch/Slinky MVC PAC

separate user interface and application
functionality

ü ü ü ü

layer presentation/semantics ü ü ü ü

share application and interface data ü

view system as whole ü ü

view system as multiple interactive
components

 ü ü

share same view on structure within
framework

ü ü

enable independent representations ü

build large interactive systems from smaller
components

 ü ü

Chapter 3 Single-user Interface and Architecture Issues

 38

Table 3.1 Summary of functionalities offered by architectural models

The Arch/Slinky model can therefore demonstrate that a separable user interface is not at all
ignorant of the functions of the system. It addresses the problem of semantic feedback by
sharing application data with the interface while still providing the advantages of
modularisation (Szekely, 1987). However, much more research is needed to justify the
efficiency of this method (Myers, 1989). Although the suitability of the Seeheim model as a
run-time architecture has been questioned, it still serves as a useful conceptual model that
provides a decomposition of roles.

The layered presentation/semantics distinctions can also be found in MVC and PAC. The
PAC and MVC models are however atomic based, in that they view the system as
consisting of multiple interactive components, each having its own intrinsic behaviour. The
focus is on individual parts of an interface, for example the interaction with a particular item
of data rather than the global separation of the application into components for each level.
They identify individual objects as belonging to one of the traditional layers or include a
layering within each object.

The MVC model recognises the independence between the representation components and
hence bears no similarities with the Seeheim model. Instead, PAC like Seeheim, shares the
same view on the structure within the framework. The user interface structure in PAC
allows many PAC objects to exist within a single framework, while this is not the case with
MVC. However, unlike Seeheim, PAC implements the dialogue in a distributed fashion and
is thus a multi-agent model. Likewise, MVC addresses the issue of building large and
complex interactive systems from smaller components, but neither Seeheim, nor Arch/Slinky
support this feature.

3.3.2 Physical architecture

A physical model pushes us to view the architecture as components of a system with named
roles and communicating along specified paths. This is particularly obvious when all the
components are placed on the same machine. Table 3.2 summarises the functions of the
different physical components of the architectural models.

Functions Seeheim Arch/Slinky MVC PAC

define application
semantics

Application
Interface Model

Functional Core
Adapter

Model Abstraction

manage control Dialogue
Control

Dialog Controller Control

accept input Presentation Logical Interaction +
Physical Interaction

Controller Presentation

generate output Presentation Logical Interaction +
Physical Interaction

View Presentation

control, manipulate, and
retrieve application data

 Functional Core

Table 3.2 Mapping of components between architectural models

Chapter 3 Single-user Interface and Architecture Issues

 39

There are some obvious similarities between the components in the Arch/Slinky and the
Seeheim model. The application interface model in Seeheim takes the role of the
functional core adapter in Arch/Slinky, while the dialog control component maps directly
onto the dialog component. In addition, the presentation component in Seeheim
encompasses the functionalities of both the logical interaction and the physical
interaction of Arch/Slinky. However, there is no functional equivalent for Arch/Slinky’s
functional core component in the Seeheim model. The abstraction component in PAC
roughly corresponds to the application interface model in Seeheim.

Although both PAC and MVC models are based on an object-oriented paradigm, there are
some significant distinctions between them. In MVC for instance, the input and output
events are handled separately by the controller and view components respectively,
whereas in PAC, the presentation component manages both the input and output. A
change in user input does not necessarily imply a change in the output, but this often is the
case at finer grained level of interaction. Consequently, PAC will more likely provide
immediate feedback after each input event. However, in some MVC based systems, such
as the Andrew Toolkit (Palay, 1988), the view and the controller are combined into a
single object to reflect the tight coupling between input and output events in direct-
manipulation interfaces, thus reducing the communication overhead between the
components.

Another major difference lies with the control. The PAC model has a dedicated control
component to manage the control, whereas the controller component in MVC also handles
other tasks, such as users input events. A separate control component makes PAC more
amenable to other kinds of events, hence allowing it to be easily applicable within a multi-
user context. However, it is worth noting that the MVC model has been applied
successfully on a variety of platforms and effectively instantiated as a design standard.

3.4 Interface development tools

In addition to architectural models for building single-user applications, there are a number
of tools that are available to assist developers with the design and implementation of user
interfaces. The conventional development tools range from windowing system at the lowest
level to toolkits, User Interface Management Systems (UIMS) and User Interface
Development Environments (UIDE). This section will provide an overview of each of these
development tools.

3.4.1 Windowing systems

The windowing system was one of the earliest tools developed that used the concept of a
window or a frame on screen for managing user interactions. The application processes
user input as events and display output in a window, usually in graphics form. Some
common windowing systems are X Window system for Unix (Scheifler and Gettys, 1986),
the Apple Macintosh Toolbox (Computer, 1985) and Microsoft Windows (Microsoft,
1993).

Chapter 3 Single-user Interface and Architecture Issues

 40

X Window is a network-based system that uses a client-server architecture. An X
application client can run on any machine in the network and the server resides on the user’s
workstation. The server is responsible for mediating user input and displaying output. It
translates user input into X events and sends it to the relevant client. The client then
interprets these events and informs the server on how to update the display layout.

Windowing systems in general provide a very low-level of abstraction for building
applications (Myers, 1989). As a result, toolkits and UIDE are built on top of them to
assist developers.

3.4.2 Toolkit

A user interface toolkit is a library of widgets or interaction objects, such as menus, scroll
bars and buttons that can be called by an application program (Myers, 1989). Interaction
objects have a predefined behaviour and their attributes can be tailored to meet the needs of
the programmer. When a user activates a widget, callback procedures are executed. A
toolkit usually consists of an application programming interface (API) and a run-time library.

Toolkits allow high quality applications to be built on top of them with less complexity and
they enforce consistency across the interface by providing similar behaviour to a whole
collection of widgets (Dix et al., 1993). Example toolkits include the Andrew Toolkit
(Palay, 1988), Motif (Foundation, 1989) and TCL/TK (Ousterhout, 1994). Some toolkits
also offer a direct manipulation graphical interface like Garnet (Myers et al., 1990), SUIT
(Pausch et al., 1992) and Java toolkit (Microsystems, 1996).

Although toolkits are popular for building interfaces they do have certain limitations. The
support for separation only applies to the level of each individual component and not to the
whole architecture (Linton, 1993). Also, toolkits do not provide much support for
designing interfaces or sequencing specifications and dialogue control. Furthermore, toolkits
provide a limited range of interaction objects, thus restricting the scope of user interaction to
those widgets supplied by the system. Finally, toolkits are often expensive to create and
difficult to use by non-expert programmers, perhaps with the exception of SUIT, which was
designed for novice GUI developers.

3.4.3 User Interface Management Systems

User Interface Management Systems (UIMS) add another level of services in interactive
system design beyond the toolkit level. The partitioning of the application semantics and the
user interface functionality was one of the main motivations behind the design of UIMS.
This concern generated another set of issues related to the mode of connecting these two
components together and the protocols of communication between them. The Seeheim
model was the first explicit architecture of what constituted a UIMS.

A UIMS offers mechanisms for the run-time management of user interfaces (Hix, 1990).
An application is typically separated into components and a runtime component is
responsible for managing the interaction between them (Olsen Jr, 1992). A UIMS can be

Chapter 3 Single-user Interface and Architecture Issues

 41

integrated with tools that define user interfaces to provide an environment that allows rapid
prototyping and execution of the applications’ interactive components (Sawyer and Mariani,
1995).

3.4.4 User Interface Development Environments

User Interface Development Environments (UIDE) provide an integrated set of tools that
address the design activities that precede the management of the run-time system (Dix et al.,
1993). There are a number UIDE developed for single-user systems which support the
process of creating a user interface and they typically include programming environments
such as Visual Basic and Visual C++.

Although UIDE plays an important role in user interfaces in general, there has not been
much support in this area for multi-user interfaces − the subject under consideration in the
next chapter. However, there are some development tools for the Web environment that
support the construction of applets, HTML web pages and CGI scripts such as File maker3
and Visual Café4. The latter also executes servlets but there is no facility for linking the
servlets with the CGI scripts. Given the limited coverage in multi-user interfaces, the issues
surrounding UIDE will not be considered any further.

Interface development tools should ideally help developers convert interface specifications
into an interactive system, while supporting all stages of the life cycle of system development
including prototyping, implementation, testing, maintenance and system enhancement
(Baecker et al., 1995). While some tools support some of these goals, none address all of
them. The majority of the tools aim at increasing developers’ productivity. They claim to
reduce the development time in the life cycle of user interfaces and increase the quality of
the interface by making it easier and more economical to create and maintain (Myers,
1995).

3.5 Design paradigms

From a software engineering viewpoint, it is advantageous to describe an application’s
functionality as being separate from its presentation. But in practice, this degree of
separation is difficult to achieve. This section will now explore some of the ways in which
architectural models and interface development tools have been implemented at the
conceptual level.

3.5.1 Event-based

An event-based model considers input tokens as events. Input events are processed by
event handlers, which modify the internal state of the system and call the relevant application

3 http://www.filemaker.com/
4 http://www.visualcafe.com/

Chapter 3 Single-user Interface and Architecture Issues

 42

routines before generating output events. Such systems are very efficient at managing
multiple processes and they do support some semantic feedback.

However, the application only communicates with the presentation when there is a need for
input. The dialogue control is therefore internal to the application and this forces the
application to be aware of the presentation issues, thus rendering the application less
generic. Moreover, the tight degree of control between the input and output events makes
the task of modelling the overall flow of the dialogue more difficult, as small changes in one
part of the program may affect many other parts (Dix et al., 1993).

3.5.2 Object-oriented

In an object-oriented model, the elements of a user interface are represented as objects.
There are usually two kinds of objects: interactive objects, which implement the user
interface and abstract objects, which implement the data underlying the interface. This
keeps the user interface separate from the application code.

Objects provide a good abstraction mechanism that encapsulates both state information and
operations. Moreover, an application can be easily extended by specialising high-level
classes through the inheritance mechanism. The X Window System Manager uses an
object-oriented programming style (Scheifler and Gettys, 1986). Toolkits that are
amenable to an object-oriented approach provide instantiation and inheritance features, thus
simplifying customisation.

Object-oriented systems can handle highly interactive direct manipulation interfaces as the
application can alter the computational link between the input and the output to provide
rapid semantic feedback. However, these systems are usually programming environments
and may as a result be unusable to non-expert programmers (Barth, 1986), (Krasner and
Pope, 1988).

3.5.3 Constraint-based

In a constraint-based model, the link between the presentation and the application is made
more explicit via the use of constraints. Garnet (Myers et al., 1990) is an example single-
user application that uses simple constraints for communicating between the user interface
and the application. The control component in the PAC model also has an implicit notion of
constraints between the values of the application and those of the presentation. In general,
most toolkits tend to hardwire the input handling directly into each widget. But some
toolkits such as Grow (Barth, 1986) and Garnet (Myers et al., 1990) add constraints on
top of their object-oriented functionality to enable designers to specify the relationships
among the objects, which are then maintained automatically by the system.

Constraints are enforced at run-time by reflecting the changes in one object onto others.
For instance, in Garnet, the look (interface) and feel (application) is separated by
encapsulating the behaviour of input devices in interactors (Myers, 1990). Consequently,
different widget types can be implemented on top of the same interactor mechanism. This

Chapter 3 Single-user Interface and Architecture Issues

 43

approach is very similar to Smalltalk’s MVC paradigm (Krasner and Pope, 1988), where
the model is the prototype-instance object specification, the view is the graphical object
system and the controller is the interactor. All three objects are interconnected by a
constraint system.

Unlike event-based systems, constraint links produce an independent description of the
dialogue controllers. The interface procedures only call the application when the user inputs
a command and as a result, the control is external, usually in a separate dialogue
component. However, in order to preserve the intended link between the application and
the presentation, a great deal of information about each other must be represented in the
external component and this may be an inefficient and cumbersome task.

3.5.4 Callback

In systems using callback procedures, the separation between the application and the
presentation is maintained by adopting a notification-based programming and similar to
constraint-based systems, the dialogue control resides externally from the application. So
when a user performs some input action, the notifier or the interface invokes the appropriate
application procedure to handle the event.

Toolkits are usually based on a procedural interface and all actions or events in the interface
are handled by callback procedures. For instance, the standard X toolkit (OSF, 1995)
uses callback procedures to implement the application interface. The callbacks are
directional as the application objects have to register callback procedures with the notifier
or the user interface objects (widgets). When a specified event occurs, the relevant
callback procedure in the application is called. Callbacks tend to increase the dependency
between the application and the interface (Myers, 1991).

The MVC architecture uses callbacks in the opposite direction. The model object allows
the view and controller objects to register callbacks with it, hence the dialogue is not
managed separately. When some aspect of the model is changed, the respective callback
methods are notified. It is then up to the view and the controller objects to determine what
changes have taken place, so they must have some knowledge of the model internal
structure. Modularity is hard to achieve in MVC as any change in a component
undoubtedly affects the others.

The use of callbacks to communicate between modules does generate some problems. A
module should know in advance when it wants to be called by another module, and such a
master-slave relationship is often difficult to identify and maintain. Furthermore, the
communication is limited by the granularity of the callbacks and the conditions under which
they are specified. In MVC for instance, the module that is called back often has to query
the calling object and compare its current state with its previous state to determine any
changes.

A slight variation of callback is to use shared memory, where the application program either
polls the data to check for any changes or is automatically notified of any changes. But in

Chapter 3 Single-user Interface and Architecture Issues

 44

general, message passing or event-handling techniques are less efficient than callback
procedures.

3.6 Summary

The focus of this chapter was on the architectural and interface issues for single-user
applications. Software architecture plays a very important role in the construction of a user
interface as the underlying architecture directly affects the behaviour or the look and feel of
the user interface. A number of desirable requirements for single-user interfaces were
identified; among which separation, direct manipulation and rapid semantic feedback have a
major influence on the temporal properties of the interface.

Early architectural models such as Seeheim emphasise the distinction between the
presentation, dialogue and functionality aspects of the interface. Whilst the Seeheim model
has been developed in various ways, most notably in the Arch/Slinky framework, most user
interface architectures preserve some notion of layering between the surface output and
input devices and the deep application semantics. Object-based models such as Model-
View-Controller and Presentation-Abstraction-Control make similar distinctions but they
tend to focus on individual parts of the interface, instead of the global separation of the
application into components.

The separation of the application and user interface functionality enhances features such as
portability, reusability, customisation and adaptability. However, the decoupling of the user
interface functionality from the application functionality is sometimes difficult to achieve,
especially when rapid semantic feedback is required. Consequently, aspects of the user
interface may ‘leak’ into the application and vice versa.

The architectural models were analysed further by looking at both conceptual and physical
aspects. A conceptual (or logical) analysis helps us to think about user interface
development issues whereas a physical analysis identifies whether there really are
components of the system with the named roles and communicating along the paths
specified in the architecture. This breakdown is clearly visible in single-user interfaces as all
the components are placed on the same machine.

In addition to architectural models, a number of interface development tools are available
for building single-user applications. Windowing systems provide a very low-level of
abstraction for building applications. Consequently, toolkits and User Interface
Development Environments are built on top of them to assist developers in their tasks.
Toolkits enforce consistency across the interface by defining the interface as a collection of
widgets. However, they do not provide enough support for designing interfaces or
sequencing specifications and dialogue control. User Interface Management Systems
instead goes beyond the toolkit level by offering mechanisms for the run-time management
of user interfaces.

Finally, some common design paradigms employed by architectural models and interface
development tools in general were explored. Although, it is advantageous to separate an

Chapter 3 Single-user Interface and Architecture Issues

 45

application’s functionality from its presentation, such a degree of separation is more difficult
to achieve in systems where the user interface elements are event-based and less so in
object-oriented models. In constraint-based models, the link between the presentation and
the application are handled through constraints but the control component is external.
Consequently, a large amount of information about the application and the presentation has
to be represented in the external component. Callback-based systems adopt a notification-
based method to invoke the appropriate application procedure to handle events, but like
constraint-based systems, the dialogue control is external to the application.

The next chapter will consider similar architectural and interface concerns to those discussed
here, but these will be applied to a multi-user context. In a multi-user distributed
environment, the software no longer runs on a single machine. One can no longer fudge the
boundary and communications between the application and the user interface components
as they are enshrined in the physical location and network connectivity.

46

Chapter 4 Multi-user Interface and
Architecture Issues for Collaboration

The user interface was mainly viewed from a single-user perspective until the advent of
personal computers and local area networks. Client-server architectures became more
popular and they presented a whole set of challenges in the design and implementation of
user interfaces. Some of the crucial issues that had to be addressed included the need to
support multiple user interfaces while ensuring a consistent interface for each client, and
providing concurrency and access control to prevent users from performing conflicting
actions.

In distributed interfaces, the application and the interface do not use shared memory.
Instead, the application may be running remotely at the server-end while the user interface is
executing locally at the client-end. When users are spread across a number of locations, the
underlying application should support interfaces that run on a number of workstations across
a distributed environment.

The emergence of Computer Supported Cooperative Work (CSCW) has pushed
collaborative interfaces into focus. The support for collaborative work has seen the
development of groupware that present a number of interfaces for simultaneous interaction
by multiple users. Groupware is described as software that supports and augments group
work (Baecker et al., 1995). Groupware systems have been developed for several areas,
from databases, graphics applications, multimedia systems to conversation boards (Brink
and Gomez, 1992) and computer games (Rohall et al., 1992).

Collaborative interfaces are difficult to implement because they not only have to handle
interaction tasks associated with single-user interfaces but they must also perform different
collaboration tasks. On a technical level, collaborative applications have to manage
distributed processes, maintain a robust inter-process communication and a persistent
object store. Furthermore, groupware should support some fundamental human factor
requirements for promoting effective groupwork, such as setting up and breaking
connections dynamically with remote users, managing input and output from multiple users,
informing users input and coordinating users interactions (Dewan and Choudary, 1992).

This chapter gives an overview of multi-user interface and architectural issues for
collaborative applications based on the existing research literature. Section 4.1 explores the
architectural and temporal requirements for multi-user interfaces designed for supporting
collaborative work. Section 4.2 examines some common architectural models. Early
distributed systems used to implement multi-user applications in a very transparent fashion.
However, the need for collaborative applications has driven a number of development tools
that enable the sharing of data and coordinate interaction across different interfaces.
Section 4.3 reviews some of these tools. Finally, Section 4.4 considers some design
paradigms applied in multi-user architectural models and development tools.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 47

4.1 Requirements

Many existing guidelines for user interface design have been developed from a single user
perspective. There are very few requirements that exclusively address the needs for multi-
user interfaces (Dewan, 1992) and a large number of them merely extend the primitives of
their single-user interface counterparts (Dewan and Choudhary, 1991).

Multi-user interfaces designed for supporting collaborative work must facilitate the sharing
of application information to promote collaboration among group users. Furthermore, these
interfaces should cope with network related problems that may arise with distributed
interaction, such as delays, disconnections and network failures. If network problems are
likely to occur, the application should also provide enough support to maintain data
consistency.

This section considers some of the main temporal and architectural requirements for multi-
user collaborative interfaces. Like single-user interfaces, separation and feedback are
important issues in multi-user interfaces. However, the need for supporting collaborative
work introduces additional requirements of feedthrough, awareness, sharing and control.

4.1.1 Separation

The separation of the application semantics from the user interface functionality is a
desirable architectural feature in single-user applications (Section 3.1) as it offers many
advantages including portability, reusability, customisation and adaptability. However, the
logical separation is sometimes ignored in single-user interfaces in order to reduce the
complexity and speed up the development of the application. Also, there is so little in the
specification of single-user applications that explains how the separation should be made
(Patterson, 1991).

Unlike single-user interfaces, the logical separation is a necessity in collaborative multi-user
interfaces as it simplifies the process of visualising the interface in different ways (Patterson,
1991). It is also easier to identify which elements should be part of the application
component and which elements should be part of the interface component. For example,
the need for multiple views of the shared interface implies that the shared information should
be embedded in the underlying application model in order to make it available to all group
users.

In addition to the logical separation, the physical separation of the architecture is also
desirable for supporting end-user adaptation in a distributed environment. Physical
separation provides some degree of fault tolerance, as a failure in a particular user interface
process will not affect other user interface or application processes (Bentley, 1994).

4.1.2 Feedback

Like single-user interfaces (Section 3.1.3), the requirement for rapid semantic feedback is
an important temporal property in multi-user collaborative interfaces. As well as interacting

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 48

with each other, collaborative participants interact individually with the system. Therefore,
they require a rapid response following their actions.

Most operations in single-user applications require a feedback within 0.1 seconds (Section
2.2.1) to enable users to feel that the system is reacting instantaneously. This time limit is
relatively easy to achieve when all the components are running on a single machine. But in a
distributed system, the application and the user interface components often reside on
different machines. Consequently, the feedback loop involves transmission over a network
and if there are problems such as latency or delays, it is more difficult to achieve acceptable
response times.

4.1.3 Feedthrough

In addition to feedback, collaborative users also need to see the effect of one another’s
action. A large proportion of group interaction takes place via the shared objects.
Feedthrough is the reflection of a user’s actions on other participants screens (Dix et al.,
1993) and it is a crucial temporal property that helps to promote collaboration. Rapid
feedthrough is necessary for group work as the artefact is shared by a number of users.

However, the requirements of feedthrough are not so stringent as for those for feedback
(Dix et al., 1993). Feedthrough depends on two major factors: the granularity of the
updates and the propagation of those updates.

The extent to which a user’s activities are represented on another user’s screen depends on
the degree of coupling between the two interfaces. During close collaboration, group
members have to communicate frequently with each other before performing any updates to
the shared information space. This requires a tightly coupled interface. But when
collaboration is less direct and less frequent, a loosely coupled interface is sufficient.

So, in a tightly coupled cooperative activity such as group drawing, the associated
explanation and gesturing involved in drawing an object is often more important than the end
product itself (Tang, 1991). Consequently, a small granularity of updates needs to be
broadcast to all the users after each action and rapid feedthrough is vital. In contrast, the
rate of updates in loosely coupled applications can be reduced significantly − the updates
can be chunked and broadcast all together at a later stage. Rapid feedback may be
necessary for the user who initiated the action but feedthrough to other users can be slower.

4.1.4 Awareness

Traditional distributed systems have applied different types of transparency to hide
information from the users, thus giving the illusion that each user is working in isolation. The
aim of a collaborative multi-user interface is to facilitate the real-time presentation and
manipulation of shared information in order to establish and maintain a common context
(Bentley et al., 1994). Collaborative applications must therefore provide users with an
awareness of each other’s presence and activities to support group work effectively and for
establishing successful collaboration (Ramduny, 1994).

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 49

There are various types of awareness that have been identified in the research literature.
The three major forms of awareness that enhance group work are:

(a) the presence of group members and their availability for cooperative work

(b) the effects of group members’ actions and

(c) how changes happen

Awareness of type (b) basically conveys the notion of feedthrough (Dix, 1997) as it deals
with the changes that have occurred. Also, the pace of feedthrough is directly proportional
to the rate of providing awareness of type (c); one can infer the reasons why changes occur
by noticing the intermediate steps and the way changes happen. Both awareness of types
(b) and (c) will be affected by network delays and lags.

4.1.5 Sharing

Different users need to be aware of one another’s interaction to varying degrees depending
on the activities that they are carrying out. The amount of sharing provided to the users
depends on the granularity (amount of information to be shared) and the levels at which
the objects are shared at the architectural level.

In general, the majority of groupware systems operate between the fine-grained and
coarse-grained extremes (Dix et al., 1993). For example, fine-grained sharing allows users
to edit the same sentence or even the same word within a particular sentence, whereas
coarse-grained sharing only allows one user to edit a file at any time.

Objects can be shared at the following levels and each level corresponds to a particular
degree of user interface coupling:

(a) Presentation level − each participant is presented with the same display of the same
subset of the shared information and any update in the presentation is replicated to all
other display screens (Bentley, 1994). Systems supporting presentation level sharing
are tightly coupled and are they are also referred to as What-You-See-Is-What-I-See
(WYSIWIS) systems. Example applications include meeting rooms (Begeman et al.,
1986) and shared window systems (Lauwers and Lantz, 1990).

(b) View level − each user is presented with the same subset of an information space but
the actual presentations may be different. For instance, one user may view the data in
tabular form while another may view the same data as a graph and they can both
interact simultaneously. The view is shared but not the presentation of the view, hence
such systems are semi coupled.

(c) Object level − each user is presented with different, possibly overlapping subsets of the
information space (Bentley, 1994). Such applications are loosely coupled and they are
also called What-You-See-Is-Not-What-I-See (WYSINWIS) systems. An example
groupware system is Grove (Ellis et al., 1990), (Ellis et al., 1991) that allows
participants to edit different parts of the same document, so the object is shared but not
the presentation.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 50

4.1.6 Control

The degree of sharing offered by the interface depends on the types of control enforced at
the architectural level. Traditional distributed systems viewed control as dealing with the
problems of distribution and such problems were masked from the applications (Rodden
and Blair, 1991). For instance, most distributed systems allowed users to know who could
access which objects but they did not allow users to know who was accessing a particular
object at a particular moment. The control decisions were thus embedded into the system
and hidden from the users.

However, due to the dynamic requirements of CSCW applications, one of which is
awareness, transparency is the wrong approach (Rodden and Blair, 1991). The common
focus on work implies that collaborative participants have to access the same data. As a
result, some form of control is required to manage the shared data and the shared objects.

One of the most common concurrency control mechanisms is locking. An explicit form of
locking is floor control policies (Begeman et al., 1986), (Stefik et al., 1987a) where the
floor control is the responsibility of the central conference agent and users have to make an
explicit request for the floor. Users thus take turns in interacting with the application. In
contrast, implicit locking is automatically applied when users attempt to access an object.
Systems that adopt this mechanism offer no techniques for coordinating group interaction.
A lock may be implicitly requested before a user’s action and if no one else has the floor,
the floor is implicitly granted. But if the floor is already taken, the user’s action is blocked
until the lock is released.

In some systems, additional protocols are built on top of the locking mechanisms, such as
access rights or roles (Leland et al., 1988). Users perform certain tasks depending on the
roles they are assigned. Unlike access rights that normally impose a restriction on users’
functions, roles are more dynamic in nature. Finally, certain applications do not provide any
locking mechanisms; they rely on participants using a social protocol to negotiate
simultaneous access in a free-for-all situation. However, such systems must usually have
some ways of detecting conflicts to restore consistency automatically or at least alert users
when conflicts occur.

This section has shown that, in addition to the requirements of separation and rapid semantic
feedback for single-user interfaces, cooperative multi-user interfaces are governed by the
need to facilitate the sharing of application information to promote collaboration among
group users. So, in order to meet the needs of group users, feedthrough, awareness,
sharing and control are essential requirements. However, the properties of the supporting
architecture delimit many of the features of the cooperative interface provided by an
application.

4.2 Architectural models

Unlike single-user systems, which have seen a number of research characterising software
architectures (Bass, 1993), (Myers, 1995), (Nigay and Coutaz, 1993) the contribution in

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 51

multi-user architectures has not been so prominent. Most of the work that have addressed
groupware systems mainly consist of identifying specific architectures such as centralised
and replicated window architectures and hybrid architectures. This section looks at the
benefits and drawbacks of each of these architectures.

4.2.1 Centralised architecture

The centralised architecture consists of a client program that runs on each user workstation
and a server that runs as a dedicated program on a central computer that holds all the
application’s data (figure 4.1). This arrangement is also known as the client-server
architecture. The client manages the screen layout and accepts input from users while the
server broadcasts output events by routing them through local client programs to all the
users.

Server

User 1

Client 1

User N

Client N

Figure 4.1 Centralised architecture

The client-server approach is very simple to implement, as it essentially comprises one
program with several front ends. Because the application and its related data are held
centrally, it is easier to manage concurrency control, data consistency and access
management. Client-server architectures have been adopted in a number of systems, for
example, MMConf conferencing system (Crowley et al., 1990) and shared X window
system (Gust, 1988).

Presentation level or WYSIWIS sharing is easily supported in the centralised architecture,
for it only involves the server replicating the output to all the clients. View level and object
level sharing can also be supported, but the interaction and visualisation have to be
embedded in the central server, thus inhibiting end-user interface tailoring. Another
disadvantage with having a central server is that large amounts of output may potentially act
as a bottleneck (Lantz, 1986) and in case of a failure due to a network breakdown or a
delayed feedback, this may eventually lead to a deadlock state.

4.2.1.1 Rendezvous Abstraction-Link-View architecture

The Rendezvous system (Patterson et al., 1990) is based on a centralised architecture with
an underlying Abstraction-Link-View (ALV) architectural model (figure 4.2). Rendezvous
assumes that the state of a multi-user application is encapsulated in objects and each multi-
user application consists of an abstraction and several, possibly different views. The sharing

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 52

and consistency between these objects are achieved by establishing constraints between the
shared abstraction and views.

Abstraction Link View

Figure 4.2 ALV architecture

The functionalities of the components of ALV are:

• Abstraction − this stores and provides access to the abstract information of the
application in other words, the information that is common to all the views.

• View − this presents information to the users that enable them to modify the display.
Although this information may be redundant, it is not replicated and besides, it allows
views to update their displays quickly even when access to the abstraction is impaired
by network delays or high loads.

• Link − this is a two-way constraint mechanism that maintains consistency and facilitates
the communication between the view and the abstraction components. It ensures that
the redundant information is kept consistent by mapping the underlying data with the
presentation.

For example, in a pie chart or bar chart display, the abstraction component will store the
numeric values of the information presented as pie slices or bars. The view will have the
abstraction information in the form of slice angles or bar heights and the link will be
responsible for transforming the bar heights to raw numbers and vice versa.

The abstraction and view objects in the ALV architecture correspond to the single-user
MVC (Section 3.2.3) model and view components respectively. When an interactive
system is decomposed into view (presentation) and abstraction (application) components,
some information may belong on both sides. But with ALV, the constraint mechanism helps
to keep the redundant information consistent. By implementing the communication
constraints in the link object, the view and the abstraction components become independent
of each other and are consequently easier to design and implement. Furthermore, this
allows the re-use of the view and the abstraction components, thus simplifying rapid
prototyping.

The centralised architecture of Rendezvous simplifies the process of synchronising the
interfaces, however it suffers from performance drawbacks, as the abstraction and the
associated view objects execute at a central location. Rendezvous does provide object,
view and presentation level sharing but the centralised architecture does not allow the
sharing policy to be visible; hence end-user tailoring is not supported.

4.2.2 Replicated architecture

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 53

In a replicated architecture, a separate copy or a replica of the application runs on each
client workstation (figure 4.3). Each replica executes the application code and sends
feedback locally. Groupware applications that adopt a replicated architecture tend to be
highly interactive and require immediate response, for example GroupDraw (Greenberg et
al., 1992a) and GroupDesign (Beaudouin-Lafon and Karsenty, 1992).

Replica 1

User 1

Client 1

User N

Client N

Replica N

Figure 4.3 Replicated architecture

The replicated approach offers the advantages of a centralised architecture with the added
benefits of performance, as the output of a workstation is produced by the local workstation
itself (Dix et al., 1993). Because the clients can be managed locally, view level and object
level sharing are easily supported. Also, it is relatively easy to provide end-user interface
tailoring, as each replica can simply adapt its visualisation and interaction policies to the
users preferences (Bentley et al., 1994).

The main problem with the replicated architecture lies with synchronisation and maintaining
data consistency. Usually, the input from each workstation is sent to each replica to ensure
synchronisation among the different replicas. The copies then communicate with each other
to maintain data and interface consistency. However, when several users perform
simultaneous actions some conflicts may arise. For instance, if a user deletes a selected
object in a WYSIWIS group drawing program while another user is changing the selection
to a different object, inconsistent interfaces can occur due to events arriving in a different
order at each workstation. Such conflicting actions will lead to race conditions.

Complex synchronisation algorithms are required to deal with race conditions. A standard
solution traditionally applied in distributed computing is to use a global clock to timestamp
each event. If any inconsistencies arise, the events are rolled back and re-executed in
temporal order. This approach is however inappropriate for multi-user interfaces where
display screens are updated immediately after each user’s input. Some groupware systems,
such as GroupDraw and MMConf (Crowley et al., 1990), assume that race conditions
rarely occur and they ignore the problems of synchronisation. Others like GroupDesign and
Grove (Ellis et al., 1990) attempt to synchronise events at the expense of very complex and
computationally expensive algorithms.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 54

Alternative concurrency control mechanisms based on transforming updates to prevent
rollback have also been developed. These mechanisms include locking and floor control
and they can only prevent race conditions or tolerate race condition in situations where
users can obtain locks and when rapid feedback is not the major concern (Dix et al., 1993).
Real-time synchronous update will still demand special-purpose algorithms.

A further problem with replication occurs when latecomers join a shared session, for
example, in a conferencing system. It is relatively straightforward to handle newcomers in a
centralised approach, as new clients only have to contact the server and register their
existence. The server then broadcasts the current state of the application to bring the new
client up to date. But with a replicated architecture, a new replica has to contact all the
other replicas to find out about the current state of the application and receive any updates.
Therefore, the new replicas must be aware of the locations of all other current replicas or at
least should be able to find them out.

Despite the difficulties with the replicated architecture, this approach has two key
advantages over the centralised approach − performance and versatility.

4.2.3 Hybrid architecture

Very often, neither a pure centralised nor a pure replicated architecture fully meets the
requirements of a system. It may therefore be more effective to adopt a hybrid architecture,
where certain parts of the systems are centralised and others are replicated depending on
the application’s requirements. Suite (Dewan and Choudary, 1992), (Dewan, 1993) is an
example of a distributed hybrid architecture that has a central semantic component, where
the application resides and local user-interface components, represented by dialogue
managers (figure 4.4).

Application

Dialog
Manager

‘A’

Dialog
Manager

‘B’

User A User B

application object

user interface
objects

Figure 4.4 Suite hybrid architecture

Suite, like the Seeheim architectural model (Section 3.2.1), separates an interactive program
into application objects and user interface objects. Each user interface object in Suite is
further divided into multiple dialogue managers and each dialogue component manages the
interaction between a particular user and the application.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 55

The Suite architecture is designed to keep network traffic low. Although the semantic tasks
are performed remotely in the central application component (which may involve some
communication delays) there is no delay in users viewing the displays on their screens, as the
dialogue managers format the computation results locally (Dewan, 1993). It has been
argued that the communication delays at the application-end are usually less perceptible
because computation size is typically small compared to its display (Dewan, 1993). The
other assumption is that results are not usually generated frequently for users tend to execute
long transactions before committing their input values.

The hybrid architecture is also supported by the MMM multi-user editor framework (Bier
and Freeman, 1992), which is essentially based on a centralised architecture, but the data is
replicated to support local insertion points, feedback and style setting. In contrast, the
XGroupSketch multi-user drawing program (Greenberg et al., 1992b) is mainly replicated,
but all the updates, communication and user-registration are handled via a central
component. In this case, the replicas only need to know the location of the central
component to broadcast the updates.

This section has provided an overview of the various architectural models that have been
developed for implementing multi-user collaborative applications. Most systems tend to
adopt either centralised or replicated window architecture. Each architecture meets the
requirement of collaborative systems by supporting different levels of information sharing
with different degrees of complexity as summarised in table 4.1. However, a hybrid
approach is very often more effective to meet the needs of collaborative users, as certain
parts of the systems are centralised and others are replicated depending on the application’s
requirements.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 56

Features Centralised
architecture

Replicated
architecture

implementation easy difficult

late user registration easy difficult

synchonisation/ data consistency easy difficult

rapid feedback no yes

presentation level sharing yes yes

view/object level sharing no yes

end-user interface tailoring no yes

Table 4.1 Centralised vs. Replicated architecture

4.3 Interface development tools

A considerable amount of research has been carried out in the real-time presentation of
multi-user interfaces within a collaborative environment. Most of them have focussed on
developing techniques, tools and facilities to coordinate the interaction across different
interfaces and these are discussed below.

4.3.1 Shared window systems

Shared window systems allow existing single-user applications to execute in a multi-user
environment with minimal changes. They are merely extensions of single-user window
systems that support sharing. The effects of the user’s actions are shared across a number
of displays in a transparent fashion. Applications based on the shared windows approach
are also known as collaboration transparent applications.

The NLS teleconferencing system (Engelbart, 1975) was one of the first shared applications
developed that allowed each user to share their complete display screens. The sharing of
parts of a display or individual windows came with the development of windowing systems,
such as Vconf (Lantz, 1986) and Rapport (Ensor et al., 1988).

The logical structure of a shared window system is shown in figure 4.5. A central
conference agent is responsible for managing the interaction between the users and the
applications (Lauwers and Lantz, 1990). The central agent multiplexes output streams from
the applications onto the users window systems (figure 4.5a) and demultiplexes the input
streams from all users to the appropriate application (figure 4.5b).

A shared workspace is thus created and this allows each user to see the same view of every
window associated with the shared applications. Shared window systems are usually built
on top of an existing network windowing system, which is responsible for handling the
communication between the applications and the displays via a network protocol.
Examples of collaborative systems based on this approach are SharedX (Gust, 1988) and
MMConf (Crowley et al., 1990).

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 57

User

Window
System

draw on
window x”

Conference
Agent

Application
Application Application

Application

draw on window X

application
command

floor
control

draw on
window x’

Window
System

User User

Window
System

Conference
Agent

application
command

User

Window
System

(a) (b)

Figure 4.5 (a) Output and (b) Input structure of a shared window system

Because shared window systems deal with a single stream of output and input events, only
one user can interact with the application at any given time. A suitable concurrency control
mechanism is therefore required to coordinate the interaction between the participants. This
is usually in the form of some floor control policy that is managed by the central conference
agent. However, floor control policy is a contentious area of debate, as no single policy will
suit the needs of all group members in all task contexts (Lauwers and Lantz, 1990). Floor
control policies are usually based on some turn-taking protocols or on policies that range
from allowing only one user to control the shared workspace at a time, to allowing anyone
to generate input at any time to any window (open floor).

Most shared window systems are based on replicating the output via the sharing of the
presentation and thus they do not have an explicit knowledge of the shared task. Such
interfaces provide a common frame of reference to all participants by allowing users to refer
to the same visual context (Lauwers and Lantz, 1990), (Dix et al., 1993). Earlier systems
supported strict WYSIWIS, where all participants had the same window size and
placement. This arrangement was not only found to be confusing and distracting for users
but it was also overly restrictive for group members especially when they have widely
differing roles and assume different tasks (Greenberg, 1990). Hence, the MMConf system
(Crowley et al., 1990) adopted a more relaxed WYSIWIS approach and users were
allowed to make decisions about the window layout locally.

Although shared window systems increase the power of interactive systems significantly by
supporting collaboration tasks, they can only manage low-level interaction entities and
provide support for near-WYSIWIS interaction (Dewan and Choudary, 1992). For
instance, a shared X window system forces users to share scroll bars, as the notion of scroll
bars is not defined at such a low level.

4.3.2 Shared object systems

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 58

Shared object systems enable the collaborative sharing of data and they are often referred
to as collaboration aware systems. Collaboration awareness supports the development of
specialised applications designed for simultaneous use by multiple users (Lauwers and
Lantz, 1990). These applications provide facilities for managing information sharing
explicitly between the participants and they present a number of different interfaces to the
users. Example systems include the CoLab meeting room (Stefik et al., 1987b), Grove
group editor (Ellis et al., 1990) and rIBIS real-time information system (Rein and C., 1991).

Collaborative aware systems like collaborative transparent applications, provide
presentation level sharing. For example, in the CoLab collaborative meeting system (Stefik
et al., 1987b), all clients execute the same application program and the state of the objects
can be shared among the clients. The objects encapsulate both the semantic state and the
user interface state. If a shared state object is modified, such as the scrollbar, this change is
replicated to the other clients via broadcast methods, thus allowing the users to view the
changes without encountering any network delays.

CoLab implements both a strict floor control policy to manage users interaction with the
display and a relaxed WYISWIS approach to provide a coordinated interface for all
participants. The latter allows participants to have the same presentation of the shared
information, which can be arranged into shared and private windows as required (Stefik et
al., 1987a).

Grove (Ellis et al., 1990) separates the users shared and private windows by applying the
notion of views that links the users access rights with their presentation. For example,
private views are only accessible to the owner, shared views are accessible to a group and
public views are accessible to all the participants.

In general, collaboration aware systems often embed the management of each user’s sharing
within the application itself. As a result, the decisions regarding the display and the ways in
which the information can be modified are embodied in the application itself. This inhibits
the tailoring of the sharing policy and hinders multi-user interface prototyping (Bentley,
1994). Furthermore, the lack of a supporting infrastructure means that most collaboration
aware applications have to be built from scratch. Hence, this approach has been less
popular than collaboration transparency. However, due to flexibility reasons, collaboration
aware arrangements are becoming more prominent (Greenberg, 1990).

Table 4.2 summarises the main features of collaboration transparent applications and
collaboration aware systems.

Features Collaboration
transparent

Collaboration
aware

easy to implement ü

support specialised synchronous multi-user application ü

information sharing ü

presentation level sharing ü ü

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 59

view/object level sharing ü

private windows ü ü

shared windows ü

flexibility ü

Table 4.2 Collaboration transparency vs. Collaboration aware

4.3.3 Groupware toolkits

Conventional multi-user toolkits do not support many of the requirements of groupware,
such as managing synchronisation, concurrency and communication on a technical level. In
addition, they do not incorporate the fundamental human factor issues that are necessary for
promoting effective group work.

Groupware toolkits instead provide the key components for common groupware needs,
thereby reducing the development time and increasing the quality of multi-user applications
(Roseman and Greenberg, 1992). They also allow the rapid prototyping of applications
and enable various aspects of cooperation to be customised. Example toolkits for real-time
distributed meetings include GroupKit (Roseman and Greenberg, 1992), Rendezvous
(Patterson, 1991), (Hill et al., 1994), Suite (Dewan and Choudary, 1992) and MMConf
(Crowley et al., 1990).

GroupKit (Roseman and Greenberg, 1992) allows the development of real-time
conferencing applications for geographically distributed or face-to-face meetings. It is
based on a replicated architecture that offers support for sharing, access control and floor
control. The predefined classes of GroupKit can extend a single-user application
developed with a single-user toolkit to a multi-user application and also implement multiple
concurrency and access control policies.

MMConf (Crowley et al., 1990) also supports a replicated architecture, but each replica
behaves as a distinct logical entity that manages its own state. Each replica can therefore
determine whether an input event generated by its user should be broadcast to other
replicas or not. As a result, operations with side effects can only execute on a single replica,
thus reducing the occurrence of race conditions.

Groupware toolkits generally have a model of the user interface data structures such as
windows and widgets. They enable the sharing of the user interface state by allowing
multiple copies of interactive elements to be created but they do not manage the application
state. So, even the conceptually simple idea of having multiple cursors on a display and
annotating artefacts used for promoting gesture, awareness and note taking over a visual
surface is difficult to achieve with toolkits (Hayne et al., 1993).

4.3.4 Multi-user User Interface Management Systems

A fundamental issue with single-user User Interface Management Systems (UIMS) is the
separation of the application semantics from their screen representations (Section 3.4.3).

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 60

Separation is often difficult to achieve because current direct manipulation interfaces require
extensive communication between the user interface and the application to provide rapid
semantic feedback. However, in a multi-user UIMS context, separation is crucial in order
to provide the necessary high-level abstractions to support the sharing of both applications
and user interfaces.

The Rendezvous system (Patterson et al., 1990), (Patterson, 1991), (Hill et al., 1994)
allows multiple users to build interactive systems on multiple workstations simultaneously,
while promoting the run-time separation of the user interfaces from the applications. Figure
4.6 shows how the ALV architecture, discussed previously in Section 4.2.1.1, is
implemented at run-time. It consists of a tree of objects with a central shared abstraction
for handling user interaction and display management, and an associated view process that
interprets input events and display directives for each user (Hill, 1992).

 Shared
Abstraction

User 1

Link Link

Personal
View

Personal
View

User 2

Figure 4.6 Run-time ALV architecture

So, for each multi-user program, Rendezvous creates a single abstract process that stores
the abstract objects defined by that program. Similarly, a view process is created for each
user, which stores all the view objects associated with that particular user. An abstract
object can therefore be shared among a group of users by creating a view object for each
user and using constraints to keep the abstract objects consistent with the view objects. In
this manner, visualisation and interaction are separated from the information being shared,
thus facilitating the alternative presentations of information.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 61

4.3.5 Multi-user interface generator

A multi-user interface generator is defined as a multi-user UIMS that automatically
generates views of abstract data from a high-level description of those views (Dewan,
1992). Like a multi-user UIMS, a multi-user interface generator manages the visualisation
and manipulation of information outside the application. A separation between the
application information (what is being shared) and the interface presentations (methods of
sharing) is achieved by hiding the physical distribution of the components from the
application developer. Consequently, the visualisation and interaction policies can be
tailored independently of the application.

Examples of multi-user interface generators include Suite (Dewan and Choudary, 1992),
(Dewan, 1993) and MEAD (Bentley, 1994). Although the default collaboration scheme
offered by Suite is collaboration transparency, collaboration aware programs can be
supported by using some powerful set of constructs or primitives that control different
aspects of collaboration, for instance, the tailoring of users input and output, and user
interface coupling (Dewan and Choudary, 1992). Users are also allowed to define different
collaboration attributes with different users, such as sharing, communication and access
attributes. MEAD instead, provides high-level tools for interface development and its
supporting architecture manages prototype interfaces in execution, thus making it more
suitable for rapid multi-user interface prototyping.

This section has given an overview of the various types of development tools for
implementing multi-user collaborative interfaces. However, the success of any development
tool depends on a number of factors. Firstly, the tool should be flexible and it should
support the construction of a wide range of interfaces. Secondly, the effort required to
implement or change the user interface should be minimal, so ideally the tool must be
automated. Finally, the tool has to be efficient and this will depend on how well the user
interface performs.

4.4 Design paradigms

Various mechanisms have been adopted to facilitate the communication between the user
interface and the application components in collaborative multi-user architectures. This
section will explore some of the ways in which architectural models and interface
development tools have been implemented. These include the use of constraints, callbacks,
and active values.

4.4.1 Constraints

A constraint system allows a set of source variables to be linked to a target variable, so
whenever there is a change in any source variable, the value of the target variable is set to a
specified function of the source variables (Hill, 1992). Unlike single-user constraint systems
that only support a single constraint to be inbound on a value (one-way constraint), multi-

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 62

user systems require multiple constraints. Constraints embody dependencies between
different values that must always be maintained.

As discussed previously in Section 4.2.1.1, the ALV architecture in Rendezvous uses
constraints to maintain consistency across multi-user applications. The use of constraints
enables the link component in ALV to be described separately from the abstraction and the
view components; hence the view can ignore the abstraction and vice versa. Constraints
can automatically retarget themselves as views and view objects can be easily created,
restructured or deleted. The constraint method for communication does not seem to pose
performance problems as graphic updates have shown to consume far more processor
resources (Hill, 1992).

Rendezvous is designed to provide rapid feedback independent of the number of users,
through the use of some form of redundancy like caching the user interface. Constraints are
also employed in Rendezvous to maintain consistency between caches and “real” values.

4.4.2 Callbacks

Callbacks are basically procedures invoked in applications in response to user actions, for
instance, when a user connects to an application or when changes to data structures have to
be checked for semantic consistency. The single-user Suite system (Dewan, 1990) uses
callbacks and so does the MVC architectural model (Section 3.5.4). In theory, MVC
could support multi-user interfaces with multiple view-controller pairs but in practice,
problems with concurrency and bandwidth requirements of the callback protocols are said
to arise (Hill, 1992). A potential solution is to fully replicate all three components for each
user instead of using multiple view-controller pairs for each model (Smith et al., 1989).
However, this replicated approach can only be used when all the users have identical
interfaces.

Constraints act as an effective communication mechanism and they have often been used in
adhoc ways to link values and not objects. Callbacks can be used in its place to link
objects but they are a poor communication mechanism. Callbacks are rather static and they
force communication to be coded procedurally into all the relevant components.
Consequently, codes have to be written for each interface to ensure that callbacks are
registered and de-registered as required and this limits the scope of reusing the components.

4.4.3 Active values

Active values are variables that allow other objects to register functions with them (Hill,
1992). Whenever an active value changes, it calls the relevant registered functions. Active
value systems behave like callback systems, as they are implemented through the callback
mechanism. However, active value systems are at a higher level of abstraction − an active
value can in fact be considered to be an instance of a callback. Both active values and
callbacks react to events. With active values, this reaction can cause an update in the
relevant variables, but callbacks may not have the same effect.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 63

Multi-user Suite (Dewan, 1992), (Dewan, 1993) uses active values to extend single-user
Suite (Dewan, 1990) which actually uses callbacks to multiple and possibly distributed,
users. Users can change active values via an interaction variable − a user’s local version of
the active value of an object. An interaction variable is automatically created by the system
when the user connects to a particular object. The users can subsequently modify the
interaction variable by changing the interaction attributes associated with it. These attributes
determine the properties of the variable, for instance, the format used to display the variable.
The system then invokes the relevant callbacks to make the necessary changes at a lower
level.

4.5 Summary

This chapter has highlighted the major architectural and interface concerns for collaborative
applications. Like single-user systems, the notion of separation and feedback are important
requirements. However, groupware systems need to facilitate effective collaboration among
users. Collaborative users should therefore be able to manipulate the shared information in
a timely fashion and they should also be aware of each other’s activities with minimal delay.
The requirements of feedthrough, awareness and sharing are critical in meeting the needs of
collaborative users. Furthermore, it is essential to maintain data consistency between the
displays of the shared information and the information itself. Some effective control
mechanism is required for handling change propagation.

The supporting architecture usually governs the features of the interface. Some common
architectural models for collaborative systems were reviewed. Such systems adopt either
centralised or replicated window architectures and when these are not suitable, hybrid
architectures are used, where certain parts of the systems are centralised and other parts are
replicated. Unlike the replicated architecture, the centralised architecture is easy for
implementation purposes, for adding and removing clients and for maintaining consistency.
However, the replicated architecture does have the advantage of providing different levels
of sharing, rapid feedback and end-user tailoring. Very often, a hybrid approach is more
effective for meeting the needs of collaborative users.

The underlying architectures for collaborative systems such as Rendezvous and Suite were
also investigated. Both architectures allow the coupling of semantic values without coupling
their presentations. However, in Rendezvous, the view objects (presentation) for a user
executes at a central site, in the same address space as the corresponding abstraction
objects (application); whereas in Suite, the dialogue manager (presentation) executes in its
own address space. Consequently, Rendezvous is not so flexible with the placement of its
components.

A number of CSCW applications are based on the shared window and the shared object
approach, and they are referred to as collaboration transparent and collaboration aware
systems respectively. The tools used in interface development were also explored and they
included groupware toolkits, multi-user user interface management systems and multi-user
interface generators. These tools provide a much higher-level of abstraction than the shared
window or the shared object approach.

Chapter 4 Multi-user Interface and Architecture Issues for Collaboration

 64

Collaboration aware features are useful for enhancing awareness among users and for
providing public and private views whereas collaboration transparent features are essential
when any participant’s interaction becomes disruptive to others or when a private
workspace is necessary. Collaboration transparent applications are completely unaware of
the presence of multiple users and their interactions but collaboration aware arrangements
offer more flexibility. Often, a hybrid approach may be more suitable for developing
cooperative multi-user interfaces as it encompasses both aspects of collaboration.

Finally, some common design paradigms applied in implementing multi-user architectural
models and development tools were considered. Constraints were found to be an effective
linking mechanism between the separate components of an architecture, as typified by the
Rendezvous ALV architecture. Callbacks are not very efficient as a communication
mechanism between separate components, but they have been used successfully to link
objects together. Active values show similar behaviour as callbacks as they both react to
events, but in the case of active values, this reaction in turn invokes another callback, which
makes the relevant changes at a lower level.

The issues discussed in this chapter emphasise the need for separating collaborative
architectures into various components to provide effective user-level behaviour. Even in
stand-alone systems, a poor separation between the components can reduce the
performance of the system and create unacceptable interface delays, as described in
Chapter 3. The development of the Web has forced the concern between where the data
is stored and where the control lies, thus generating various alternatives for the location of
architectural components. The location decision of each component is decisive in achieving
the temporal requirements of rapid feedback and feedthrough and this is the subject under
consideration in the next chapter.

65

Chapter 5 Why, What, Where, When:
An analysis of Collaborative Architectures on

the Web

The Web is a ubiquitous platform-independent infrastructure that has a lightweight extensible
centralised architecture, cross-platform browser implementations and an existing user base
numbered in millions. With such an extensive set of functionalities, the Web offers immense
potential for the development of CSCW applications that provide much richer support for
collaboration. The Web can facilitate the development and implementation of remote
collaborative applications, despite the limitations in the range of applications that can be
directly supported.

Issues such as network bandwidth, reliability and performance have become critical with the
increasing use of the Internet. They have a direct influence on the temporal behaviour
offered by the interface. Although collaborative applications can be developed in an ad hoc
fashion, it is widely recognised that for both single-user and multi-user interfaces, an
appropriate software architecture is required as an aid for design, portability and
maintenance (Bentley et al., 1994), (Hill et al., 1994), (Pfaff and Hagen, 1985). Interface
and architectural issues surrounding single-user and multi-user applications were discussed
in Chapters 3 and 4 respectively.

This chapter analyses some important architectural decisions that need to be considered
when constructing collaborative applications for the Web. Like distributed systems, which
allow data and code to be moved to achieve the desired behaviour, on the Web, Java
applets can be downloaded to give rapid local semantic feedback. Architectural decisions
on the Web however, do not solely lie in the choice of the physical location for each
functional component. They also depend on when that component should reside in different
places. The analysis presented here examines the reasons that determine the optimum
placement for each component. Issues in this chapter have been discussed in (Ramduny
and Dix, 1997a), (Ramduny and Dix, 1997b).

Section 5.1 starts with a brief overview of the Web architecture. It examines the limitations
of the Web as a development platform for collaborative applications and considers some of
the ways of removing the constraints of the basic Web architecture. Section 5.2 introduces
the analytic focus of this chapter. Section 5.3 assesses why certain behavioural issues are
critical for collaborative work and Section 5.4 investigates what components are necessary
in collaborative interfaces. The decisions regarding where the components in a distributed
architecture should be placed and their consequences are discussed in Section 5.5. Section
5.6 then examines when components in a networked environment should be moved to
improve performance.

The issue of mobility surrounding data and code emerges from the analysis and this is
explored further in Section 5.7 by focusing on the options available for the Web. Finally,

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 66

Section 5.8 sets out the main behavioural objective of this research and examines its
influence on the architectural framework that will be developed to support collaborative
applications on the Web.

5.1 Overview of the Web

The Web was originally intended to be a powerful tool for supporting ‘active’ forms of
collaboration between collaborators in remote sites through the sharing of ideas surrounding
a common project (Berners-Lee et al., 1994). However, over the years the development
of Web browsers, servers and protocols have largely concentrated on more ‘passive’ forms
of information browsing and the initial concept of an ‘active’ form of collaboration was set
aside (Bentley et al., 1997b).

This section first considers the Web architecture, followed by its limitations as a
development platform for collaborative applications and finally looks at some of the ways in
which the Web functionalities can be improved to facilitate the construction of collaborative
applications.

5.1.1 Architecture

The Web is based on a simple client-server architecture. Web browsers run at the client-
end and interact with a central server component (figure 5.1). A browser identifies the
information required by using the standard Uniform Resource Location (URL) naming
scheme and requests information from the server through the standard HyperText Transfer
Protocol (HTTP) (Fielding et al., 1997). The host server then sends an HTTP response
back to the client.

HTTP
requests

HTTP
responses

standard
Web client

standard
Web server

Figure 5.1 Web client-server architecture

The response consists of a header, which identifies the data type (MIME) and allows the
browser to handle the format correctly, and a body, which contains the requested
information. The client browser uses the header information to display the information in the
right format, for instance in text or graphics form, by launching an external ‘helper’
application such as Microsoft Word to display a Word document or a browser plug-in such
as QuickTime to view video files.

HTTP is a generic, stateless object-oriented protocol, based on a simple request-response
model. The client browser uses the GET ‘request’ method to ask the host server for a
specific service, like an HTML page or a video clip, and the POST ‘response’ method to

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 67

transmit HTML data to the server. A stateless protocol implies that no state is associated
with a network connection. This has several advantages. Firstly, it increases the robustness
and the efficiency of the connection, as a dropped connection will only affect a single
request and a connection state does not have to be established each time a connection is
created. Secondly, a stateless protocol eliminates the need for a resynchronisation
operation to recover a connection state following an interruption. Finally, servers can
process requests from client browsers independently without affecting any previous
requests, thus enabling the development of lightweight server components.

State information is typically preserved by the client and is then passed on to the server as
part of the HTTP request. The HTTP protocol is independent of the format of the data
transmitted. The clients and servers are responsible for handling new data formats usually
through some extension. Client browsers can handle different types of data by using helper
applications whereas the functionality of Web servers can be extended through Application
Programming Interfaces (API). Helper applications usually function like many database
client-server applications and they can be in the form of additional protocols running
independently or in parallel with the current Web protocol.

The Common Gateway Interface (CGI) 5 is the de-facto standard for interfacing external
applications with information servers such as HTTP or Web servers. Unlike an HTML
document, which is static in nature, a CGI program is executed in real-time and produces
dynamic information. The CGI approach is independent of any particular server
architecture and allows rapid development. In CGI scripts, the interface and the application
sit on the server side to produce dynamic pages and the Web browser is used as the
presentation manager at the client-end. Dynamic pages allow changing information to be
displayed, but this can often cause server-end overload.

5.1.2 Limitations

The Web already offers global access to Web pages, which in some ways can be regarded
as a kind of shared artefact. Although the Web allows users to search, browse, retrieve
and publish information fairly easily, it does not currently offer features for sharing
information in a more cooperative fashion, such as facilitating authors to produce a joint
document (Bentley et al., 1997b). The main difficulties with supporting shared activities
stem from the Web architecture itself, the existing protocols and browser limitations.

5 http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 68

5.1.2.1 Asymmetric nature

The Web is asymmetric in nature due to its intrinsic distributed features. As a result, it
cannot support symmetric access to the shared artefacts. Updates only occur where the
pages are stored and readers are simply allowed to view the pages. Equal access to the
shared artefact is an essential requirement for enhancing collaboration (Section 4.1.5).

5.1.2.2 Lack of awareness

Awareness is another important requirement for assisting and promoting collaborative work
(Section 4.1.4). However, awareness mechanisms are practically absent within the Web
context. Changes to normal Web pages are only noticed when the page is visited. Despite
their advantages, stateless servers answer for the lack of implicit notification services on the
Web and thus render the HTTP protocol unsuitable for sending notification messages
(Trevor et al., 1997), (Dix, 1997). Some Web-based applications do however provide
explicit forms of notification, for instance they send emails to users when updates take place.
Even then, the absence of any client-server notification increases the likelihood of the
interface becoming inconsistent with the information held on the central server, unless users
reload the page frequently.

5.1.2.3 Restrictive architectural arrangement

The Web does not fully support collaborative arrangements such as direct server-client,
client-client or replication across servers (Section 4.2). This is essential for applications
where the server need to play a more active role, such as notifying users for changes or
maintaining consistency across several servers. Some applications do poll Web servers
periodically to check for updates, but if the pages rarely change polling will generate
unnecessary network traffic.

5.1.2.4 Feedback delays

The CGI approach for generating dynamic information on the Web is based on a request-
response model. This increases feedback delays, as the server has to be contacted after
each user input. Such delays may be acceptable when for example a document is
requested, but less so during simple requests that only involve a change in the state of the
interface. In addition, simple computations, such as checking whether a user has filled in all
the fields in a form, should be performed at the client-end to reduce unnecessary network
traffic, high server load and slow user feedback.

5.1.2.5 Unreliable transmission

The HTTP protocol does not guarantee the transmission rates between servers and clients.
Data transfer varies during a single transmission depending on the network and the server
load. Continuous media like audio and video require a more reliable transfer mode, thus
they use the alternative Real-Time Protocol (RTP).

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 69

5.1.2.6 Poor user interface

HTML is not a user interface design toolkit and it does not provide any support for
common desktop features like drag and drop, multiple selection and semantic feedback.

5.1.3 Improving functionality

The above limitations restrict the scope of the Web as a development platform that is mainly
suitable for asynchronous centralised applications and offer no support for synchronous
notification, disconnected working and rich user interfaces. However, the Web has a
significant advantage in that it is an accepted technology which is easily integrated with
existing user environments and extensible through the server API. Also, users do not
require additional client software to run on their machines. The following approaches have
helped to remove some of the constraints of the basic architecture and make the Web more
amenable as a development platform for collaborative systems.

5.1.3.1 Using CGI scripts

A simple and quick method for extending server functionality without modifying the
protocols, browsers or servers is through CGI scripts. BSCW (Bentley et al., 1997b),
(Bentley et al., 1997a) is an example system that provides a Web forms interface to a
collaboration support system by integrating collaboration services with an extension of a
standard Web server using the CGI programming interface. BSCW also provides HTTP
upload and download support.

5.1.3.2 Implementing dedicated servers and clients

A special-purpose Web server can be implemented to improve performance, security and
introduce new server functionality such as server-initiated notification. Unlike CGI scripting,
this method is more flexible and secure for accessing existing Web applications. The
BASIS WEBserver6 is an example of a specialised server approach that enables Web
access to the BASISplus document management system. In addition, a dedicated client can
allow applications other than Web browsers to communicate with Web servers using
HTTP. An example of a specialised client is the ‘coordinator’ clients in the WebFlow
distributed workflow system (Grasso et al., 1997).

Servers and clients can also be customised to provide additional services. For example, in
the Virtual Places system7, the Ubique client interacts with the Virtual Places server to
provide synchronous communication and allow users to be aware of the presence of other
users.

5.1.3.3 Augmenting Web interface

6 http://library.llnl.gov/basisbwdocs/bwintro.htm
7 http://www.vplaces.net/

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 70

The basic Web functionality can be augmented by replacing the client and server
components to provide richer mechanisms for the user interface, synchronous notification,
update propagation and information replication. Worlds (Fitzpatrick et al., 1995) is an
example of such a system. However, the end product is likely to have specific hardware
and software requirements and a lack of integration with existing user environments, thus
limiting its accessibility and scope of use.

Some alternative solutions exist at the server and browser level that gives developers more
flexibility. For instance, the Apache server allows certain aspects of the server functionality,
which cannot normally be accessed through CGI scripts, to be modified (Thau, 1996).
Netscape’s ‘Plug-in’ development kit and Microsoft’s ‘ActiveX’ environment simplifies the
process of embedding other applications in standard Web browsers. They also allow Web
browsers to handle different media types directly. These extended client server
programming interfaces increase the possibility for developing much richer CSCW
applications that can be fully integrated with desktop environments.

The use of ‘mobile code’ is another promising area on the Web (Bentley et al., 1997b).
Mobile code allows a client browser to download application programs or Java applets and
execute them locally. Applets produce much richer user interfaces than HTML and they
can support special protocols like different media types, and various collaboration services,
such as event notification, simple text chat and more. In addition, applets can provide users
with faster response rates by moving computation closer to the clients, subsequently
reducing network traffic, server load and feedback lags. There are however security
concerns that arise when code is downloaded over the Internet and executed on a user’s
desktop, but some progress have been made in this area.

5.1.3.4 Enhancing network protocol

The measures discussed so far mainly rely on using the standard HTTP network protocol.
This protocol cannot by itself effectively meet the demands of highly interactive collaborative
tasks like collaborative authoring (Whitehead and Y., 1999); therefore an enhanced
network protocol is required. WEBDAV (Whitehead, 1997), (Goland et al., 1999) is an
example distributed authoring protocol that supports interoperable remote collaborative
authoring. It extends the HTTP network protocol to provide facilities for concurrency
control − to prevent overwrite conflicts through locking, namespace operations − to copy
and move Web resources and hierarchies, and property management − to create, remove
and query information about Web pages. Users can collaboratively author their contents
directly to an HTTP server through the WEBDAV protocol. This enhanced network
protocol augments the Web functionality from a read-only mode for downloading
information to a writeable collaborative medium.

This section has described the Web architecture and discussed its limitations as a platform
for constructing collaborative applications. The Web does not meet some important
requirements for collaborative work; for example, it does not provide equal access to the
shared artefacts and it does not have any inbuilt awareness mechanisms. Also, there are not
many possibilities for having different architectural arrangements on the Web to optimise

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 71

feedback delays. However, with the rapidly evolving Web technologies, some of which
have been outlined above, the traditional role of the Web as a passive information
repository can in fact be transformed to an active tool for cooperation and for developing
CSCW applications.

5.2 Analytic focus

The rest of this chapter will now present an analysis of the various architectural options for
developing collaborative applications on the Web. The choice of a particular architectural
arrangement directly influences the temporal behaviour of an application. But the temporal
interface behaviour is only of importance to the user when it becomes apparent to the user.
So, a study of behavioural issues can enable us to determine − why an architectural solution
is better than another.

For many years, temporal issues in interface design have been largely ignored, with the
exception a few studies (Dix, 1987), (Dix, 1992a), (Dix, 1994a), (Gray et al., 1994).
However, the importance of time and delays has become more widely recognised with the
ever-growing use of the Internet (Johnson and Gray, 1995). The impact of delays on user
interaction was illustrated in Chapter 2 (Section 2.3) by using the Web as an example

Chapter 3 examined various architectural models for single-user systems (Section 3.2).
Software architecture is about dividing systems into components to perform certain
functionalities − what the system can do. In order to work as a complete system, the
components must be linked together in such a way that they can communicate effectively
with each other. While all the components are running as part of the same program on the
same machine, these communications are easy and acceptable response times can be
achieved.

But the overview on multi-user systems in Chapter 4, showed that when such a system is
distributed over a network, as is the case with many cooperative systems, components
placed at different locations face higher communication costs and delays than those at the
same location. Hence the choice of location − where the components are placed − has a
significant effect on performance. The major impact of location decisions is on the pace of
interaction, which subsequently affects the temporal properties of the interface such as the
rate of feedback and feedthrough (Section 2.4.2).

In many distributed systems, data can be moved to improve interactive performance.
Furthermore, on the Web, Java applets allow code to move and execute on user's own
machines. Thus the placement decisions for the Web are not just about what is placed
where, but also about when the data and code is at a particular location.

The following sections will now consider each of the why, what, where, when aspects in
turn and examine all the surrounding issues: why − examines the behavioural issues (Section
5.3), what − considers the architectural components (Section 5.4), where − investigates the
placement options (Section 5.5), and finally when − explores the issues surrounding code
and data mobility (Section 5.6).

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 72

5.3 Why – behavioural issues

The reasons for determining why a particular arrangement should be chosen influence the
behaviour of an application. The behavioural aspect affects the way users view the display
on the screen (presentation) and depends on the architecture. The most significant
behavioural implication enforced by architectural decisions is often the temporal impact.
For instance, if one ignores the temporal issues then from the behavioural viewpoint, the
location of the data is not important. However, for performance reasons, it is crucial that
there is no perceived lag between any updates to the data and the subsequent changes being
reflected on the users' display. Consequently, this may influence the selection of, for
example, a centralised or a replicated architecture (Section 4.2).

The rest of this section describes the major behavioural issues that arise within Web-based
collaborative work. The requirements for multi-user collaborative interfaces described in
Chapter 4 (Section 4.1) will be revisited here and augmented to highlight new issues that
emerge with the Web.

5.3.1 Feedback

Feedback is a common feature of direct manipulation interfaces, where objects change their
behaviour when users manipulate them. Within the Web, the feedback loop involves
transmission over a network. Significant network delays will therefore generate
unacceptable feedback response times.

5.3.2 Feedthrough

By their very nature, cooperative work introduces delays as users having to wait for their
own feedback and others feedthrough. With the Web, there are further delays and lags that
are implicit in the network. The provision of rapid feedthrough therefore becomes more
problematic. Current Web-based collaborative applications often provide little support for
feedthrough although it is essential for maintaining fluid collaboration.

5.3.3 Awareness

One of the main difficulties in maintaining awareness on the Web is that it is not always easy
to find out how changes happen especially when the communication is taking place
asynchronously. Some traditional groupware systems with shared workspaces usually
record who has made the updates and when they were made. But such temporal
information is hard to reconstruct at a distributed level. Even synchronous interaction will
pose a similar problem in the event of delays over the network. Furthermore, unpredictable
timing delays on the Web, as a result of remote site failures or network bottlenecks, may in
the worse case lead to a complete breakdown in the work process.

In order to enhance group work, users may require an additional form of awareness to
those identified in Chapter 4 (Section 4.1.4) − an awareness of the state of the
communication channel.

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 73

5.3.4 Shared objects

The coordination of cooperative work can be mediated via shared objects. Although this
form of coordination is less explicit than direct communication, it does play an important
role. Indeed, in many cooperative processes there may be little direct communication.
Instead, coordination is mainly achieved by communicating implicitly through the artefact
(Dix, 1994b).

The studies of interaction referred in the Appendix showed the importance of triggers. Like
environmental cues, which were found to be crucial in reminding users of their ongoing
activities, triggers could also be associated with shared objects in an electronic cooperative
environment to remind users that some actions have been carried out by others and/or some
further actions need to be taken.

5.3.5 Control

Due to the common focus on work, collaborative participants have to access the same data.
There are potential conflicts that arise when group users are allowed concurrent access and
simultaneous updates. Therefore some form of control is required to manage the shared
data and the shared objects.

This will determine the nature of the cooperation dealing with issues such as who can update
what, where and when; who can see the changes and whether the changes can be noticed in
a reasonable amount of time. One of the most common control mechanisms is locking.
Other forms of control include access rights, roles or social protocols (for more details, see
Section 4.1.6).

5.4 What – architectural components

One of the main functions of cooperative architectures is the presentation and manipulation
of shared information by a community of users. Chapter 3 and Chapter 4 emphasised the
need for separating the application semantics from the user interface for single-user and
multi-user applications respectively. With collaborative interfaces, it is necessary to identify
which elements are shared between participants and which elements are different for each
participant. This logical separation is also essential when deciding where elements are
placed in a networked environment (this will be discussed further in Section 5.6). This
section will now explore what architectural issues should be taken into account when
developing collaborative applications for the Web.

5.4.1 Presentation

As discussed in Chapter 4 (Sections 5.15 and 5.3.2), the presentation component in
collaborative systems must support alternative representations of the users display. Shared
information can be presented as a single view to all the participants (WYSIWIS) or different
users can receive different views. For example, a user may view some shared data in
tabular form whilst another may view the same data as a graph. Similarly, group members

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 74

can also have their own private views or they can share views of the display. Some systems
allow users to shift between a tightly coupled mode that supports a shared view to a loosely
coupled mode, where users can view and scroll independently. In cases where the
presentation or view is shared, there must be some component of the system that manages
the shared information.

5.4.2 Shared data

The key element in any collaborative system is the shared application data. In the Seeheim
architectural model (Section 3.2.1), the application interface model component manages the
mapping between the application data and the rest of the user interface. This suggests that
the visualisation of information requires both the raw data and the semantics of the data,
which is usually embedded in the code in a computational setting. On the Web, this aspect
is often embedded in CGI scripts, which communicate with the user interface component
(Web browser) using Web pages and forms (dialogue level information). However, Java
applets have opened up the possibility of including far more of the application semantics at
the user interface itself.

5.4.3 Control

Section 5.3.5 highlighted the need for control mechanisms to avoid conflicts and maintain
consistency. However, behavioural level control itself has to be driven by some lower level
control that has to be maintained by the architecture, the most common mechanism for this
being locking. Like the dialogue component in single-user applications, the control
component determines the possible order of actions by different participants.

Because data is shared in collaborative applications, there is a clear distinction between the
mechanisms for enabling distribution and sharing (e.g. ability to move an object) and the
policies for managing those mechanisms (e.g. decisions about when and where the object
should be moved to). Effective groupware systems therefore need separate low-level
architectural control mechanisms to support those higher-level behavioural control policies.
Architectural level control can either be centralised or peer-to-peer in nature and may be
supported by a separate server or be part of the shared data infrastructure.

5.4.4 Notification

Group users usually operate simultaneously on the shared data; some users may view part
of the data while others may perform changes. If the users views and the underlying data
become inconsistent, feedthrough will be lost and users will cease to have a common focus
on the collaborative activity.

Similar issues arise in single-user interfaces, in cases where there are multiple views of the
same underlying object. Because there is ultimately a single locus of control (the user),
consistency is easily handled within the dialogue control component. For example, the PAC
architectural model has a hierarchy of PAC agents within the dialogue controller that
manage consistency between the views (Section 3.2.4). However, it is more complex to

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 75

maintain this level of consistency in a distributed collaborative setting due to the multiple loci
of control. This problem can be addressed by using a suitable notification mechanism.

A low-level notification mechanism can therefore inform the presentation component of the
various changes to the data so the updates can be replicated on the users display, thus
promoting feedthrough and awareness.

5.5 Where – placement decisions

In order to provide rapid semantic feedback in single-user applications, aspects of the
presentation can easily leak into the application semantics as all the components are held on
the same machine. But when the software is no longer running on a single machine in a
distributed environment, one can no longer fudge the boundary and communications
between the application and the user interface components as they are enshrined in the
physical location and network connectivity. As a result, the issue of where the components
reside is decisive in order to achieve rapid feedback.

In the Seeheim architectural model, the fast-switch is used as an optimisation feature to
allow the application to communicate directly with the presentation and thus bypass the
dialogue component (Section 3.2.1). In principle, all feedback could be routed through the
dialogue component with more or less translation and interpretation on the way. But, in so
doing, the dialogue component introduces a computational delay between the application
and the presentation, thus reducing the pace of feedback. Arguably, this is not a problem
for current single-user single-machine systems as they can easily perform several levels of
processing and still achieve acceptable interactive response.

However, in collaborative systems, the shared data is likely to be stored remotely from the
user’s workstation. So, instead of a computational delay there will be a network delay.
Feedback delays are bound to occur and consequently affect the rate of feedthrough.
Unfortunately, one cannot simply add an extra component like the fast-switch, as it too
would have to sit remote from the data or remote from the interface. Computational
components can be bypassed, but not space!

One can either accept that semantic feedback will be delayed or adopt a paradigm of
mediated interaction, which offers instant local feedback to show that the user’s action has
been recognised and subsequent semantic feedback when the effect has occurred remotely
(Dix, 1995a). However, the latter solution will not be acceptable in situations where users
demand direct manipulation interfaces.

5.5.1 Replication and Caching

Most solutions that aim at providing rapid feedback and increasing the availability of data
involve some form of replication or caching. The objective is to bring the shared data closer
to the users.

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 76

Caches are merely temporary repositories, which hold an ephemeral copy of the data at any
instance in time. Each user interacts with local copies of the shared data on their
workstation (figure 5.2a). Because the actual shared data is stored in a central repository,
consistency can be easily maintained. Caching is widely used in the design of computer
systems such as microprocessors to access recently used data. Similarly, a Web cache
stores recently accessed information by users.

 User 1

Application 1

Cache 1

User N

Application N

Cache N

User 1

Application 1

Replica 1

User N

Application N

Replica N

(a) Shared data
Workstation N Workstation 1

Workstation N Workstation 1

(b)

Figure 5.2 (a) Caching and (b) Replication

A Web cache is basically a dedicated computer system that monitors, retrieves and stores
Web object requests. So, when users request the same objects or Web sites, the local
cache sends out information to them. Cached objects eliminate the need for multiple hops
on the Internet route, thus reducing the delay in the service and improving the response time.
The higher the frequency of users requesting the same site, the more effective the cache is.

Replicas, on the other hand, are valid full copies of the real data that are stored locally, thus
they are more persistent than caches. However, it is more difficult to maintain data and
interface consistency, as replicas have to communicate between each other on a peer-to-
peer basis. Replicas are synchronised by sending user input from each workstation to each
replica (figure 5.2b). Multiple points of updates may lead to race condition and potential
data inconsistency. For example, if a user deletes a selected object in a WYSIWIS group
drawing program while another user is changing the selection to a different object,
inconsistent interfaces may occur if the events arrive at each workstation in a different order.

The traditional approach to replication in distributed systems has been transparency. Race
conditions are avoided by maintaining consistency across the different copies of the data
through complex synchronisation algorithms. If inconsistencies still persist, a possible
solution is to rollback the replica(s) and re-execute the events in temporal order
(Satyanarayanan et al., 1990). However, this policy is unacceptable in collaborative
interfaces because the display screens would already have been updated. Consequently,
alternative solutions based on transforming updates to prevent rollback have been
developed (Bentley et al., 1994).

5.5.2 Control

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 77

When rapid feedback is not the major concern, concurrency control mechanisms, such as
locking or floor control can be applied to prevent race conditions altogether or at least
tolerate them (Dix et al., 1993). Real-time synchronous updates may however demand
special-purpose algorithms.

Any control mechanism requires meta-data, for example, to record who has the lock on
which object. The meta-data itself has similar issues as the real data. It can either be
maintained in a replicated fashion by using complex distributed algorithms, or more
commonly maintained using a central server. When the data is stored centrally, the same
server may deal with both the data and the meta-data, as is the case in traditional databases.
However, a separate locking server can also be used. For example, the UNIX file system
has no in-built locking mechanism; instead applications request locks on remotely stored
files from a special process, the lock daemon.

In situations where off-the-shelf locking is not available or where the locking supplied is
unsuitable, application developers are forced to use their own ad hoc locking mechanisms.
This is usually the case with Web-based cooperative applications.

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 78

5.5.3 Notification

Delayed feedback causes problems, but delayed feedthrough is even more problematic in a
distributed environment. No amount of careful placement of components can change the
fact that the user making a change is a long way from other users who see the effects of that
change. Although a lower pace of feedthrough is more acceptable than the feedback rate
(see Section 4.1.3), what is not acceptable is the fact that changes made by a user are never
reflected on other users’ interfaces or only do so after a long delay. Notification
mechanisms are therefore necessary to provide timely feedthrough, as discussed in Section
5.4.4.

The question of meta-data will arise here too independent of the notification strategy
adopted. Information such as what objects are being managed and who wants to know
about which object will be associated with this meta-data. Again, this can be stored in
either a centralised or a replicated fashion.

5.5.4 Different kinds of remoteness

When remote data is accessed in a single-user system by using traditional client-server
techniques, the distinction between local and remote is clear. However, in a cooperative
application, the difference gets blurred because users have their own interpretation about
what is local and what is remote. A user’s own machine can be considered to be local
while data stored or updated on another user’s machine may be regarded as being remote.
So, if semantic feedback relies on the data held at another user’s machine, the feedback
delays will be as long as if the data was held centrally, perhaps longer as central servers may
provide a better response.

The situation gets even more complicated when using the Web as an infrastructure. Each
user may be accessing several Web servers as well as other central servers such as
databases. To a certain extent, the Web makes the physical location of the data
unimportant, except insofar as the location affects the response time. However, the physical
location is very important, especially when using Java applets. The security mechanisms of
Java only allow the applet to access Internet services lodged on the same machine as the
Web server that supplied the applet.

There are in fact four kinds of ‘remote’ application for the Web:

(a) another user’s client

(b) the Web server for the current page

(c) a different server on the same machine as the current Web server

(d) a server on a different machine

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 79

The placement decisions for the Web therefore do not stop at local versus remote, or even
client versus server. The decision about where server software is placed is intimately
related to the techniques used to implement client software.

5.6 When – moving information and code

Early work on UIMS regards the functional component as being the semantics of the data.
However, what gives data any meaning is usually embedded in the code. Data becomes
information when it gets interpreted. Hence, the existence and location of the code is
equally important. It is common practice to move or copy data dynamically in a networked
environment to improve performance. Also, some distributed infrastructures support the
migration of objects or code between machines. This section will explore the various
mobility aspects of data and code individually, in preparation for their combined interaction
in Section 5.8.

5.6.1 Moving data

When caching is used, the ‘golden’ copy of the data is stored remotely, but a copy is made
locally to speed feedback. Because the data can be copied over networks in distributed
collaborative applications, this implies that the place where shared data is permanently
stored is not necessarily the same place as it (or a copy of it) is used. Using this simple
local/remote distinction, the permanent storage place and the place of use can be classified
to give the matrix in figure 5.3.

local remote

local

remote

Data Usage

D
at

a
St

or
ag

e

replicas

client-
server

caching

Figure 5.3 Data Usage vs. Data Storage

The matrix clearly shows the distinction between caching and replication. In caching, the
‘real’ data is central and stored remotely, while the local copy of the data is ephemeral and
used locally. In replication, the local data is more persistent and is both stored and used
locally. In the case of traditional client-server interfaces, the data is held and used remotely
and only the information required to generate the interface presentation of the data is
transmitted to the user’s local machine.

Notice the empty location in the above matrix. In a groupware context, it is highly unlikely
to have a scenario where the data is held locally and yet is used or processed remotely. But
such a situation does exist for non-groupware solutions, for example in super computers.

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 80

5.6.2 Moving code

In a collaborative distributed interface, it is also important to decide where the code for the
different architectural components resides and where it gets executed. The location of code
execution influences the feedback rate and thus determines the system’s efficiency. The
location of code storage instead affects the rate at which changes to the code occur and the
ease of distributing those changes, which is a form of feedthrough.

Code execution and code storage are therefore key architectural options. By using a similar
matrix as that for data (figure 5.3), the code options can be classified to produce the matrix
for Web-based systems in figure 5.4.

local remote

local

remote

Code Execution
Co

de
 S

to
ra

ge

helpers

CGI
scripts

Java
applets

Figure 5.4 Code Usage vs. Code Storage

For instance, in CGI scripts, the code is stored remotely whereas in helpers, it is stored
locally. But with both CGI scripts and helpers, the code executes in the same place, as it is
stored. Java applets instead allow remotely stored code on the server to be downloaded
and executed locally on the client browser at run-time. The browser handles all
computation locally, thus avoiding a server-end overload unlike CGI scripts (Section 5.1.1).
This form of migration can also be found in many object-based distributed systems.

As with the data matrix, figure 5.4 has an empty location. The Web does not actually cater
for locally stored code to execute at the server end and it seems an unlikely option for
groupware systems in general. However, in some client-server database applications, some
fairly complex SQL queries can be sent to the server, which may be regarded as a form of
locally stored code with SQL queries being executed remotely.

5.7 Narrowing down options for the Web

Figure 5.3 showed that shared data could be stored and used either locally or remotely.
Similarly, figure 5.4 showed that code could be stored and executed locally or remotely.
So, for each component of a collaborative application, we need to decide where, in the
respective matrices, the code and data for that component reside.

At first, it looks as though there are 16 different architectural options to consider for every
component, as there are 4 possibilities for both code and data. But in fact, for general
distributed collaborative applications and in particular for the Web, the potential

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 81

architectural options can be narrowed down further. The matrices in figures 5.3 and 5.4
had an empty location, which seems an unlikely option for any collaborative application.
Consequently, there are only 3 real possibilities for code and data and at most 3×3=9
combinations.

However, if the combination of code and data is taken into account, then the possibilities
reduce further. Although data and code can be stored in different places, the code must
execute where the data is used. The data and code matrix must therefore ‘agree’ in the
location of execution and use (figure 5.5). Consequently, there is only one possibility for
remote execution/use and 4 possibilities (2x2) for local execution/use. Each option will now
be considered in turn.

local remote

local

remote

Code Execution

Co
de

 S
to

ra
ge

helpers

CGI
scripts

Java
applets

Data Storage

Data Usage

local

remote

remote local

replicas

caching client-
server

Figure 5.5 Linked matrices

5.7.1 Remote execution and use

The only possibility for remote execution and use in a collaborative application is where
both data and code are stored, used and executed remotely (although each could
conceivably be stored at different remote sites and only come together for execution/use).

A component of this kind can be implemented in two ways. It may be a traditional
transaction based client-server application that uses CGI scripts to process transactions
centrally. In fact, many Web-based repositories are of this form, like BSCW (Bentley et
al., 1996) for instance. Alternatively, it may be achieved by using a specialised central
server, as is the case with most chat-based Web applications (Welie and Eliëns, 1996). It
should be noted that these two implementation options differ principally in the pace of
cooperative interaction they enable.

5.7.2 Local execution and use

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 82

There are 4 such options for code and data from figure 5.5:

(a) code local – data local

(b) code local – data remote

(c) code remote – data local

(d) code remote – data remote

Both options (a) and (b) are of the form of a helper or stand-alone application that uses
caching or replication to handle the shared data. Given the limited ability of most Web
servers in allowing documents to be uploaded, it is likely that option (b) will use a non Web-
based database or bespoke server. However in both cases, the Web may act as a way of
locating shared resources and initiating a specialised collaborative application, without being
intrinsic to the running application.

Options (c) and (d) principally involve code in the form of Java applets (although other
forms of downloaded scripts are available). But the security limitations of Java does not
allow applets to access files stored on users’ local machine. Also, Java applets can only
connect to a server that is on the same machine as the Web server they were downloaded
from. Consequently, Java applets cannot operate in mode (c) with permanent locally stored
data and they cannot enter into peer-to-peer communication (except by using a central
switchboard server). This eliminates the option of having Java applets operating with locally
held replicas.

All feedthrough must therefore be through a central server at the same site as the Web
server. This effectively leaves only option (d) − Java applets with caching, as a truly Web-
based option and even then, only when using a data repository that is situated at the same
location as where the applet is stored.

5.8 Impact on research

The analytic framework discussed in this chapter has raised a number of behavioural,
architectural, placement and mobility issues that arise with cooperative systems and the
Web. The aim of this research is to develop an architectural framework that exhibits
appropriate temporal properties, particularly for collaborative applications that execute on
the Web. This section will highlight the main behavioural considerations of this research and
examine their influence on the resulting architectural framework.

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 83

5.8.1 Behavioural considerations

A number of behavioural issues were explored in Section 5.3, but this research will focus on
the provision of feedthrough. Although both feedback and feedthrough are major temporal
properties, the demands for feedthrough are more important in cooperative systems for
maintaining effective collaboration between group users and promoting awareness. The
provision of feedthrough is more challenging in a distributed collaborative environment, as
both the issues of pace of interaction between participants and network-related delays have
to be taken into account. Besides, there is very little support for feedthrough on the Web.

Collaborative users often work with a large number of shared objects and it may not always
be possible to maintain an appropriate rate of feedthrough for each object, even over fast
networks. However, the requirements of feedthrough tend to be more flexible than
feedback (Section 4.1.3). Because some objects are more significant for obtaining a sense
of engagement, the concepts of quality-of-service (Rada, 1995) can be applied to give
different levels of feedthrough on shared objects within a groupware architecture. For
example, the sharedness of some objects like shared cursors, can be relaxed by reducing
their feedthrough, but group pointers, which is a form of virtual finger used during electronic
conferencing, need to have almost instantaneous feedthrough to be effective.

5.8.2 Influence on architecture

The rate of feedback and feedthrough provided to the users is driven by decisions taken at
the architectural level. The need for rapid feedback points towards the use of some form of
caching or replication (Section 5.5.1).

On the Web, rapid user interface feedback can be promoted by running code locally as
downloaded Java applets (Section 5.6.2), but the code must execute where the data is used
(Section 5.7). This opens up the possibility for the data to migrate locally and local data
updates will conflict with the needs of feedthrough. Consequently, there is an important
trade-off between feedback and feedthrough that needs to be addressed at the architectural
level.

The standard Web protocol offers poor notification besides server push for promoting
awareness. The server push technology was one of the earlier techniques designed to
perform continuous update of users’ screen. The server continuously runs the application
program, which generates dynamic pages and sends new copies of those pages to the
browser. Although this mechanism allows constant information update, it causes excessive
server overhead and introduces delays. Furthermore, if several browsers attempt to access
the pushed pages simultaneously, a separate copy of the dynamic page application program
has to be executed for each request, consequently delaying updates further.

A more robust notification mechanism is therefore required to support feedthrough − by
informing the users of any changes to the data in a timely fashion, and to enhance awareness
− by keeping track of users activities. Notification services generate similar issues as

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 84

locking (Section 5.5.2). If no notification service is provided then an ad hoc mechanism is
necessary; for instance, individual clients may poll one another for changes. Alternatively, a
notification service may be incorporated within the data-management infrastructure; for
example, Lotus NSTP (Patterson et al., 1996) offers a generic data storage and notification
server. Finally, a stand-alone notification server can be used. The various design
alternatives for notification services are explored in details in the next chapter.

5.9 Summary

This chapter first examined the functionalities of the Web as a development platform for
collaborative applications. The Web offers a ubiquitous infrastructure and a platform
independent interface that can be easily integrated with existing user environments. A brief
overview of the Web architecture was presented, followed by a critique on its limitations in
supporting cooperative tasks, based on its architecture, existing protocols and browser
restrictions. Although the Web is unsuitable for developing systems that require highly
interactive user interfaces with a high degree of synchronous interaction, the constraints of its
basic architecture can be removed to meet the requirements of cooperative systems.

The focus of this chapter was on the analytic framework for constructing collaborative
applications on the Web. This was based upon a systematic investigation of why certain
behavioural issues are essential for collaborative work, what architectural components are
necessary, where should the components be placed in a distributed architecture and finally,
when should the components be moved to improve performance.

The analysis of behavioural issues identified the key architectural components of cooperative
systems. The placement decisions revealed the conflicting needs of feedback and
consistency on the Web. This is commonly dealt with by using either caching or replication
to bring the shared data ‘closer’ to the user. Web applications use dynamically
downloaded code of which applets are the most common. This allows both code and data
to be stored in a permanent location while having an ephemeral location where they are
executed or used. The mobility issues associated with data and code generated a
storage/use matrix for data and a storage/execution matrix for code, which facilitated the
analysis of placement options.

Although there appears to be many possible combinations of data and code placement, a
close examination of their interaction within distributed environments in general and the Web
in particular, limits this to only 2 ‘real’ Web options. However, due to the security
limitations of Java, applets cannot enter into peer-to-peer communication, thus eliminating
the option of having Java applets operating with locally held replicas. This effectively leaves
only one truly Web-based option of using Java applets with caching. This option favours
rapid feedback, as the real data is located centrally, but it does conflict with the needs of
feedthrough.

The behavioural and component analysis in this chapter narrows down the focus of this
research on facilitating an important behavioural requirement − feedthrough, which is also a
significant temporal property of collaborative work. Feedthrough is crucial for maintaining

Chapter 5 Why, What, Where, When: An analysis of Collaborative Architectures on the Web

 85

collaboration and promoting awareness, but it is an intrinsic limitation in distributed systems
in general and even more so in Web-based collaborative applications. Because the
requirements for feedthrough challenge the needs for feedback on the Web, a solution to
this problem can be found at the architectural level. A suitable notification mechanism is
therefore required to manage the rate of feedthrough and optimise on the temporal
performance. The next chapter deals with the issues surrounding the design options for
notification services.

86

Chapter 6 Exploring the Design Space for
Notification Servers

Feedthrough is an essential feature of cooperative interfaces in general, however there is
often little support for it in existing Web-based collaborative applications. The need of
feedthrough on the Web does conflict with that of feedback, as discussed in Chapter 5.
The development of the Web has forced the issue in showing that data storage (in the form
of Web pages) may be separate from control issues (such as indexing).

Feedthrough is important for three main reasons − firstly, it satisfies a ‘functional’ purpose
by allowing users see an up-to-date version of the work; secondly, it facilitates
‘coordination’ by preventing inconsistent updates and finally, it supports the general
'awareness' of other people at work. The first two concerns have led to some considerable
work on algorithms for synchronous editing and for merging versions of asynchronously
edited material. The last concern has instead always remained an informal interest in
CSCW, although it has been augmented by some formal analysis of 'awareness' models
(Benford et al., 1993), (Rodden, 1996). This modelling approach has arisen largely out of
work on virtual collaborative environments, where the main objects of interest are the virtual
locations and actions of the participants themselves, instead of documents or shared
drawings.

Both effective feedthrough of updates to shared data and up-to-date views of other
participants require underlying computational mechanisms to distribute and inform about
these updates. There are therefore two key requirements: the ability to access and update
shared data, and knowing when that data has been updated. The former lies behind the
design of shared data repositories, either bespoke systems designed for CSCW (Bentley,
1994), (Hill et al., 1994) or off-the-shelf databases and shared object stores. The latter
requires notification mechanisms.

A notification server is basically a piece of software whose task is to relay the fact that
changes in data or other events have occurred. There are numerous ways in which
notification services can be managed in a collaborative system (Patterson et al., 1996), (Hall
et al., 1996), (Fitzpatrick et al., 1999). The aim of this chapter is to explore and clarify the
design space for notification servers. The ultimate purpose of a notification server is to
provide effective user-level behaviour. Issues in this chapter have been discussed in
(Ramduny et al., 1998).

Section 6.1 assesses the need for notification mechanisms as a means of propagating
updates. Section 6.2 gives a description of Status–Event analysis, an analytic framework
developed to tackle various user interface issues (Dix, 1991), (Abowd and Dix, 1994),
(Dix and Abowd, 1996a). Status–Event analysis is used here as the basis for analysing
issues surrounding notification servers. The concepts of Status–Event analysis are applied in
Section 6.3 to examine the ways in which an agent in a system can become aware of a

Chapter 6 Exploring the Design Space for Notification Servers

 87

status change. This is then employed in Section 6.4 to explore the ways in which a
notification server can become aware of changes in the shared data and how it in turn,
makes this available to client applications. Section 6.5 presents a taxonomy of the design
space for notification servers. Section 6.6 considers the use of layering between the client,
notification server and user to achieve the desired pace of interaction. Finally, Section 6.7
briefly looks at some underlying notification models that have been adopted in example
systems.

6.1 Need for notification mechanism

Notification mechanisms are necessary for informing users when the data has been updated.
Even if the data is stored and accessed rapidly from a central location, it is ineffective unless
the client programs know when the data has changed and users' screens are updated
accordingly. Notification mechanisms fulfil precisely this role − telling programs and people
not about what has happened, but that it has happened. Without notification mechanisms,
users may eventually see the changes that have occurred, but at a time-scale and pace that
may not acceptable for the task at hand.

Each application that updates shared data can in fact be responsible for notification and
consequently broadcast to all the interested parties that the change has happened.
However, as with peer-to-peer methods for data replication (Section 4.2.2) this has a high
overhead, both in terms of the algorithm complexity and network load. For example, each
participating client program should know about all other clients in order to broadcast change
information to them. Furthermore, the changes must be kept up-to-date as users join and
leave the system. The overhead involved in having the application itself manage the updates
is one of the core motivations into notification (or awareness) services that provide a set of
standard techniques for notifying changes.

For just the same reasons that data stores are often centralised, there is a need for
notification servers to keep track of interested parties and take over the task of propagating
change information. Such notification servers may be either coupled closely with the data
store, as is the case with some databases supporting triggered actions, or they may be
entirely separate, knowing about the data but being decoupled from it. The various design
options for notification services will now be analysed by using Status-Event analysis.

6.2 Status-Event analysis

Analytic techniques in Computer Science tend to focus on events as the locus of activity and
control. This is natural given the discrete nature of computer systems. Also, for user
interfaces and collaborative systems, it is a good way of describing input such as
keystrokes, mouse clicks and network messages between remote applications. However,
event-based models fit less well when dealing with shared data in collaborative systems.
The nature of shared data is that it persists − it does not just happen at a particular moment;
instead it is always there. This is not the only phenomenon of its kind in user-interfaces; the
position of a mouse and the contents of a screen are similar.

Chapter 6 Exploring the Design Space for Notification Servers

 88

Status-Event analysis was developed to deal with such phenomena (Abowd and Dix,
1994), (Dix and Abowd, 1996a). It is a collection of semi-formal and formal techniques
with a shared conceptual framework that includes aspects of both events and status. Status
is used to describe all those occurrences which, like shared data, have a persistent value
through time − events happen, status are.

Status–Event analysis has been applied in several contexts − from the analysis of issues in
fine-grained interaction (Dix et al., 1993) and auditory interfaces (Brewster, 1994),
(Brewster et al., 1994), Dix, 1994 #153] to the specification of the complex behaviour of
shared scrollbars in collaborative applications (Abowd and Dix, 1994), (Dix and Abowd,
1996a). Status–Event analysis has also been used in the understanding of delays in user
interfaces and collaborative systems (Dix and Abowd, 1996b).

Issues surrounding status, events and agents were considered briefly in Chapter 2 (Section
2.4.1) while examining the temporal properties of interactive systems. The study of delay
was centred on the idea of mediation (Section 2.4.1.2) and this will also be the key to an
architectural understanding of notification mechanisms.

6.2.1 Key concepts

The two central concepts in Status–Event analysis are obviously events, which occur at
particular moments (such as mouse clicks, beep, 6 o’clock) and status, which always have a
value (shown by mouse position, screen, position of hands on the clock). In addition,
agents (human or computational) respond to events which subsequently modify the status.

A key feature of Status–Event analysis for a particular agent is the difference between the
actual event − some objective thing that occurs and the perceived event − when an agent
notices that an event has occurred. For example, the time may be six o'clock, but one may
not notice it until a few minutes later when one looks at the clock. Likewise, with
notification servers, although events occur at certain places, there may be a substantial delay
before those changes are perceived. The same behaviour arises in human-human
interactions, human-computer interactions and in interactions within computer or mechanical
systems.

6.2.2 Mediation

The most important aspect of Status-Event analysis for analysing the role of notification
servers is that of mediation. This is when some desired behaviour is achieved by interposing
some additional agent or status entity. For example, in an electronic mail system, the receipt
of a mail (an event) is communicated to the user by a change of the screen icon (a status)
(Dix et al., 1993). The use of a status to mediate communication between agents is very
common, as is the nature of shared data.

A second form of mediation occurs when a status–status relationship needs to be
maintained (Dix and Abowd, 1996a). For instance, when dragging a window across the
screen with a mouse, the window must keep track of the mouse position. In the real world,

Chapter 6 Exploring the Design Space for Notification Servers

 89

status-status relationships may be a result of physical properties, for example when one end
of a string is pulled the other end moves. However, in computer systems, these
relationships are typically maintained by a mediating agent, which monitors the first status
and thereby alters the second accordingly.

In both the case of agents communicating via status or an agent mediating a status–status
relationship, it is vital to determine how an agent becomes aware of a status change.

6.3 Status change discovery

Consider the scenario where there is a status S and some agent A and an actual event
occurs which subsequently changes the value of status S. Figure 6.1 shows the alternative
interactions by which agent A can become aware of the status change.

Agent B

Status S

tell

ask

watch

Agent A

gatekeeper

Figure 6.1 Status-agent interaction

The process that allows a change to become a perceived event for agent A does not lie in
the flow of data that informs agent A of the new value of the status. Instead, it lies on the
perceived event for agent A that a change has occurred. This can happen in four different
ways.

6.3.1 Case 1: watch

Agent A can watch the status S. In a physical system ‘watching’ is usually a continuous
activity, focussing on a specific status such as watching a pot and waiting for it to boil. But
in a discrete system, 'watching' means periodically polling the status. Another question now
arises: what event prompts the polling? This leads to three subcases:

Chapter 6 Exploring the Design Space for Notification Servers

 90

• time driven – polling at fixed intervals

• demand driven – checking the status when it is needed

• spontaneous – caused by some unrelated event

The polling model of update is common in many client-server-based applications where a
local client needs to access some remote repository to refresh the local client’s states. For
example, in the case of groupware systems such as Lotus Notes8, the system periodically
accesses a remote server and updates the local client. At the moment of refresh, the user is
informed of updates to the remote server.

6.3.2 Case 2: tell

Agent A may be told by a second party agent B. This occurs in certain arrangements used
in collaborative filtering where a user registers an interest in changes of a particular form.
When the system updates a central repository, the registered clients are told of the changes
that effect them.

Here too, we may ask how does B know about the status change, again leading to two
subcases:

• originator – B is the agent which caused S to change (B is packaged with S)

• mediator – B needs to find out itself, by one of the methods in cases 1 – 4

6.3.3 Case 3: ask

Agent A asks the second party agent B. In this case, we need to both ask what event
prompts A to ask – leading to subcases as in case 1 and how does agent B know – leading
to subcases as in case 2.

Perhaps the most notable example of this category is the logon process for a computer
conferencing system where an agent managing a centralised repository is asked to inform a
new user of any alterations to the system. This is often presented as the number of unread
messages.

6.3.4 Case 4: gatekeeper

The status S is in some way active or is closely bound to an agent that 'knows' instantly
when the status is changed. Such an agent can then tell A that S has changed.

This arrangement is usually employed in active databases in order to propagate the effects
of changes. A similar technique is adopted in terms of the use of adaptors to underlying

8Lotus Notes is a registered trademark of Lotus Development Corporation

Chapter 6 Exploring the Design Space for Notification Servers

 91

objects (Trevor et al., 1994). This paradigm is also applied in Suite (Dewan, 1990) and
other constraint based toolkits.

The gatekeeper case can be seen to be a special instance of either case 1 or 2. If the agent
is regarded as being part of the status, then it behaves as a subcase of case 1, for instance
like an alarm going off. Alternatively, the gatekeeper may be seen as an agent in its own
right, in which case, it can be regarded as a third subcase of case 2.

6.3.5 Source vs. Initiative

The source of an interaction can be either an agent or the status itself. Although the actual
information resides in the status, the source holds the knowledge of any changes to the data.
Initiative plays a key role in determining how changes of status are discovered. When the
status is modified, it is obvious that an agent is responsible for initiating the communication.
But when the agent is affected, then it is important to know whether the agent itself initiated
the change or whether some other party chose to do so.

Cases 1 – 4 for status change discovery can be mapped onto a source versus initiative
matrix (figure 6.2). Both cases 2 and 3 involve a second party agent as the source of the
interaction, but the difference between them is one of initiative. In case 2, it is the second
party agent B that takes the initiative to find out about the status change, while in case 3, the
responsibility lies with agent A itself. Therefore the difference between ‘asking’ and ‘telling’
is one of initiative. Similarly, in case 1, the initiative originates from agent A as it polls or
watches the status, but in case 4, the initiative comes from the status itself.

Source

2nd party agent
 (agent B)

observer
(agent A)

other
(status/

2nd party agent B)

1
watch

2
tell

4
gatekeeper

3
ask

status

Initiative

Figure 6.2 Source v/s Initiative

Given this arrangement, we may then ask ourselves what prompts one to take the initiative.
For example, in case 1, this leads to the subcases, such as:

(a) it may be internal (most likely time driven), or

(b) it may be due to a third party agent (demand driven), or

(c) it may be spontaneous (either time driven or demand driven).

Chapter 6 Exploring the Design Space for Notification Servers

 92

This section has examined the status event arrangement that exists between an agent altering
some status value and an observing agent interested in changes to this status value. A
similar analysis for the cases of status change discovery is applied in the following section to
notification servers in collaborative applications.

6.4 Notification Servers as Mediators

For the sake of this discussion, let us assume that there is a centralised architecture with a
central database or information server and client applications on each user's workstation.

Consider the following scenario. A user updates some shared data and the changes are
sent by the user's client application to the central server. How does another user's client
become aware of the change in order to update its screen accordingly?

Although the client applications are likely to be identical on both workstations, they do take
different rôles in this scenario:

Active Client (AC) – on the workstation of the user who performs the change

Passive Client (PC) – on the workstation of the user who is observing

Since the client applications perform the updates and display the resulting changes, the focus
is on the clients themselves and not on the users who will ultimately interact through them.
Hence, the emphasis is on how the events about the changes to the information are
propagated rather than how the information is displayed.

The options that enable the passive client to discover changes from the active client will now
be explored in two scenarios:

(a) when the notification server is absent and

(b) when the notification is added.

6.4.1 Change discovery options without a Notification Server

The agents of interest are the active client and passive client, and the status is the shared
data (figure 6.3).

Active
Client

Passive
Client

data flow
control

tell

ask

watch

Data

Figure 6.3 Client-data interaction without notification server

Chapter 6 Exploring the Design Space for Notification Servers

 93

In section 6.3, four cases of discovering status change were identified. However, case 4
corresponds to the status having some closely allied gatekeeper agent and this acts as a type
of notification server. Also, in cases 2 and 3, there is the possibility of a mediating agent;
again this is the role of a notification server. Therefore change discovery without a
notification server should only involve the cases where the agent is the originator of the
status change, namely, the active client.

The passive client can thus discover changes in the shared data in one of the following ways:

• passive client watches or polls the data (case 1)

This is the classic email arrangement where the responsibility lies with the client to
interrogate the data and find out when changes have taken place.

• active client tells the passive client (case 2)

This arrangement is used in some forms of shared screen systems where screen updates are
broadcast to all other clients. It is also adopted in multicast applications such as those used
for virtual worlds (Benford et al., 1994a).

• passive client asks the active client (case 3)

This situation is less common but normally occurs in systems where there is a designated
master version of an application that is responsible for managing the distribution of updates.
This approach was adopted in early versions of shared screen systems.

6.4.2 Change discovery options with a Notification Server

When a notification server (NS) is introduced, it acts as an intermediary between the active
client and the passive clients. This offers the benefits of managing the process and allows
support for more scaleable arrangements. The notification server facilitates distributed
architectures including hybrid arrangements, where the advantages of a replicated
architecture in terms of local responses are combined with the ease of propagation offered
from a central awareness service (Section 4.2.3).

In most cases, both clients communicate with the notification server in various ways.
Essentially, the active client informs the notification server of the update whilst the passive
client seeks to be informed of those updates. The notification server therefore removes the
need for direct communication between the active client and the passive client. Also, the
notification server does not pass on the data to the clients. Instead, the data repository
fulfils this role. The notification server only mediates the control between the clients and the
data. Events notifying changes to the underlying state information are basically sent between
the clients and the notification server.

Figure 6.4 shows the potential control flows between the clients and the notification server
that allow notification events to propagate through the system. It should be noted that not
all of these control flows would be active in a particular system. The combination of control

Chapter 6 Exploring the Design Space for Notification Servers

 94

flows that may occur will later produce the taxonomy of the design space for notification
servers in Section 6.5.

Passive
Client

Notification
Server

Data
data flow
control

A B

Active
Client

Figure 6.4 Client-data interaction with notification server

Let us first consider the interaction between the notification server and the active client
(figure 6.5). By applying the options discussed in status change discovery (Section 6.3), the
notification server is able to find out the stages of any change in one of the ways listed
below.

Notification

Server

A
ask

watch

Active
Client

Data

tell

bound to
the data

data flow
control

Figure 6.5 Notification server communicating with active client and data

Note, all options starts with label ‘A’ to differentiate from the interaction between the
notification server and the passive client, which falls under label ‘B’, as will be seen later.
Also, the same classification is observed as in cases 1 – 4 (Section 6.3) for example, ‘1’
means watching or polling, ‘2’ implies telling and so on.

• notification server polls the data (A1)

The responsibility lies with the notification server to monitor the data and detect any changes
to the underlying data. This is often used in computer conferencing systems to provide
some active propagation.

• active client tells the notification server (A2)

In this case, the notification server is placed between the client and the data repository. This
is similar to the technique used to develop shared X systems, where a splitter was placed
between the display and the underlying application (Lauwers and Lantz, 1990).

Chapter 6 Exploring the Design Space for Notification Servers

 95

• notification server asks the active client (A3)

This option is seldom used because it requires the notification server to ask the client if it
seeks to make changes. However, this arrangement is likely to become significant with
mobile systems, as cellular architectures become more widely exploited.

• notification server is bound to the data (A4)

The Rendezvous system (Hill et al., 1994) adopts such an arrangement as it separates the
abstract view from the data and uses some coupling mechanism to manage updates based
on an encoding of constraints (Section 4.3.4).

Once the changes in the shared data have become a perceived event for the notification
server, the latter must then relay that event to the passive client (figure 6.6). Note that, the
figure does not show any explicit connection between the notification server and the data
repository. Depending on the cases considered for ‘A’ above, the link between the
notification server and the underlying data may be either of a direct or an indirect nature.

 Passive
Client

Notification
Server

B

tell

ask

Data data flow
control

Figure 6.6 Notification server relaying change to passive client

The options for change propagation from the notification server to the passive client are:

• notification server tells the passive client (B2)

This arrangement is used by notification servers that are linked to window systems where
events can be sent directly to the client. The development of the push technology on the
Web also allows this form of change propagation.

• passive client asks the notification server (B3)

This is the classic arrangement used in Web-based awareness mechanisms such as WAP
(Palfreyman and Rodden, 1996).

It should be noted that since the notification server is acting as the intermediary, the options
of having the passive client interacting with the data repository directly for changes (options
B1, B4) are ruled out.

6.5 Taxonomy of notification servers

Chapter 6 Exploring the Design Space for Notification Servers

 96

The previous section showed that the notification server could find out about changes from
the active client and the data store in 4 different ways (options A1–A4). Furthermore, the
notification server can communicate the updates to the passive client in 2 ways (options B1,
B2). These possibilities can be represented in a 4x2 matrix (figure 6.7).

A4

A3

A2

A1 (NS èpolls Data)

(AC ètells NS)

(NS ≡ bound Data)

(NS èasks AC)

B2 B3
(NS ètells PC) (PC èasks NS)

Figure 6.7 4x2 matrix for change discovery and propagation

The matrix in figure 6.7 can be populated by some example systems built using the
respective protocol to generate the taxonomy of notification servers (figure 6.8).

 (NS-PC)

(AC-NS)

B2 B3

A4

A3

A2

A1

NSTP
WAP awareness

protocol

certain MUDs

desktop web
crawler/ agents POP server

pure notification
server

Figure 6.8 Notification server taxonomy

Note that in options A2 and A3 the notification server and the data repository are separate
while in options A1 and A4, the notification server has some knowledge of the data.

6.5.1 Possible arrangements

Each of the arrangements in figure 6.8 will now be discussed in turn.

Case A1-B2: A desktop web crawler looks for changes on some shared files on a Web
server (A1). As soon as some updates occur, it generates a list and informs the clients (B2)
about the changes, perhaps via an email message.

Case A1-B3: A POP server watches for the data (A1) but it is only activated when it
receives a request (B3) from the mail client. Unlike a Web crawler which asks for changes
in a spontaneous fashion, the event which drives polling in a POP server may be either time
driven or demand driven. By default, a POP server does not perform any automatic

Chapter 6 Exploring the Design Space for Notification Servers

 97

notification. It is only triggered by a certain event from a mail client. Therefore a POP
server only acts as a weak notification server.

Case A2-B2: This can be seen as a 'pure' notification server because the notification server
is entirely separate from the data store. The notification server is told (A2) about the
changes from the active client and it then notifies (B2) the users’ client about them. This is
similar to, for example, the locking mechanism in the UNIX file system where applications
explicitly request locks on remotely stored files from a special process, the lock daemon
(file d). However, the lock daemon has no control over the files it is referred to and thus it
is logically distinct from the file store.

Case A2-B3: Certain Web MUDs would fall in this category. It would involve a low level
client such as a Java applet running on a Web page and a rapidly polling notification server
at a Web site. If someone visits that site and requests the page, this tells the notification
server (A2) that the page is being visited. So when the applet next polls the server (B3),
other users see an avatar appear or may hear a door knock.

Case A4-B2: NSTP (Patterson et al., 1996) supports this arrangement. The notification
server is closely coupled to the shared data repository (A4). In the event of any updates,
the notification server tells the clients (B2) about the changes in the shared state information.

Case A4-B3: The WAP awareness stateless protocol (Palfreyman and Rodden, 1996) is
based on a client making a request and the server sending back a reply. The shared data is
the awareness of the presence and the locations of individuals in virtual space. Therefore
the awareness server is bound to the shared data (A4) and clients have to explicitly query
the awareness server (B3).

Case A3-B2 and Case A3-B3: These arrangements represent the empty row A3 in figure
6.8, as they are both ineffective. Case A3–B3 is particularly inefficient because it implies
that the passive client would constantly have to ask for changes from the notification server
and the latter would then send a request to the active client. However, case A3–B2 where
the notification server can be partially stateless is more likely to occur. The notification
server will have an interest in the changes without being fully aware of them. Such a
situation may arise in a mobile environment where the notification server needs to avoid
contention on the demands.

Chapter 6 Exploring the Design Space for Notification Servers

 98

6.5.2 Location of notification server

The discussion so far has assumed the presence of a single notification server and data
repository within a centralised architecture. However, this is a conceptual architecture and
the physical location of notification servers need not be centralised. The notification server
may sit remotely from the data or it can be packaged within the data. Indeed there may be
no single physical entity corresponding to the notification server. Instead, the notification
service may be spread over several physical components, as shown in figure 6.9.

client

data

client

NS

(a)

(b)

(c)

(d)

dedicated
notification

server

notification
service NS NS

NS

Figure 6.9 Location of notification server

Four major location options can be identified:

(a) the notification server is closely bound to the data repository

The notification server resides in the same physical address space as the data store or the
data is at least part of the server. An example is a database supporting triggered actions.
The notification server does not have to explicitly ask for the changes, the data store can
inform the notification server about them.

(b) the notification server and the data repository are loosely coupled together

In software engineering terms, the notification server is regarded as a separable component,
which may reside in the same physical address space as the data store or sit somewhere
else on the network.

(c) a distributed peer-to-peer notification service

Often a conceptual notification server is realised as a software abstraction within the clients
using peer-to-peer communication. An extreme example is AETHER (Sandor et al., 1997),
which percolates awareness information from node to node in a network, thus effectively
providing an emergent distributed notification service uniformly throughout the network.

(d) a hybrid of the above

Chapter 6 Exploring the Design Space for Notification Servers

 99

In practice, systems may include elements of all the above three options. For example, a
single notification server may be running on the network but a notification service
component may be integrated within each client in order to provide an effective application
interface.

This section has presented a taxonomy of notification server types and considered some
example systems that satisfy the different arrangements of change discovery and change
propagation. No system had implemented a 'pure' notification server arrangement when this
analysis was carried out (Ramduny et al., 1998). Such an arrangement allows the
notification and the data to be separate from each other. This is particularly important on
the Web where the protocols that access data are fixed, thus forcing notification to be
added at a separate level.

6.6 Notifying users

The motivation of this research lies in the timeliness of information by providing an
appropriate pace of feedthrough to collaborative users; hence the need for an underlying
notification server which will provide such a level of user awareness. Although the
notification server may use a particular mechanism at the protocol level, the user may
perceive it in a different way at the behavioural level.

Low level software may poll reasonably rapidly when the client talks to the server, but at a
higher level of abstraction, the server could actively send messages to notify users despite
the fact that it received those messages via polling. For instance, a notification server may
watch for changes in Web pages and then email a list of updated pages to the users.
Similarly, if the true push technology (based for example on a Java applet) is compared with
a browser refreshing Web pages based on expiry time, then from the user point of view,
they may appear to be little different. However, at a lower level, the applet is informed by
the ‘pushed server’ while the browser polls after the expiry date.

6.6.1 Layering

These complex interactions can once again be explained through Status−Event analysis.
Status−Event analysis shows that the mode and the pace of interaction may change radically
at different layers between the software, the hardware and the human parts of the system.
Consider the scenario when a person uses a keyboard. When a key is pressed, the wire
changes to a high or low voltage (status) and as soon as the chip notices the change, it
causes an interrupt (event) at the lowest level, which in turn is processed at higher levels.

Similarly, the interaction between the user and the passive client creates an extra layer of
indirection. For example, Lotus Notes does not actively notify users when the database has
changed by default. Instead, it puts a mark against the changed notes in a list view. Users
only become aware of the changes when they explicitly look at the relevant list view. At the
user level, this corresponds to asking (case 3) but at the lower level, the Notes server
informs the Notes client when changes occur (case 2) so it can update its local structures.

Chapter 6 Exploring the Design Space for Notification Servers

 100

Alternatively, many email clients periodically poll the server (case 1) but when they notice
that mail has arrived, they inform the user by popping up a dialogue box (case 2). Even
when low level protocols do not directly support the desired user level behaviour, it is
possible to provide different types of notification although this may be less efficient, for
instance in terms of network traffic.

Different layers can therefore be used between client−notification server and client−user to
achieve the desired pace of interaction.

6.7 Notification models

A number of systems have been designed to act as notification or awareness servers, some
of which have already been considered in the taxonomy of notification servers (Section 6.5).
The underlying notification models employed by these systems are usually based on either
an event-based approach or a status-oriented approach.

6.7.1 Event-based

NSTP (Patterson et al., 1996) supports an event-based or channel-based approach for
notification. Corona (Hall et al., 1996) adopts a similar event-based approach, however it
uses a ‘publish-subscribe’ service to maintain notification. The published notifications are
multicast to distributor nodes and they in turn multicast them to other distributors that send
them to local subscribers. The Elvin (Fitzpatrick et al., 1999) notification service instead
acts as a distributor of events and works on a producer-consumer model. Producers detect
events and push them to the notification service and the latter then distributes them to the
interested consumers.

6.7.2 Status-oriented

Systems that are expressed in terms of events are not as effective as status-oriented models.
Status-oriented models fall very close to the spirit of Status−Event analysis (Dix, 1998).

AETHER (Sandor et al., 1997) is based on a status-oriented approach which percolates
awareness information from node to node in a network, thus providing an effective
notification service uniformly throughout the network. Formal awareness models (Benford
et al., 1993), (Benford and Fahlén, 1993), (Benford et al., 1994b), (Rodden, 1996) are
more status-oriented. For example, instead of “when person A enters the room, person B
is informed”, these models are phrased as follows: “when the nimbus (region of influence) of
person A intersects that of person B, they should be aware of one another”.

Status-status mappings are also found in single-user interfaces (e.g. for dragging) and multi-
user interfaces (e.g. for keeping users views consistent). Hence, toolkits and user interface
development systems usually have some form of event notification mechanism to handle user
interface events, such as mouse clicks. The Smalltalk MVC model (Section 3.2.3) uses a
mechanism whereby objects can register themselves as dependants of another object, so
the latter can then inform its dependants about changes to its state (Lewis, 1995).

Chapter 6 Exploring the Design Space for Notification Servers

 101

A similar technique is applied in X-Motif callbacks (OSF, 1995), Java JDK 1.1 source-
listener event model (Flannagan, 1997) and active values (Section 4.4.3). However, in
callback-style toolkits, the relationships between status phenomena are often coded in terms
of event callbacks. A more effective mechanism is to use toolkits that are based on
constraints (Section 3.5.3), as they are founded on status-status relationships, which in
some ways makes them closer to Status−Event analysis.

The analysis applied in this chapter to investigate the design space for notification servers
has been theoretically augmented and formalised in another study (Dix, 1998), which
decomposes the process of event propagation and unpacks the relationships between
agent−agent, status−agent and status−status. The chain of interactions (causality chain) that
lead to an agent or a status to be influenced by a certain event is mapped out to reveal
behaviours of event discovery. An interesting observation from that study is the apparent
reversal of initiative and causality. Causality is related to the event flow, which manages the
flow of control, whereas initiative determines how changes to the status are discovered.

6.8 Summary

The aim of this chapter was to explore and clarify the design space for notification servers to
enable a better understanding of the issues involved. A general model of status change
discovery taken from Status–Event analysis was applied to notification server architectures.

Status–Event analysis is an analytic framework that includes both aspects of events and
status. Status is very useful for describing relationships that have a persistent value through
time, like shared data, where event-based models fit less well. Agents usually communicate
via the mediating status or they mediate a status-status relationship. This mediation position
is central for analysing the role of notification servers.

Four main cases for status change discovery were identified namely, an agent watches the
status; an agent is told by a second-party agent; an agent asks the second-party agent and
finally, the gatekeeper scenario, where the status is bound to the agent and knows ‘instantly’
when the status is changed. Some of these cases can be divided further into subcases. A
similar analysis was then employed to explore the ways in which a notification server
(mediator) can become aware of the changes in the shared data (status) and how it in turn
makes it available to the clients (agents).

The notification server (NS) acts as an intermediary between the client that performs the
change – the active client (AC), and the client that observes the change – the passive client
(PC). The notification server is only responsible for mediating control between the clients
and not for passing on data. The analysis highlighted the similarities between the
communication from AC–NS and from NS–PC. It also emphasised the important
distinction between the knowledge of what has changed in the shared data and the
knowledge that it has changed. Furthermore, it generated a taxonomy based on issues of
source and initiative within the three-way AC–NS–PC communication.

Chapter 6 Exploring the Design Space for Notification Servers

 102

A conceptually single notification server is not necessarily confined to a specific location
within a CSCW system. The various location options for the notification server were
considered. The notification can either be packaged within the data or it may sit remotely
from the data. Indeed, the notification server can be placed in various physical locations
and may even be distributed over several components. In the latter case, it is more
appropriate to think of a notification service operating within the system as a whole.

Notification servers operate at a low-level within the computer system, but their purpose is
to provide user-level behaviour in the form of feedthrough and awareness. The different
categories of notification that may be seen at different levels were examined. This layering
mechanism allows a client application to use non-optimal low-level notification services and
yet achieve acceptable user-level behaviour.

Finally, some notification models used in notification or ‘awareness’ servers and toolkits
were reviewed. Event-based models tend to be less effective than status-oriented models,
which fit closer with Status–Event analysis.

The taxonomy of the design space for notification servers discussed in this chapter has
provided a framework and a vocabulary to compare and discuss different notification
mechanisms with an aim to inform and improve design. Also, the use of Status–Event
analysis as a foundation to this study ensures that the framework for notification architecture
does indeed cover the design space.

The provision of feedthrough in a Web-based collaborative application requires a
notification server, preferably one that acts as a 'pure' notification server at the architectural
level. The 'pure' notification server arrangement allows a separation of concern between
notification and data, and it will be used as a design driver for the experimental notification
server described in Chapter 8. Prior to this, the next chapter will discuss how the
notification server can actually be used to provide effective user-level behaviour.

103

Chapter 7 Impedance Matching: Coping with
Limited Resources

In the real world, the feedthrough between participants is usually mediated by the physical
properties of artefacts and space. However, in distributed electronic environments, some
sort of event or notification needs to propagate through the network so that applications can
inform users about remote events. Chapter 6 explored the various design options for
notification servers. An important issue in providing effective user-level behaviour lies in the
frequency at which the notification server should send updates or feedthrough information to
the users. This also depends heavily on the desired pace of interaction. The issues
surrounding pace of interaction were dealt with in Chapter 2.

Some feedthrough is very goal-directed – information directly used by users in their tasks.
However, the collaboration literature constantly emphasises the value of awareness (Dourish
and Bellotti, 1992). Whereas goal-directed activity usually requires detailed and timely
feedthrough, awareness is typically longer term and more 'fuzzy'. For implementation, the
difference between goal-directed feedthrough and awareness are largely about quality of
service (QoS) (Rada, 1995). Both goal-directed feedthrough and awareness require some
form of underlying notification mechanism. However, the differences in QoS suggest that
the notification server should be able to modify the rate and quality of notification to match
the required feedthrough at the user interface.

This chapter investigates how collaborative users can be provided with timely updates by
controlling the frequency of notification through impedance matching. Impedance
matching is usually employed in engineering terms to describe the procedure in circuit design
for matching unequal source and load impedance to optimise the power that the source
delivers to the load. Impedance denotes how much a device resists the flow of an AC
signal whereas resistance shows how much a device resists the flow of a DC signal.

The term impedance matching is employed in the context of this research more as a
metaphor to describe the notion of matching the required and supplied pace of feedthrough
to maximise user-level behaviour at the interface. Perhaps the method of adjusting the pace
of feedthrough could be simply called ‘matching’. However, previous publications related
to this work (Ramduny et al., 1998), (Ramduny, 1999), (Ramduny and Dix, 2002) have
already referred to the term impedance matching, hence it has been maintained in the thesis.

Section 7.1 examines the need for impedance matching to control the rate of change
propagation between collaborative users. Section 7.2 describes how notification servers as
mediators are ideal for supporting impedance matching by controlling the pace of
feedthrough. Feedthrough demands can be reduced by subsequently reducing the pace and
the volume of updates. The issues surrounding pace and volume impedance matching are
discussed in Section 7.3, together with some related implementation issues. Section 7.4
explores the potential triggers for pace impedance by analysing their effects on event

Chapter 7 Impedance Matching: Coping with Limited Resources

 104

propagation through the use of time-space diagrams. Section 7.5 assesses some scenarios
where impedance matching can be introduced to provide a controlled pace of feedthrough
and awareness to collaborative users. Finally, Section 7.6 analyses some outstanding issues
that arise from impedance matching.

7.1 Need for impedance matching

Let us consider the effect of change propagation within a collaborative environment. In
Chapter 6 (Section 6.4), a distinction was made between the client who performs the
changes − Active Client (AC) and those who view the changes − Passive Client (PC).
Note, the role that the AC and PC assumes is not permanent, it depends on which client is
performing the action at any given point in time.

Figure 7.1 shows a scenario where an active client is propagating updates to a passive client
and it in turn, passes the updates to the user. Collaborative work usually involves
communicating over a network. Thus, the AC−PC interaction is influenced by the available
bandwidth, whereas the user−PC interaction is influenced by the response time in seeing the
changes. Obviously, the shorter the response time, the more effective the user-level
behaviour is.

Active Client Passive Client

Figure 7.1 Update propagation

Collaborative users often interact with a large number of shared objects. This generates a
high volume of updates that need to be broadcast to all the users. The response time with
which users see those updates will increase unless the updates are sent rapidly. Usually,
there are not enough network and computational resources available to sustain such a high
rate of feedthrough. The updates could still be broadcast rapidly, but some degree of
throttling is required at the user-end.

Even if the network was infinitely fast and there was an infinite amount of memory, a
maximum rate of feedthrough for all the objects will generate further network congestion.
The extra computational load would undoubtedly mean delays for all the objects, including
the ones that are most salient and important. Furthermore, from a cognitive point of view,
users should not be overloaded with too much information, as it is annoying and it usually
results in a poor user interface (Section 2.2.1). Users may thus find it too distracting to
cope with a very fast rate of feedthrough.

The rate of feedthrough should therefore be reduced to such an extent that the updates are
broadcast at a fast enough rate and yet be acceptable to the users. Consequently, the
passive client need not forward the updates to the users at the same rate that it receives
them from the active client. The passive client could still accept changes from the active

Chapter 7 Impedance Matching: Coping with Limited Resources

 105

client at a fast rate but it can forward the updates to the users less often to make the pace of
feedthrough more acceptable.

Furthermore, the pace of delivering feedthrough is crucial and depends on the type of the
task. A study (Pausch, 1991) found that rapid feedback of low fidelity wireframe models
was far better than slower photorealistic rendering. Delivering feedthrough at the wrong
pace can therefore be problematic. For instance in figure 7.1, if the rate of updates
generated by the AC is too high and the rate at which the PC informs the user is too slow,
users may act without having an up-to-date knowledge of one another’s actions. Similarly,
if the rate of updates generated by the AC is too low and the rate at which the PC informs
the user is too high, users may be easily distracted by irrelevant changes.

Clearly, there is a need for some form of matching between the active client and the passive
clients in order to obtain the right pace of feedthrough. This matching of the required and
supplied pace of update events is called impedance matching (Ramduny et al., 1998),
(Ramduny and Dix, 2002). A mismatch in the required and supplied pace of feedthrough
will inevitably affect user-level behaviour. Impedance matching is therefore essential for
delivering feedthrough that is both effective for the user and efficient for the system. The
next section will justify the choice of placing impedance matching within the notification
server.

7.2 Where to control pace of feedthrough

The following discussion assumes that each user is interacting through a single client device
and for any update or user action, the active client is the client of the user who initiated the
action and the passive clients are the clients of the rest of the users who receive feedthrough.

7.2.1 Interaction without notification server

In the absence of a notification server, the active client is responsible for propagating the
changes to the shared objects to the passive clients. This can either happen through a
broadcast mode (figure 7.2a) or through a peer-to-peer interaction between the clients
(figure 7.2b).

In the broadcast mode of interaction (figure 7.2a), there is a central point of contact
between the active client and the passive clients and a single virtual channel is used for
communicating updates. All passive clients will therefore receive the same notification
events. This implies that events have to be delivered at the rate of the fastest client, and any
per-user impedance matching has to take place at the passive client.

Chapter 7 Impedance Matching: Coping with Limited Resources

 106

 passive
client

passive
client

passive
client

active
client

passive
client

passive
client

active
client

passive
client

(a) (b)

Figure 7.2 (a) broadcast and (b) peer-to-peer interaction

Consider the example of a shared drawing package. All the users may not be actively
involved in manipulating the shapes and their sizes on the screen at the same time. So, when
changes to the shared cursor are broadcast, the active client must broadcast each pixel
movement to everyone, for the sake of the few users who are currently interacting with the
particular object. Although the passive clients can ignore unnecessary events, this consumes
additional network bandwidth and computational effort.

In the peer-to-peer form of interaction (figure 7.2b), the active client maintains a separate
channel with each passive client. Consequently, the active client can itself filter the event
stream on a per-client basis. The active client will however need to know about each
individual passive client when replicating any changes. This form of interaction enables each
passive client to receive different rates of feedthrough (represented by the different line
thickness in figure 7.2b), but at the expense of some fairly complex filtering mechanism at
every active client.

7.2.2 Interaction with notification server

The presence of the notification server allows both broadcast and peer-to-peer mode of
interaction (figure 7.3). The notification server is the central point of contact between the
active clients and the passive clients. The active clients send the changes to the notification
server (broadcast) and it in turn can act as the mediator to adjust the rate that each passive
client receives the updates independently (peer-to-peer).

notification
server

active
client

passive
client

passive
client

passive
client

Figure 7.3 Using notification server as mediator

The notification server does not necessarily have to forward the changes to each passive
client at the same rate that it received it from the active client. The pace of feedthrough

Chapter 7 Impedance Matching: Coping with Limited Resources

 107

between the active client and the notification server will therefore differ from that between
the notification server and the passive client. So, in order to obtain the right pace and the
right granularity of the changes, the clients will have to negotiate with the notification server.
For example, at a user level, mailing lists distribute messages to subscribed users each time
they connect to the server. In contrast, moderated lists may send digests to users every
month.

A bespoke notification server may have an in-built knowledge of the suitable pace of
feedthrough required. But in general, the information as to what pace of low-level events is
required to achieve appropriate user-level feedthrough will not reside in the notification
server; the clients must communicate that information to the notification server.

7.3 Impedance Matching Policies

Having established that the notification server is ideally placed to support impedance
matching, this section will explore the different ways in which impedance matching can be
achieved and also consider some related implementation issues.

Impedance matching embodies both the volume of updates and the rate at which updates
are notified to the users . The feedthrough demands can therefore be reduced by:

• sending updates less often (pace impedance)

• sending less updates (volume impedance)

Pace impedance deals with the frequency or rate of notification while volume impedance
influences the amount of updates transmitted to the user. A reduction in the rate of
notification and in the volume of changes sent to the users can in fact cause an implicit gain
on network and computational resources. But this calls for a certain amount of filtering to
be carried out.

7.3.1 Pace Impedance

The rate at which updates are sent out can be reduced by:

(a) sending information less often

The updates are buffered and communicated to the users when it is more convenient to
them. All the information gets sent including details such as the header, destination and so
on. Only the rate at which the information is sent is affected.

(b) sending chunks of information

The information is sent in chunks to improve the overall performance. The size of the
chunks or the frequency at which the chunks are transmitted can be reduced. This may
cause a loss of information in some cases, but can be advantageous in lowering network
overheads. For instance, message headers need not be transmitted each time messages are
broadcast.

Chapter 7 Impedance Matching: Coping with Limited Resources

 108

7.3.2 Volume Impedance

In addition to pace impedance, the volume of updates can be adjusted to make it more
manageable to the users. The desire to reduce network bandwidth already puts some
constraints on what users can see and how often they see them. Depending on the task, the
amount of information sent across could be dropped to a low level of detail and yet still be
acceptable to the users. Users could thus receive a shorter response time and the
application could cope with a busy network. However, this should not jeopardise the
quality of information broadcast.

An example of volume impedance is the use of flags for marking new or changed material.
Flags convey awareness information at a reduced level of detail. By their very nature they
are low volume, but also extreme timeliness is rarely critical. So, even if a delay were
introduced before the flags are sent out, this would not disrupt the user-level behaviour.

7.3.3 Impedance matching vs. QoS

Quality of Service (QoS) (Rada, 1995) ensures that the network channel has sufficient
quality available to provide a better service for data transmission. This is crucial for
maintaining a continuous transmission of audio, high-bandwidth video and multimedia
information. QoS caters for delays and any necessary adjustments caused by the variable
latency of the received data. QoS-based models also support the self-pacing of real-time
data thus enabling data to be transmitted without any distortion.

For instance, when QoS is applied in the transmission of video images, the images are sent
in chunks to reduce the frame rate, thus acting as a form of pace impedance. The images
are also very often compressed and sent at a lower resolution and this is similar to volume
impedance. So both pace and volume impedance matching can be seen to be a form of
QoS. However, whereas most systems based on QoS are concerned with achieving
minimum standards of throughput, the main motivation behind impedance matching is to
determine whether the service can be limited to fit the available data.

7.3.4 Implementation Issues

During group work, users interact with several participants through a large number of shared
objects over different timescales. Not everyone would necessarily be interested in the
changes to all the interface objects at the same time. Users are more likely to have a higher
interest in changes to certain objects than others. For example, certain interface objects
may be regarded as focus objects and they require almost instantaneous feedthrough to be
effective. Other less important objects may instead be considered as peripheral objects
and the rate of change notification can be reduced accordingly.

With impedance matching, the server has to delay feedthrough to the clients. As a result,
some form of event queues must be held before the updates are sent across to the clients.
This lays an extra storage load on the server and it also implies that when updates are

Chapter 7 Impedance Matching: Coping with Limited Resources

 109

eventually sent they have the accumulated size of all the delayed messages. Ideally, the
server should be able to compress the event queues, for instance the event queue:

insert(“hello ”), insert(“world”)

could be reduced to:

insert(“hello world”)

However, this requires the server to have substantial knowledge about the events and the
objects.

In an event-based model, when a user manipulates an object, the client generates an event,
which then gets sent to the server. The server only knows about the types of events
associated with the object and not the related pace of interaction. In order to provide the
right pace of the feedthrough, the server should know about the pace of interaction
associated with a certain object.

Users’ client can therefore register a level of interest for an object with the server. For
example, a client may register a high-pace interest for the focus objects but only a low-
pace interest for the peripheral objects. In this manner, the server can deliver feedthrough
at a rate that matches the users’ pace of interaction.

7.4 Exploring pace policies

This section will explore the different ways of obtaining pace impedance and show their
effects on the flow of events through the use of time-space diagrams (Lamport, 1978). A
simple client-server mode of interaction is assumed, where user agents send messages to
each other through a central server. Messages sent across the network are usually
transmitted as lower level events.

Figure 7.4 shows the ordering of events on a time-space diagram. The horizontal direction
represents space whereas the vertical direction indicates time in ascending order, with later
events being shown higher than earlier ones. The dots represent events and the horizontal
lines represent the transmission of messages (m). Note that any latency in the network itself
is not shown, as this is not a significant feature in the examples considered below.

If the network connection between the client and the server is instantaneous, figure 7.4
shows the ordering of events when no impedance matching is applied. The server forwards
each message it receives following an event immediately to the user agent.

Chapter 7 Impedance Matching: Coping with Limited Resources

 110

m2 m2

User Agent Server

m6

m5

m4

m3

m1

m6

m5

m4

m3

m1

time

 Key
 message (m)
 event

Figure 7.4 Time-space diagram without impedance matching

As pace impedance is about sending information less often (Section 7.3.1), one could ask
the following question: how often should the messages be transmitted? Surely, there must
be some kind of event that acts as a trigger, which causes the messages to be sent. The
potential triggers for pace impedance are:

• the time factor

• the volume of the message and

• the size of the message

7.4.1 Fixed time interval

The client receives messages after every fixed time interval (t). The messages are buffered
at the server-end until time t is reached, in which case the messages are transmitted to the
client in a single stream. In figure 7.5 for example, the first message stream consists of
messages m1, m2 and m3 but only m4 is sent out in the second message stream.

m4

m5 + m6

m1 + m2 + m3

m2

User Agent Server

m6

m5

m4

m3

m1

time

 Key
 message (m)
 event
 t time interval

t

t

t

Figure 7.5 Time-space diagram with fixed time interval

Because the time interval is fixed, the client can in fact poll the server. A classic example
occurs in a mail system, where the client polls for changes from the mail server at regular
intervals.

Chapter 7 Impedance Matching: Coping with Limited Resources

 111

7.4.2 Time delay

This option varies slightly from the previous one. Instead of sending events after every fixed
time interval, an event is only generated after a certain time delay. In figure 7.6 for instance,
when the server receives the first message, it starts the timer and the messages are buffered
until a certain time delay (δ) has passed, after which all the messages received are
transmitted in a single stream to the user agent. The timer starts again when the next
message hits the server.

 m5 + m6

m4 + m5

m1 + m2 + m3

m2

User Agent Server

m6

m5

m4

m3

m1

time

 Key
 message (m)
 event
 δ time delay

δ

δ

δ

Figure 7.6 Time-space diagram with time delay

Unlike the previous case, this option is more server-based in that the server takes the
initiative to generate events. The clients rely on the server to push messages towards them,
as they have no knowledge of when the server actually starts counting the delay.

7.4.3 Volume of messages

In this case, the volume of the message acts as the trigger. The server buffers the messages
until a maximum number of outstanding messages have been received, which are then sent
out to the client in a single stream. Figure 7.7 shows the user agent receiving an event after
the server has received a maximum of three messages.

m4 + m5 + m6

m1 + m2 + m3

n=3 m2

User Agent Server

m6

m5

m4

m3

m1

time

 Key
 message (m)
 event
 n number of messages

n=3

Figure 7.7 Time-space diagram with volume of messages

This mode of pace impedance could be found in a shared text editor where it is not always
effective to transmit all the keystrokes. The server could wait until a maximum number of
keystrokes are received before sending them.

Chapter 7 Impedance Matching: Coping with Limited Resources

 112

7.4.4 Message size

With this option, the server forward messages to the clients once a maximum size is reached
as it is not always effective to send several gigabytes of messages. Figure 7.7 shows how
the server send messages to the client in a single stream, once the maximum limit (max) has
been reached. If the size of the message is below the maximum value, the message is kept
in a queue and subsequent messages are added onto it until (max) is reached.

m3 > max

m4 + m5 + m6 > max

m1 + m2 > max m2

User Agent Server

m6

m5

m4

m3

m1

time

 Key
 message (m)
 event
 max maximum size

Figure 7.8 Time-space diagram with message size

7.5 Scenarios for impedance matching

This section will now look at some example collaborative scenarios and assess whether
impedance matching could improve the provision of feedthrough. Three example systems
are considered namely, a bulletin board system, a multi-user chat system and an avatar-
based chat system. These applications have been chosen because they share a common
factor − they all enable users to communicate with each other. However, each system
supports communication over different temporal dimension and through a distinct interface.

7.5.1 Bulletin board system

A bulletin board system consists of a number of discussion forums which users can join and
post messages to. Figure 7.9 shows the layout of an example university bulletin board
system. Users can register to a number of discussion forums and add their contributions.
They can also start up new topics of conversations and search for specific messages and
respond to them.

Bulletin board systems often operate in an asynchronous mode. The rate at which users are
notified of new contributions depends on the system. Some systems do not provide any
form of explicit notification while others act as moderated email lists and send digests to
users once every month. However, there are a small number of systems that notify users of
the status of the latest posts on a daily basis, usually by email, which are either sent explicitly
by the forum moderators or generated automatically. In the latter case, although the volume
of information sent to the users is not significant, the email at least informs users that there
have been some changes to the system. This is, in some ways, a kind of implicit impedance
matching.

Chapter 7 Impedance Matching: Coping with Limited Resources

 113

Post Msg Modify Delete Search Home FAQ

BULLETIN BOARD CATEGORIES

Ø General
Announcements

Ø Faculty
Messages

Ø Student
Messages

Ø Staff
Messages

Ø Alumni
Messages

Ø Department
Bulletin Board

General Announcements
Welcome Message

This is a sample board …
…

Faculty Messages

.

.

.

Meeting reminder
 Meeting today Friday at 4 pm at the conference hall
 Date= 17-May-2000 ,,, [Msgid=1095]

.

.

.

Main
Functionalities

Discussion
Forums

Contributions

Messages

Figure 7.9 Example bulletin board system layout

Because interaction in bulletin board systems occurs over a fairly long-term (hours or days)
users do not always expect a rapid response from other members. The rate of notification
is too low, hence the demands on network load and bandwidth will not be significant
enough to influence the rate of feedthrough. Therefore there is no need to implement
impedance matching in this case as it will not necessarily improve users’ performance to a
great extent.

7.5.2 Multi-user chat system

A multi-user chat system also allows several participants to engage in discussions but unlike
bulletin board systems, most of the communication here takes place in real-time. Users
convene at virtual channels with a topic of conversation and hold public or private chat
sessions. Example multi-user chat systems include Babble (Erickson et al., 1999) (figure
7.10) and Xchat (Zelezny and Langley, 1999) (figure 7.11).

Babble allows users to engage in both synchronous and asynchronous communication by
maintaining persistent conversations. It uses some form of social protocol to display
awareness information. Xchat is a graphical Internet Relay Chat (IRC) client that runs on
Unix like systems. Both Babble and Xchat offer mainly a textual mode of interaction.

User interaction in multi-user chat systems occurs at a much faster rate than bulletin board
systems in general, as information is mainly exchanged synchronously though various
channels. The rate of update notification to the participants is higher and the task of
managing the data exchanges and user controls becomes more complex.

Chapter 7 Impedance Matching: Coping with Limited Resources

 114

Figure 7.10 Example Babble screenshot

currently active topicwindows attached to main window

list of users

input box

main window
showing users
contributions

Figure 7.11 Example Xchat screenshot

When users maintain several channels of conversation simultaneously, it is more difficult to
keep track of all the conversations together. Usually, each thread of conversation is
displayed on separate windows. In Xchat for instance, the main window has several
windows linked to it, each representing a separate thread of conversation, which is only
brought to the front when activated by the user. However, users may also be interested to
join in other conversations in the background windows at the same time.

Chapter 7 Impedance Matching: Coping with Limited Resources

 115

The next section shows how impedance matching can be applied to notify users of the
contributions in the different threads of conversations while their focus is on a particular chat
session.

7.5.2.1 Applying impedance matching

Users in multi-user chat sessions are often involved in several discussions, however they
tend to focus on one particular discussion at a time, typically represented by the
conversation in the top-level window (figure 7.10). With impedance matching, a user’s
client can register a high-pace interest with the updates on the top-level window but only a
low-pace interest with the changes in the secondary background windows.

Figure 7.12 Example chat session with impedance matching

Figure 7.12 shows John, Wendy and Amy chatting in the ‘commons area’. John is also
involved in another chat session ‘general conversation’ in the background window. So with
impedance matching, John will receive an instant feedthrough of any text entered in the
‘commons area’, but he will see the updates to the ‘general conversation’ less often. John
may only be informed that the contribution has changed through some form of background
feedback but this may not necessarily happen straight away.

7.5.3 Avatar-based chat system

Several chat systems have been developed to support distance collaboration in virtual 3D
environments with the creation of virtual worlds and virtual communities (Greenhalgh and
Benford, 1995). Web-based real-time chat systems have also become popular. For
example the Active Worlds Browser9 provides a 3D-type interface where users adopt an
avatar, and unlike traditional chat rooms, a user can point-and-click to walk closer to other
users.

9 http://www.activeworlds.com/

Chapter 7 Impedance Matching: Coping with Limited Resources

 116

Furthermore, systems such as MUDs (Multi-User Dungeons) or MOOs (MUD Object-
Oriented) also require enhanced awareness mechanisms to make users feel their presence in
virtual space. Issues such as the proximity of the users and their closeness to the artefacts
play a significant role in maintaining awareness. The provision of a high pace of feedthrough
is even more problematic in this complex environment under limited resources.

Some existing avatar-based chat systems use the notion of “rooms” to provide a spatial
context where multiple users can play simultaneously. The notification of users’ interaction
and dialogue are usually via text. When a player is inside a particular room, she can hear
every dialogue in that room alongside descriptions of other occupants’ actions. After
leaving the room, the player is no longer aware of the activities in the room she have just
visited; instead she is given descriptions of her current location. However, some players
may still be interested in the ongoing activities in the rooms they previously visited as they
may wish to join in at a later stage.

The next section examines how impedance matching can be applied in such a system to
provide users with a controlled pace of awareness of the activities in the different rooms,
while their focus moves from one room to another.

7.5.3.1 Applying impedance matching

Typically, a user will focus on one particular room at a time; therefore a high rate of
feedthrough must be provided for all the activities in that room. The rate of feedthrough for
the activities in the secondary rooms need not be the same, but some additional form of
awareness would be desirable. Figure 7.13 shows a screenshot of an example avatar-
based chat room10.

In the example avatar-based chat room, users ‘newuser’, ‘Samantha’ and ‘harmsworth’
conversing in the ‘lobby’ room (figure 7.13). Users can also join and leave chat rooms at
any time. Consider the case when ‘newuser’ decides to join two other chat rooms while
still conversing in the ‘lobby’.

10 http://www.weirdoz.org/visualchat/

Chapter 7 Impedance Matching: Coping with Limited Resources

 117

Figure 7.13 Example avatar-based chat room

With impedance matching, ‘newuser’ may be presented with the following interface (figure
7.14). The window on the left represents the conversation that ‘newuser’ is having in the
‘lobby’, where her main focus lies. The two reduced sized windows on the right instead
represent the other chat rooms that ‘newuser’ is joined to at the same time, but in which she
only has a secondary interest.

Figure 7.14 Example avatar-based chat room with impedance matching

A high-pace interest will be registered to the contributions in the ‘lobby’ but only a low-
pace interest will be associated with the contributions in the other rooms. ‘newuser’ will
therefore be notified of the changes to the ‘lobby’ almost as they occur and they will be
displayed on the main window on the left. At the same time, ‘newuser’ will be made aware
of the contributions to the other rooms on the windows on the right, but the rate of

Chapter 7 Impedance Matching: Coping with Limited Resources

 118

notification will be at a much lower. In this manner, ‘new user’ can be notified of changes to
the chat rooms depending on her interest rate.

In general, the rate of notification in the changes to the rooms users have registered a low-
pace interest in, will be triggered by some sort of event for pace impedance, as discussed in
Section 7.4. For instance, if the trigger is based on the temporal factor, updates may be
sent out at regular time intervals or after a certain time delay. On the other hand, if the
trigger is based on the volume, then updates may be sent out after a certain number of
contributions have been received or when the size of the contributions has reached a
maximum value.

In addition, some form of passive notification can be used to promote awareness, for
example highlighting window frames, changing colour of text, raising a flag or even using
some distinct sounds. The role of passive notification is mainly to convey awareness
information for low-pace interest objects or peripheral objects (Section 7.3.4). The use of
flags to mark new or changed materials is also an example of volume impedance and they
do give temporal reduction for free (Section 7.3.2).

7.6 Further issues

The examples discussed above showed how impedance matching could improve the
temporal behaviour of an application. However, the implementation of impedance matching
generates some outstanding issues and these are discussed below.

7.6.1 Impact of rich media

The scenarios discussed in Section 7.5, mainly allowed information to be exchanged in a
textual mode. However, some chat systems like ICQ11 also enable users to exchange
communication verbally via voice-over-IP through the use of Internet phone such as
BuddyPhone12. It is therefore essential that the rate at which information is exchanged
through the different channels be kept in synchronicity to avoid a breakdown in
communication.

When users talk through the phone while typing, the granularity of feedthrough becomes
very fine-grained − character level instead of words or sentences. Consequently, the task
of matching the rate of feedthrough between the two channels is not trivial. Furthermore,
the introduction of additional media such as real-time graphics and video adds more
demands on the resources and thus make the provision of feedthrough even more
problematic.

Impedance matching is therefore required to manage the rate of feedthrough between the
different channels. Some systems already provide a form of impedance matching to cope

11 http://web.icq.com/
12 http://www.buddyphone.com/

Chapter 7 Impedance Matching: Coping with Limited Resources

 119

with the demands on bandwidth. For example, in media space systems such as Rave
(Gaver et al., 1992), the video transmission is kept to a low volume and a low pace until a
user actually clicks on the video, in which case the rate of feedthrough increases.

The solution adopted in Xerox Portholes (Dourish and Bly, 1992) makes use of frame-
grabbing software for each media space and then distributes low-resolution digital images.
Similarly, in NYNEX Portholes (Lee et al., 1997), although the WebCam operated at a
slow rate, the images were transmitted at full speed. An integrative view of a particular
group is represented through a matrix of still video images, which are snapped periodically,
for instance after every five minutes.

7.6.2 Ordering of events

A major problem that impedance matching gives rise to relates to the ordering of events.
Collaborative systems produce a large number of events of different kinds from several
users at varying times. The order in which the events are broadcast may be critical in
maintaining the cooperative activity. If users do not receive the events in the right order,
they can easily get confused and in the worst case, they may abandon the task completely.

Let us consider the effect of impedance matching on the flow of events in a conferencing
system. Figure 7.15 illustrates the peer-to-peer ordering of events between two users, John
and Mary chatting on two conferences, VRML and FILE MAKER.

create FILE MAKER

join VRML

join FILE MAKER

add message

 Key
 message (m)
 event
 t time interval

create VRML

select VRML

t

VRML FILE MAKER

add message
add message
add message

add message

add message

add message

add message

add message

Mary VRML FILE MAKER John

time

Figure 7.15 Timing diagram with point-to-point ordering of events

Starting with the lowest event, the timing diagram shows that John first creates the VRML
conference and adds a message. Mary joins the VRML conference shortly after. John and
Mary receive an instant feedthrough of each other’s messages at that point, as they are both
focussed on the same conference.

Chapter 7 Impedance Matching: Coping with Limited Resources

 120

John goes on next to create the FILE MAKER conference, which Mary joins later. FILE

MAKER now becomes the focus for both participants and conversations exchanged at that
level have a higher pace of feedthrough than those in VRML.

At some stage, John decides to go back to the VRML conference while Mary is still active
on the FILE MAKER conference. John now receives an instant feedthrough of all the
messages added to the VRML conference but Mary only gets a set of buffered messages at a
regular time interval (t). Given the different rates of feedthrough for the VRML conference,
the order in which John and Mary receive the messages may differ and therefore run the risk
of becoming inconsistent. The problem is amplified if there are some semantic dependencies
between the messages, as illustrated by the conversation extract between John and Mary in
figure 7.16.

Figure 7.16 Example conferencing system transcript

Both John and Mary are chatting on two conferences, VRML and FILE MAKER. John’s
focus is on the VRML conference as the window is in the foreground whereas Mary’s focus
is on the FILE MAKER conference. Mary’s last contribution that was addressed to John on
the VRML conference was “ok can we meet up sometime”. Mary’s focus then switched to
the FILE MAKER conference. As the VRML conference is no longer Mary’s focus, John’s
reply is not forwarded to her immediately.

A short while later, John decides to join the FILE MAKER conference, where he catches
Mary again and offers to help out with “Go ahead”. John remembers their last conversation
on the VRML conference, and seeing that it is not a good time for them to meet after all, he
tells Mary “oh by the way ignore my last message”. Mary is unaware of the context of this
last message from John and she obviously interprets it as John being unable to help her with
her FILE MAKER problem!

Chapter 7 Impedance Matching: Coping with Limited Resources

 121

A message flags up on Mary’s screen shortly after to inform her of a new contribution in the
VRML conference. Mary now receives John’s reply “Come down to the office and we can

check the document?”. So, Mary makes her way downstairs to John’s office completely
oblivious of the fact that John’s last message on the FILE MAKER conference was actually
meant to tell her not to come down to his office at this very minute!

A possible solution to deal with the inconsistent ordering of messages is to take a selective
stance and delay all the messages until a certain time is reached and then send them out in
the right order. But this measure will raise additional issues at the user interface level. In a
non-interactive system, event ordering is only a problem if there are dependencies between
the computational objects receiving the events and there are known ways of detecting this
(Lamport, 1978). However, in interactive systems there are additional dependencies − the
user can see the effects on different objects whereas the computer regards them as being
distinct.

7.6.3 Priority of notification

The ordering of events may also be affected when events have some priority associated with
them. The notion of priority may be useful during impedance matching so high priority
events are serviced before low priority ones. The notification server could in fact use the
priority as a means of flushing the queued events.

Consider a scenario where two messages are queued up at the notification server and
another message with higher priority joins the queue. The notification server has two
options: it can either flush the two outstanding messages from the queue immediately and
send out the higher priority message straight after or it can leave the low priority events in
the queue and deal with the high-priority ones first. The former option implies that low
priority messages will be sent out at the same time as the high priority message, thus
increasing the network load. The latter option instead requires the notification server to be
aware of the priority constraints related to the ordering of the messages and this is
problematic to deal with especially if there are some dependencies between the messages.
The notification server will therefore need to have some semantic knowledge about the
encapsulation of various kinds of messages and events.

The essence of impedance matching neither lies in changing the application semantics nor in
increasing the load. Impedance matching is more concerned with reducing the
computational and network load. However, by pushing more semantic knowledge towards
the notification server, the latter will sidestep its fundamental role of routing events between
clients during impedance matching and subsequently increase in complexity.

Another related issue is instead of having priority associated with a single event, priorities
could be assigned to event types. The handling of events types in such a situation can be
problematic. For example, if an event type is of a higher priority but has a slow pace then
does this mean that it should overtake a high pace event type. Scheduling algorithms are
traditionally employed to deal with multiple threads by prioritising them. However,
scheduling will generate similar problems as event ordering particularly if high priority tasks

Chapter 7 Impedance Matching: Coping with Limited Resources

 122

depend on low priority ones. Alternatively, such information could be pushed towards the
clients so they can inform the notification server directly of the desired rates of handling the
priority of notification. The clients will thus need to have a lot more knowledge about the
ordering of the events and consequently increase in complexity.

7.6.4 Generating notification of non-events

Often some processes do not need to be aware of the occurrence of events but instead they
do care when the event does not happen. For example, the alarm process in a heart beat
monitor only goes off when a beat is missing! In the current framework, the support for the
notification of non-events is only possible if all events go through the application. However,
the addition of a specialised service such as a Watchdog Manager within the architecture
(see figure 7.17) can facilitate this functionality.

Watchdog
Manager

¹

Notification Server

Clients

reset timer

register event

event

register
watchdog

event

output
watchdog

event

watchdog
event

event

event after time t

Figure 7.17 Monitoring the occurrence of non-events

When an event occurs the Notification Server informs the Watchdog Manager of that
particular event. The Watchdog Manager then registers for the event with the Notification
Server. The client also registers for watchdog events with the Notification Server. The
Watchdog Manager keeps an internal timer and checks for the occurrence of the registered
events. If an event does not occur after a certain time, the timer is reset and the Watchdog
Manager generates a watchdog event, which is sent out to the clients.

The Watchdog Manager can thus monitor the generation of non-events and inform the
clients directly about them. Furthermore, the Watchdog Manager can reside on the same
machine as the Notification Server or it could be in-built within the Notification Server,
hence the above architecture would be efficient.

Chapter 7 Impedance Matching: Coping with Limited Resources

 123

7.6.5 Optimising the timing of notification delivery

Consider the following scenario. Client A is interested in event 1 and wants to know about
it after every 10 seconds. Client B is also interested in event 1 but it wants to know about
it after every 1 second. In order to optimise the timing of notification delivery, the
notification server can broadcast event 1 to both clients simultaneously, thus reducing the
network load. Client A may either ignore event 1 or it may place it in a queue and batch
process it later. The same thing could happen if say event 1 is in a queue at the notification
server and the latter is about to send out event 2 to client A. The notification server could
piggyback both events at the same time as they have the same recipient.

However, like priority issues, the optimisation of events may affect the ordering of the
events. For example, let us assume that client A is interested in both events 1 and 2 but it
does not want to know about event 1 that often, whereas client B has a high urgency for
event 1. When the notification server broadcasts event 1 to both clients, there is a danger
that client A may receive event 2 before event 1. So, if the order of the events matters for
client A, in other words event 2 depends on event 1, this will give rise to the problem of
race condition. This situation is problematic to deal with unless the clients take it upon
themselves to manage the order of the events and this requires the clients to have a lot more
semantic knowledge.

7.6.6 Impedance matching in other areas

The notion of impedance matching can be found in other areas, in particular in VR systems,
although the mechanism adopted is not explicitly called impedance matching and it has been
employed to achieve different purposes. However, it does satisfy a similar functionality.

The collaborative model of awareness based on the spatial interaction of objects (Benford
and Fahlén, 1993) lies on the concepts of aura, nimbus and focus. Aura is a volume in
space that delimits the presence of a particular object. Focus represents the objects in
space that a user is interested in while nimbus represents the space controlled by those
objects. The quality of information transmitted is said to depend on the level of awareness a
user has of an object and this is negotiated through focus and nimbus. The role of the focus
and nimbus are fairly similar to that of the focus objects (Section 7.3.4). The closer the
focus and nimbus, the greater is the level of awareness, hence the higher is the quality of
information transmitted.

This model has been augmented with third party objects (Benford et al., 1997), which use
aggregation to achieve a form of volume impedance in collaborative virtual environments,
whereby a reduced level of detail is presented to the users without sacrificing the quality of
the information. In order to manage the volume of data in such a complex environment,
objects are grouped together and aggregate views of those objects are provided, which
expand further when they are selected (Ingram et al., 1996). This technique is also used in
the HIBROWSE interface (Ellis et al., 1994) to provide users with an overview of the
contents of the database while searching and browsing large data sets.

Chapter 7 Impedance Matching: Coping with Limited Resources

 124

The implementation on the HIVE CVE system (Greenhalgh et al., 2000) uses full fidelity
information but it seems likely that scaleable implementation will require pace management.

Chapter 7 Impedance Matching: Coping with Limited Resources

 125

7.7 Summary

The discussion in this chapter has centred on the analytic framework for impedance
matching − the matching of the required and supplied of update events. The notification
server, through its central mediating position, was found to be ideally placed to support
impedance matching, by adjusting the frequency of notification to meet the users pace of
interaction. Users can thus see the changes in the objects they are highly interested in
almost instantly, while still being informed about changes to the peripheral objects, albeit at a
lower pace. Impedance matching therefore enhances both goal-directed feedthrough and
awareness, thus exploiting the limited availability of computer resources and network
bandwidth.

In order to enable the notification server to provide effective impedance matching that
satisfies each client’s requirements, the clients should inform the notification server of their
required pace interest on particular objects via some form of protocol. The communication
between the clients and the notification server does not require the latter to have any
knowledge of the application semantics; hence the notification server can still remain as a
separate entity.

The issues surrounding pace impedance and volume impedance were then examined. Pace
impedance can be achieved by using the notification server as an intermediary to match the
required pace of updates of the passive client (user client who views the changes) with the
supplied rate of the active clients (users’ client who perform changes). Volume impedance
can be largely met by having different forms of application-specific, low-granularity update
events. However, the issues surrounding volume impedance have not been dealt with in
much detail in this chapter. Pace impedance policies were analysed further by investigating
the different triggers for regulating pace and showing their effects on the flow of events
through the use of time-space diagrams.

Some implementation issues related to impedance matching were also considered. A few
scenarios were then explored to assess the feasibility of impedance matching within a
collaborative environment. The example systems facilitated communication over different
timescales, thus producing different rates of feedthrough. Impedance matching was found to
improve the temporal behaviour especially in situations where a large number of updates
were rapidly generated. Finally, some outstanding issues related to impedance matching
were discussed.

Impedance matching controls the pace of feedthrough to the clients by delaying the updates
events. This may affect the order in which the events are propagated to the clients. The
incorrect ordering of events will not have a big impact if there is no causality or dependency
between them. But in a chat system for instance, users can be easily confused if the
messages exchanged reach them in the wrong order. Furthermore, the way in which people
interact socially with one another can also influence the order of the messages. Some

Chapter 7 Impedance Matching: Coping with Limited Resources

 126

systems avoid getting things in the wrong order by manipulating the semantics and
interconnections between the events, at the expense of some complex algorithms.

Additional issues such as the priority of notification, the notification of non-events and the
optimisation of notification delivery were considered and their impact on the impedance
matching framework, in particular the way in which they may affect ordering of events was
discussed.

In order to investigate the actual behaviour of a notification server as an impedance matcher,
an experimental notification server called Getting-to-Know (GtK) has been constructed,
which will be described in the next chapter. GtK demonstrates most of the design principles
discussed in this chapter, but the provision of impedance matching is limited to pace
impedance matching based on the ‘fixed time interval’ and ‘volume of messages’ triggers.

127

Chapter 8 Getting-to-Know:
An experimental Notification Server

Notification servers operate at a low-level within the computer system but their ultimate
purpose is to provide effective user-level behaviour. In Chapter 6, the framework for the
design options of notification servers emphasised the need for a separable notification
server. Chapter 7 presented an analytic framework for impedance matching to provide
users with a controlled pace of feedthrough, thus promoting temporal interface behaviour in
collaborative applications. The notification server was found to be ideally placed to perform
impedance matching between end-user clients.

The framework for impedance matching can be applied to augment other notification
mechanisms or build new notification servers over different low-level messaging
infrastructures. Getting-to-Know (GtK) is largely an example to show that the principles for
notification server design and impedance matching can be achieved in a practical
implementation. This chapter describes the issues surrounding the development of the GtK
purpose-built separable notification server, which is based on a distributed object
infrastructure. Some of these implementation issues are discussed in (Ramduny and Dix,
2002).

Impedance matching can be achieved through pace impedance and volume impedance.
Volume impedance is essential for controlling the quality/fidelity of notified information.
However, the issues surrounding volume impedance require further investigation, hence it
has not been implemented within GtK. Similarly, GtK is not concerned with event ordering
issues, as a solution to this problem lies either at the underlying system level or at the
programmer level in understanding the semantics of the infrastructure. GtK only supports
pace impedance, based on two triggers: fixed time interval and volume of messages.

Section 8.1 describes the basic distributed layered architecture that supports GtK. Section
8.2 examines the messaging and event layer and analyses the protocol employed for passing
messages between different communication objects within the GtK infrastructure. The main
functions of the GtK notification server are discussed in Section 8.3. Section 8.4 shows
how GtK has been augmented to provide pace impedance matching. Finally, Section 8.5
considers the exchange of messages and events between the different components of an
example real-time Web conferencing application, which has been constructed to explore the
practicality of GtK further.

Chapter 8 Getting-to-Know: An experimental Notification Server

 128

8.1 Basic architecture

The GtK notification server is built over several layers of custom and standard infrastructure
(figure 8.1). At the base lies the standard low-level Internet TCP/IP protocol accessed via
Java networking classes.

The Java socket class is used to implement a reliable stream network connection between
one or more clients and a multi-threaded server. The server uses the ServerSocket class
to accept connections from clients on a particular port. When a client connects to the port,
the ServerSocket allocates the client a new socket object attached to a new port to
enable it to communicate with the server. The server then carries on listening on the
ServerSocket for additional client connections.

Event Manager

Notification Manager Application

Java Networking

Internet Protocols

Figure 8.1 GtK infrastructure

On top of the Internet Protocols and Java networking layers, there is a custom event
management layer, the Event Manager, which supports directed message delivery between
agents on different physical machines.

Finally, the Notification Manager uses the Event Manager to allow the GtK notification
server to receive notifications about changes from active clients or information servers and
to pass on the notifications about those events to the passive clients.

8.2 Messaging and event layer

A messaging system essentially allows separate, uncoupled applications to reliably
communicate asynchronously. The messaging system architecture generally replaces the
traditional client/server model with a peer-to-peer relationship between individual
components. Messaging systems offer several advantages. They encourage loose coupling
between components, thus enabling dynamic and flexible systems to be built, whereby some
components can be modified without affecting the rest of the system. They also provide
high scalability, easy integration into heterogeneous networks and reliability due to lack of a
single point of failure.

Chapter 8 Getting-to-Know: An experimental Notification Server

 129

With the proliferation of distributed applications, a number of messaging systems have
recently emerged to deal with the problems of synchronisation, reliability, scalability and
security. There are three types of messaging systems that are commonly used:

• Publish/Subscribe – this supports an event-driven model where producers “publish” events,
while consumers “subscribe” to events of interest and consume the events. Producers
associate messages with a specific topic and the messaging system routes messages to
consumers based on the topics consumers have registered their interests in. This model
therefore supports multiple senders and multiple receivers.

• Point-to-point – this model is used when one process sends a message directly to another
process. Usually, messages are routed to an individual consumer, which maintains a queue
of “incoming” messages. Messaging applications send messages to a specified queue and
clients retrieve messages from the queue. Although there may be multiple senders of
messages, there is only a single receiver for the messages.

• Request-Reply – this model is used when an application sends a message and expects to
receive a reply in return. This is the standard synchronous object-messaging format and is
often defined as a subset of one of the other two models.

Very often, messaging systems support both point-to-point and publish/subscribe messaging
models. An example is the Java Message Service (JMS)13, which is part of J2EE (Java 2
Enterprise Edition). Although JMS defines Queues (for point-to-point) and Topics (for
publish/subscribe) as targets for messages, it does not require the provider to implement both.

SOAP14 (Simple Object Access Protocol) describes the format for XML-based messages
exchanged on the Web. It is a lightweight protocol for exchanging information in a
decentralised distributed environment. SOAP RPC (Remote Procedure Call) uses XML
for marshalling requests and replies. SOAP messaging is based on a point-to-point model
with request-reply. Messages are exchanged either in the form of an inquiry, which is
initiated by the client, or an update, whereby the server sends information to all registered
clients in a ‘push’ format. The exchange can either be in a synchronous or an asynchronous
mode.

8.2.1 Messaging protocol

The event management layer within the GtK architecture implements a distributed
asynchronous messaging protocol, thus giving GtK a uniform, generic location-independent
event model. Although the implementation of the event management layer is in Java, an
ASCII protocol has been developed for message passing instead of using Java's Remote
Method Invocation (RMI). This was due to several reasons.

Firstly, at the time the development was started, Java RMI did not have solid foundations.
Secondly, RMI is synchronous and has to be integrated with user interface code using
threads. Consequently, interfaces end up using two models: event-based windowing code

13 http://java.sun.com/products/jms/faq.html
14 http://java.sun.com/webservices/docs/1.0/api/

Chapter 8 Getting-to-Know: An experimental Notification Server

 130

and RMI networking code. An asynchronous event model for distributed agents is
preferable as it is closer to the way modern UI code works and it also allows a uniform
model between user events and remote events. Thirdly, RMI depends on Java serialisation,
which does not tend to be robust in Web environments where different versions of the Java
code may co-exist. Finally, the use of an ASCII based asynchronous messaging protocol
makes it easier to add non-Java clients and servers.

The Event Manager does the marshalling of events or messages between the Notification
Manager and the Application (figure 8.1). Whereas TCP/IP gives point-to-point messaging
between the application processes, the Event Manager allows point-to-point asynchronous
messaging between different communication objects in the same or in different address
spaces by applying a post office type metaphor.

8.2.2 Message format

All messages and events are of the simple form:

sender reference : recipient reference : event_type : data

where sender reference is of type:

sender_id : object_id

and recipient reference is of type:

recipient_id : host_id

Each message has an associated type:

event_type

and the actual message is a tuple:

data

Applications add their own semantics for the uninterpreted ASCII data but utility classes
are provided to enable standard argument marshalling.

8.2.2.1 Message class

The Message() class provides utilities to structure the events exchanged between the
communication objects.

Chapter 8 Getting-to-Know: An experimental Notification Server

 131

public class Message {

// Public Constructors

public Message (int fromObj, int fromHost, int toObj, int
toHost, String eventType,String data);

public Message (String mess);

// Public Instance Methods

public String format(); // returns formatted message

public void parse(String mess); // unpacks message

}

format() allows a message to be structured in the appropriate form whereas parse()
unpacks the message to extract the relevant data.

8.2.2.2 Event handler

Objects that handle events do so through instances of the methods of the EventHandler()
interface.

public interface EventHandler {

// Public Instance Methods

public abstract void youAre(int id);

public abstract void newEvent(Message event);

}

When an object first connects to the Event Manager, it registers itself as an event handler.
The connection handler uses the youAre()method to tell the object its identifier (id).
newEvent()allows the object to handle a Message event. A new object is assigned a new
id through the addObject()method. The event handler object and its id are then stored
in a table.

// Public Instance Method in CommonConnectionHandler class

public static int addObject(EventHandler obj) {

int newId = tmpId+1; // newId value = old value + 1

if (newId not found in event handler table myObjects) {

// add obj EventHandler and newId in table myObjects

myObjects.put(newId, obj);

obj.youAre(newId);} // assign newId to EventHandler

tmpId = newId; // assign tmpId to newId value

Chapter 8 Getting-to-Know: An experimental Notification Server

 132

return newId; // return newId value

}

8.2.3 Message exchange

The following fragments of code show how messages are exchanged between client and
server objects. A client object registers itself to the server and launches the appropriate
event handler through the newEvent() method call.

// thread in ServerConnectionHandler and ClientConnectionHandler
class

do { // keep reading from connection until user exits

str = readLine(); // read in a line

// calls Message class to parse the string and get recipient id

Message M = new Message (str.trim());

// check to see if recipient id is in table myObjects

EventHandler theObj = (EventHandler)myObjects.get(M.toObj);

if null error

else

theObj.newEvent(M); // launch event handler

}

For instance, if the client object launches the TranscriptPanel() event handler, the call
in the setTranscript() method shown below sends the eventType of the message to
the server object. The eventType is a specified string through which the client object
informs the server object of the type of event that is being exchanged. The same form of
exchange occurs between the server object and the client object.

So assuming that the eventType is “new client”, the call in setTranscript() changes
to:

//call from public instance method setTranscript() in Client
TranscriptPanel()class

...

mySharedData.ch.sendTo(myId, toObj, toHostId, “new client”,
mySharedData.userName); --------1

...

Different kinds of events can be exchanged between client and server objects. For
example, a “new client” event from the client tells the server that a new client has just
joined, a “new line” event instead tells the server that the user client has sent some text
and a “client left” event states that the client has left.

Chapter 8 Getting-to-Know: An experimental Notification Server

 133

Both client and server objects use the sendTo() method call referred in 1 to send
formatted messages to each other. sendTo()first parses the input stream to extract all the
relevant data before sending the message across.

Chapter 8 Getting-to-Know: An experimental Notification Server

 134

//Public Instance Method in ServerConnectionHandler and
ClientConnectionHandler class

public static void sendTo(int fromObj, int toObj, int toHost,
String eventType, String data) {

Message M1 = new Message(fromObj, fromHost, toObj, toHost,
eventType, data);

String theMess = M1.format();

output.println(theMess); // send formatted message

}

When the server receives a formatted message from the client, its TranscriptObject()
event handler interprets the eventType through its newEvent() method call.

For example, if the server receives a “new client” event, the server object translates it to
a “greeting” event, which is sent back to the client object through a sendTo() method
call. The client object in turn, converts the “greeting” event, through its own
newEvent() method call in the TranscriptPanel() event handler to display a more
meaningful message to the user screen such as “Hello user”.

// Public instance method newEvent() in Client class
TranscriptPanel()

public void newEvent(Message event) {

...

Object etype = event.type;

if (etype.equals("greeting")){

// display greeting text on screen

transcript.appendText("Hello "+ event.data + "\n");

} else if ... { ... }

else // event type not recognised by receiver

{ transcript.appendText(etype + " not recognised by " + myId
+ "\n");}

}

This section has described how the Event Manager has been implemented to support the
exchange of messages and events. The next section will now consider the functionalities of
the Notification Manager.

8.3 Notification Manager

The distributed object layered infrastructure enables the Notification Manager to know
about every other object. The Notification Manager can be controlled directly through

Chapter 8 Getting-to-Know: An experimental Notification Server

 135

message calls or remotely via the messaging layer. It uses the same event model as the
messaging infrastructure, but also allows optional translation of event types.

A new client object registers itself with the Notification Manager in the same way as it did
previously with the Event Manager by launching the appropriate event handler. However,
unlike 1 (Section 8.2.3), the recipient’s reference toObj is now replaced by NOT_MGR, a
well known identifier for the Notification Manager. Similarly, the recipient’s host reference
toHostId is now the Notification Manager’s reference notHostId.

//call from public instance method setTranscript() in Client
TranscriptPanel()class

...

mySharedData.ch.sendTo(myId, NOT_MGR, notHostId, "add
interest", d.format()); ---------2

...

Also, instead of passing a data string across as in 1 a formatted data packet d.format()
is transmitted in 2. This contains specific information related to a particular client, such as
its identifier, event type and remote client event type all bundled together. Furthermore, the
new client object now sends out an “add interest” event to the Notification Manager.

8.3.1 Main functions

The Notification Manager handles the three main functions of the GtK notification server:

• add interest – tells the notification server that a specific network object wants to know
about specific events for a second network object

public static synchronized void addInterest (int objid, String
eventType, int clientid, int
remObjid, String remeventType);

• remove interest – tells the notification server to cancel some or all of the interests for a
given object

public static synchronized int removeInterest (int objid, String
eventType, int clientid, int
remobjid);

• tell all – asks the notification server to broadcast an event to all interested objects

public static synchronized void tellAll(int objid, String
eventType, String data);

Chapter 8 Getting-to-Know: An experimental Notification Server

 136

The parameters used by addInterest(), removeInterest() and tellAll()methods
are described below.

int objid: reference of the object which wants to register an interest

int remobjid: remote network object reference

int clientid: client reference where the request is coming from

String eventType: event type of the object

String remeventType: event type of the remote network object

String data: actual message that gets sent between the network objects

The above functions together with a few additional housekeeping operations allow the
expression of a wide range of different application specific notification strategies. They are
similar to the facilities offered by the Java AWT Observer/Observable classes and AWT
1.1 event listener model (Flannagan, 1997), except that these Java events are limited to a
single Java process.

8.3.2 Managing interests

GtK maintains an interest table that keeps a list of interested clients for specific objects.
Each object in the interest table has one or more recipients (figure 8.2).

 interest table recipient set

objectid, eventType

objectid, eventType

objectid, eventType

:
:

Recipient 1 (objectid, hostid, eventty pe)

Recipient 2 (objectid, hostid, eventtype)

Recipient 3 (objectid, hostid, eventtype)

Recipient n (objectid, hostid, eventtype)

Recipient n-1 (objectid, hostid, eventtype)

:
:

Figure 8.2 Interest table

The interest table is updated through the ‘add interest’ and ‘remove interest’ functions. The
following pseudocode explains how this happens.

Chapter 8 Getting-to-Know: An experimental Notification Server

 137

8.3.2.1 Add interest

public static synchronized void addInterest (int objid, String
eventType, int clientid, int
remObjid, String remeventType) {

recipient set for Object = interestTable.get(objid, eventType);

if null{ // first time object referred to

put (objid, eventType) in interestTable; }

create new Recipient(remobjid, clientid, remeventType);

add Recipient to recipient set;

}

8.3.2.2 Remove interest

public static synchronized int removeInterest (int objid, String
eventType, int clientid, int
remobjid) {

recipient set for Object = interestTable.get(objid, eventType);

if null { error } // first time object referred to

for each object in the recipient set {

get Recipient (toObj, toHost, etype);

if (Recipient.toHost == clientid && Recipient.toObj ==
remobjid){

remove Recipient from recipient set;}

}

if recipient set is empty {

remove (eventType, objid) from interestTable;

}

return 0;

}

8.3.3 Broadcasting events

Events are broadcast through the ‘tell all’ function. When an object asks GtK to
tellAll(), GtK first matches the event type and objects with the interest table and then
passes on the event with optional type translation to all interested clients.

Chapter 8 Getting-to-Know: An experimental Notification Server

 138

8.3.3.1 Tell All

public static synchronized void tellAll(int objid, String
eventType, String data)
{

recipient set for Object = interestTable.get(objid, eventType);

if not null {

for each object in the recipient set {

get Recipient (toObj, toHost, etype);

// send data to all clients

ServerConnectionHandler.sendTo(objid,Recipient.toObj,
Recipient.toHost, Recipient.eType, data);}

}

}

Type translation is a method that is used to represent the same event to two different remote
objects by giving it some meaningful name. For example, the eventType in
tellAll()gets translated to a different event type at the Event Manager level, based on
the recipient’s event type Recipient.eType. The next section gives an example that
shows type translation in progress.

8.3.4 Illustrating type translation

Consider an online conferencing system where users interact through an applet interface.
After registering to the conferencing system, users can participate in one or many
conferences. Each conference is managed by a ‘transcript object’ at the server-end and
each client applet has a conference object attached to it. The Notification Manager
mediates the interaction between the client and server objects. Each object is identified by
a HostId and an ObjId. Figure 8.3 shows the flow of events between the different client
and server objects.

When a user joins a certain conference, the client-end conference object sends an event to
the Notification Manager to tell it to ‘add an interest’ for that user and that particular
conference in the ‘interest table’.

addInterest (99, “new client”, 7, 115, “new line”)

Consider the case when the user is about to leave the CSCW conference, she joined in
earlier. In response to the user’s input “bye”, the applet object sends the following message
to the server-end ‘transcript’ object:

115:7:43:0:new line:bye

The transcript object updates its internal state and asks the Notification Manager to inform
all the clients who have an interest in the CSCW conference through:

Chapter 8 Getting-to-Know: An experimental Notification Server

 139

tellAll (43, “new line”, “bye”)

ObjId: 99

notification
manager

ObjId: 115

Host Id: 7 Client Applet
Java Server

Other Clients

Host Id: 5

63

client end
conference
object

tellAll(43,"new line","bye")

Host Id: 0

ObjId: 43

transcript
object

At last someone ...
yes you can’t ...
I better get on ...
bye

115:7:43:0:”new line”:bye

addInterest (99,”new client”,7,
115, “new line”)

43:0:115:7:”new line”:bye

43:0:63:5:”add line”:bye

interest table

Figure 8.3 Flow of events between client and server objects

The Notification Manager broadcasts the message to all the client objects, but with a
different eventType in each case. For instance, the Notification Manager may send this
event to the client object, with Objid, 115:

43:0:115:7:new line:bye

but the following event to the client object, with Objid, 63:
43:0:63:5:add line:bye

The eventType has therefore been translated from “new line” in the client with Objid =
115 to “add line” in the client with Objid = 63. The client objects use this information
to update the content of the windows on each user’s machine.

Event translation simplifies the process of differentiating between different clients. The
clients essentially receive the same event, but in a slightly different format. If all the
interested clients received the same eventType, it would be more difficult to track the
origin of the message. Event translation therefore helps to increase comprehension.

Chapter 8 Getting-to-Know: An experimental Notification Server

 140

8.4 Augmenting GtK for Impedance Matching

This section will now describe how the GtK notification server has been augmented to
provide pace impedance. Although impedance matching emerges from an abstract notion, it
has been implemented in GtK to investigate its actual behaviour on a practical level.

As discussed in Chapter 7 (Section 7.3), the pace of feedthrough can be reduced by:

• setting a certain limit (be it fixed or variable) on the volume of updates and

• setting a time interval between the propagation of updates.

8.4.1 Pace parameters

Two pace parameters have therefore been defined:

int queueLength; // length of queue

queueLength allows a client object to specify the maximum number of messages or events
that can be placed in a queue before they are passed on to the client. This corresponds to
the ‘volume of messages’ trigger (Section 7.4.3).

long time; // duration

time enables a client object to specify the maximum delay on events before they are sent
out and this represents the ‘fixed time interval’ trigger (Section 7.4.1).

queueLength and time are combined into a single data structure:

Frequency = (queueLength:time)

The default value for queueLength is 0, which implies an empty queue. The default value
for time is –1, which denotes infinity. For example, a Frequency of (0,3) indicates that
messages are buffered and sent out every 3 seconds whereas a Frequency of (10, -1)
implies that messages are sent out in batches of 10.

8.4.1.1 Frequency class

public class Frequency {

// Public Constructors

public Frequency(int queueLength, long time);

// Public Instance Methods

public long getQueueLength(); // returns queue length

public boolean timeNow(int currentQueueLength, long
currentDelay); // check if is time to flush queue

Chapter 8 Getting-to-Know: An experimental Notification Server

 141

public long nextTime(long oldestMessageTime);
// calculate next time to flush queue }

8.4.2 Managing interests with frequency

The need to support pace impedance brings about certain changes to the main functions of
GtK. In addition to keeping track of an object and its recipients, the interest table now has
to be aware of each recipient’s frequency (figure 8.4).

interest table recipient set

objectid, eventType

:
:

:
:

objectid, eventType

objectid, eventType

 Recipient 1 (objectid, hostid, eventtype), Frequency 1 (queuelength, time)

 Recipient 2 (objectid, hostid, eventtype), Frequency 2 (queuelength, time)

 Recipient 3 (objectid, hostid, eventtype), Frequency 3 (queuelength, time)

 Recipient n-1 (objectid, hostid, eventtype), Frequency n-1 (queuelength,time)

 Recipient n (objectid, hostid, eventtype), Frequency n (queuelength, time)

Figure 8.4 Effect of pace impedance on interest table

A NotifRecord() class is created to maintain the link between each recipient and its
frequency. NotifRecord() provides methods which allow recipients to manage their
event queues.

public class NotifRecord {

// Public Constructor

public NotifRecord(Recipient recipient, Frequency howOften);
// creates a record of recipient and frequency

// Public Instance Methods

public void changeFrequency(Frequency howOften);
// change frequency of notification

public int queueLength(); // returns queue length

public long time(); // return current system time

public boolean timeToFlush(); // check if time to flush queue

public long nextFlushTime(); // return next time to flush queue

public void addQueue(String message); // add message to queue

public String removeQueue(); // remove element from queue

}

When a network object now adds an interest for a second network object, it also includes
the frequency with which it wants to be notified of the changes to the second object. The

Chapter 8 Getting-to-Know: An experimental Notification Server

 142

‘add interest’ function (Section 8.3.1) therefore accepts the pace parameters,
queueLength and time as part of its call:

public static synchronized void addInterest (int objid, String
eventType, int clientid, int
remObjid, String remeventType,
int queueLength, long time)

The following pseudocode shows how the interest table is updated when the frequency of
notification is taken into account.

8.4.2.1 Add interest

addInterest()starts with the same instructions as before (Section 8.3.2.1). However,
after creating a recipient, the method creates a corresponding frequency and they are linked
together to generate a NotifRecord. The NotifRecord is then added to the recipient set
and linked with the relevant record in the interest table.

public static synchronized void addInterest (int objid, String
eventType, int clientid, int remObjid, String
remeventType, int queueLength, long time) {

recipient set for Object = interestTable.get(objid, eventType);

if null{ // first time object refered to

put (objid, eventType) in interestTable ; }

create new Recipient(remobjid, clientid, remeventType);

create new Frequency(queueLength,time);

create new NotifRecord (Recipient,Frequency);

add NotifRecord to recipient set;

}

8.4.2.2 Remove interest

removeInterest() removes some or all the recipients for a certain object in the interest
table by matching the NotifRecord in the recipient set with the client reference where the
request came from.

public static synchronized int removeInterest (int objid, String
eventType, int clientid, int remobjid) {

recipient set for Object = interestTable.get(objid, eventType);

if null { error } // first time object referred to

for each object in the recipient set {

get NotifRecord (Recipient (toObj, toHost, etype),Frequency);

if (NotifRecord.Recipient.toHost == clientid &&
NotifRecord.Recipient.toObj == remobjid) {

Chapter 8 Getting-to-Know: An experimental Notification Server

 143

remove NotifRecord from recipient set; }}

if (recipient set is empty {

remove (eventType, objid)from interestTable; }

return 0;}

Chapter 8 Getting-to-Know: An experimental Notification Server

 144

8.4.3 Event queue management

For each recipient, a queue of outstanding events is maintained. New events are
timestamped and added to the rear of the queue. Events are flushed and delivered to
recipients at appropriate times depending on the pace parameters.

Events are flushed from the queue when either:

(a) current queue length > value set for queueLength.

(b) current delay > value set for time.

where current delay = (current system time − time first event was queued).

Case (a) is triggered when an event is added to the queue.

Case (b) requires an alarm process to be set in the notification server. Conceptually, there
is one alarm for each non-empty queue, which is set to flush the queue at:

nextTime = (timestamp of the first event in the queue + time)

In the actual implementation, only one alarm process is used and set to the closest of the
relevant alarm deadlines. This is reset when events are added to an empty queue or after
the queue is flushed due to the previous alarm.

8.4.3.1 Tell all

With impedance matching, the ‘tell all’ function has to provide different rates of feedthrough.
Instead of broadcasting the notification events to the interested clients straight away as
before (Section 8.3.1.1), tellAll() now adds the event for each interested object to its
recipient’s queue and records the time the event was added. It then calls checkFlush(),
which checks if it is time to flush the queue (when either case (a) or case (b) above is
satisfied).

public static synchronized void tellAll(int objid, String
eventType, String data) {

recipient set for Object = interestTable.get(objid, eventType);

if not null {

for each object in the recipient set {

get NotifRecord();

NotifRecord.addQueue(data); // add event to the queue

// check if it is time to flush the queue

checkFlush(objid, eventType,NotifRecord);}

}

Chapter 8 Getting-to-Know: An experimental Notification Server

 145

}

If the time to flush the queue has been reached, checkFlush() sends the events to the
interested clients otherwise, the next flush time is calculated and the alarm is set to ring at
that particular time.

public static synchronized void checkFlush(int objid, String
eventType, NotifRecord
notifRecord){

if (notifRecord.timeToFlush()) { // if time to flush queue is
reached

flushQueue(objid,eventType,notifRecord);} // send output

else { // this happens when events are added to an empty
queue

// calculate the next time to flush the queue

long nextTime = notifRecord.nextFlushTime();

alarm.set(nextTime); } // reset alarm to nextTime

}

flushQueue()removes an event from a queue whose flush time has been reached and
sends it out to the interested clients.

public static synchronized void flushQueue(int objid, String
eventType,NotifRecord
notifRecord) {

String data = notifRecord.removeQueue(); // remove event from
queue

// send output to all interested clients

ServerConnectionHandler.sendTo(objid,notifRecord.recipient.toObj,
notifRecord.recipient.toHost,
eType,data);

}

8.4.3.2 Alarm process

The alarm process calls a callback that continuously polls to check if an event is ready to be
flushed.

public static class MyAlarmCallback implements AlarmCallback {

public void ring() {

flushonTime();}

}

Chapter 8 Getting-to-Know: An experimental Notification Server

 146

Only one alarm process is actually used for each non-empty queue. However, each non-
empty queue maintains a separate deadline for its flush time. flushonTime() checks each
recipient’s flush time deadline. If the flush time has been reached the queue is flushed
otherwise, the alarm is set to the closest of the relevant alarm deadlines.

public static synchronized void flushOnTime(){

set nextTime to Long.MAX_VALUE; //set nextTime to a large value

for each object in the interestTable(objid, eventType) {

for each object in the recipient set {

nrNextTime = get notifRecord.nextFlushTime();

if nrNextTime <= current time { // if flush time is reached

flushQueue(objid, eventType, notifRecord);}//flush queue

// otherwise calculate next time to flush

else if (nrNextTime <= nextTime) {

set nextTime to nrNextTime;}

}

}

alarm.set (nextTime); // set alarm to ring at nextTime }

The alarm is reset when events are added to an empty queue or after a non-empty queue is
flushed due to a previous alarm.

8.4.4 Altering pace parameters

In order to provide an acceptable pace of feedthrough that matches the users’ task at hand,
clients should be able to adjust the rate at which they receive updates from the notification
server. GtK allows a client to change the frequency with which it wants to be notified of
any updates.

The client object sends a “change frequency” event together with the new values for the
pace parameters queueLength and time. This will also alter the frequency of each
recipient for that client object.

8.4.4.1 Change frequency

changeFrequency()updates the frequency record for the client object with the new
values of queueLength and time. It also alters the frequency of each recipient for that
object and subsequently checks to see if it is time to flush the queue.

Chapter 8 Getting-to-Know: An experimental Notification Server

 147

public static synchronized int changeFrequency(int objid, String
eventType, int clientid, int remobjid,
int bufferLength, int time) {

recipient set for Object = interestTable.get(objid, eventType);

if null { // first time object referred to

return 1; } // return error

for each object in the recipient set {

get NotifRecord();

if (NotifRecord.Recipient.toHost == clientid &&
NotifRecord.Recipient.toObj == remobjid) {

// build new frequency object

create new Frequency(queueLength,time);

// change old frequency

notifRecord.changeFrequency(Frequency);

// check if it is time to flush queue

checkFlush(objid,eventType,notifRecord);

}

}

return 0;

}

8.5 Example real-time online conferencing application

The previous sections have shown how the Event Manager and the Notification Manager
components have been implemented on the GtK framework. The last component on the
distributed layered infrastructure (starting from the base in figure 8.1) is the Application.
The Application does not execute as a stand-alone component. It interacts closely with the
Notification Manager through the Event Manager. This interaction is essential for any
purpose-built application to function properly. Also, the Notification Manager needs the
relevant information from the Application in order to broadcast information to the users at
the right pace and right granularity.

An example real-time online conferencing application has been constructed on the GtK
infrastructure (figure 8.5). The application allows users to create conferences on various
topics and launch sessions on one or more conferences with several participants
simultaneously. The system supports live discussions but also enables late joiners to catch
up on any ongoing sessions.

Chapter 8 Getting-to-Know: An experimental Notification Server

 148

Event Manager

Notification Manager
Application

Conference
Manager

GtK Notification
Server

Figure 8.5 Conferencing exemplar on GtK infrastructure

The Conference Manager interacts with the client objects and the Notification Manager by
exchanging events and messages through the Event Manager. Throughout the discussion
presented in this chapter, the terms message and event seem to convey the same meaning.
However, there is a subtle distinction between them.

receive message

send event

receive event

Application

send message

Figure 8.6 Event vs. message

A message is usually directed towards a specific object whereas an event announces the
presence of a certain object. An application can be regarded as being in the centre
receiving and sending messages and events (figure 8.6). Both events and messages have the
same format and they are received through the same mechanism, but they differ in the way
they get sent out. Figure 8.7 shows the flow of messages and events between the different
components in the example conferencing system.

receive
message

send
message

Client 1 Client 2 Conference
Manager

send
event

receive
event

receive
event

send
event

receive
event

send
event

send
message send

message

receive
message

receive
message

Notification Manager

Figure 8.7 Event and message exchange in conferencing exemplar

Chapter 8 Getting-to-Know: An experimental Notification Server

 149

Messages are events that are sent directly from one object to another and the sender object
does not receive a feedback from the receiver object. For example, the client objects send
and receive messages directly to and from the Conference Manager.

Events instead only announce the presence of an object and they are mediated through the
Notification Manager. For example, client objects register with the GtK notification server
by sending an event to the Notification Manager. The latter then responds to the user
clients by sending some feedback, such as a welcome note. Similarly, the Conference
Manager can send events to the client objects via the Notification Manager, for instance
through the ‘tell all’ function. The Notification Manager responds by sending broadcast
events to the user clients.

8.6 Summary

This chapter described how the GtK experimental notification server has been implemented
over several layers of custom and standard infrastructure. The functionalities of each layer
and their implementation details were examined. A distributed asynchronous protocol is
used for exchanging messages and events within the GtK infrastructure. The Event
Manager allows point-to-point asynchronous messaging between different communication
objects in the same or in different address spaces.

The Notification Manager manages the main functions of the GtK notification server. The
distributed object layered infrastructure enables the Notification Manager to be aware of
every other object. Client objects can either add or remove interests for different objects
with GtK. GtK maintains a list of interested clients for specific objects and their recipients.
When changes occur to certain objects, GtK broadcasts notification events to the
respective recipients.

The way in which GtK has been augmented to provide pace impedance matching was also
analysed. Two pace parameters are introduced to control the frequency of updates − the
queue length and maximum delay time. The ‘add interest’ and ‘remove interest’ functions
were subsequently modified to include each recipient’s frequency of notification.
Furthermore, a FIFO queue of outstanding events is maintained for each recipient. The
events are flushed and broadcast to the recipients at the relevant time depending on the
pace parameters. An alarm process sets and resets the maximum delay time parameter.

Users often interact with different interface objects at a non-uniform pace. A client object
can change the frequency which with it wants to be notified by sending a ‘change frequency’
event to GtK together with the updated pace parameters. GtK also modifies the frequency
of each recipient for that client object accordingly.

An example real-time Web conferencing application has been constructed on the GtK
framework. The exchange of messages and events between the different components of the
application were finally considered. The example application is similar to many Web-based
chat systems. However, its main purpose is to demonstrate the practicality of the GtK

Chapter 8 Getting-to-Know: An experimental Notification Server

 150

separable notification server as a pace impedance matcher and this will be dealt with in the
next chapter.

151

Chapter 9 Demonstration through an Exemplar

The GtK infrastructure described in Chapter 8 provides a framework for building
applications that support pace impedance matching by using a separable notification server.
Chapter 6 showed how a 'pure' notification server separates the concerns of data from
notification and Chapter 7 emphasized that such a notification server could in fact be used
for performing impedance matching. As argued in Chapter 2, the interface affords an
effective user-level behaviour when users receive feedback and feedthrough information at a
rate that matches their pace of interaction. The analysis in Chapter 5 also reinforced the
need for timely feedthrough of information to effectively support users engaged in distributed
collaborative work.

This chapter describes how an example real-time Web conferencing system has used the
GtK framework to provide collaborative users with an interface that matches the rate of
feedthrough they receive with their pace of interaction. This demonstration acts as a
technical evaluation of the GtK framework. Although the evaluation is unlike traditional
forms of evaluation, it does provide a critique of the framework. This chapter deals with
aspects related to the construction of the real-time Web conferencing exemplar on the GtK
framework. It applies some of the issues discussed in Chapter 7 and uses the
implementation details described in Chapter 8. The next chapter complements this
assessment by evaluating the framework from an architectural viewpoint.

Section 9.1 gives a rationale that justifies why a conventional evaluation method has not
been applied to the GtK framework. Section 9.2 describes the behaviour that users receive
at run-time when they interact with the different functionalities of the example Web
conferencing application. Section 9.3 then shows how the example application has been
implemented on the GtK framework to support its interface behaviour. Finally, Section 9.4
examines the way in which the example application uses the GtK notification server to
provide collaborative participants with a pace of feedthrough that matches their interest
levels.

9.1 Evaluation criteria

There are usually two motivations for carrying out an evaluation. The first aims at
demonstrating the advantages of a particular concept, idea or artefact and proving that the
artefact is an improvement over what was previously available. The second motivation is to
bring out the disadvantages of an artefact, with a view of identifying those aspects that
require further work.

The example real-time Web conferencing application that has been developed is similar to
many Web-based chat applications, although its novelty lies in providing users with a
controlled pace of feedthrough. However, the main purpose for implementing the example

Chapter 9 Demonstration through an Exemplar

 152

application was to demonstrate the practicality of the GtK notification server as an
impedance matcher within the GtK framework.

It is often problematic to evaluate a toolkit or a framework embodied in code. If the aim of
the evaluation is to show that the toolkit produces good applications, then multiple
applications should be built, not once but several times. In addition, third party users should
be involved in the process of building those applications. But none of these techniques have
been employed here. Indeed, it would have been impractical to cover such an in-depth
evaluation within the scope of this research.

The focus of this research lies on gaining a deep understanding of how applications can be
built to provide a desirable temporal behaviour within a distributed collaborative setting and
hence facilitate user cooperation. In order to meet this goal, the emphasis throughout this
work has been on the architectural aspects of application building through a number of
analytical studies.

The findings of those studies have enabled the development of the GtK framework that
enables impedance matching. The conferencing application described through the rest of
this chapter merely acts as an exemplar that demonstrates the feasibility of pace impedance
matching in improving the temporal behaviour that user receives at the interface level.

9.2 Interface behaviour

This section describes the behaviour of the example real-time Web conferencing system
from the users’ perspective. It provides a system walkthrough that analyses the visible parts
of the user interface and shows how users interact with the different functionalities offered
by the interface.

The conferencing application allows users to create conferences on several topics and
launch discussion sessions with different participants at the same time. The discussion
sessions are mainly held in real-time but late joiners can also catch up with any ongoing
session. The application offers functionalities that are common to most Web-based chat
systems. However, the novel feature of the conferencing application is its ability to enable
users to interact with multiple conferences simultaneously while adjusting the pace of
feedthrough to match the users’ rate of interests.

9.2.1 Connect to application

Like many Web-based chat applications, the nature of the interaction pushes towards the
use of applets for maintaining conversations. Users connect to the conferencing application
that runs on a server through an applet interface from any common Web browser.

A user launches a conference client by typing the correct URL on a Web browser.
Following this action, a typical applet is downloaded on the user’s screen (figure 9.1).

Chapter 9 Demonstration through an Exemplar

 153

Figure 9.1 Typical client applet

The Message area displays feedback information in response to users’ actions. For
instance, when a user first connects to the server, a message notifies her if the connection is
successful or not.

9.2.2 Register with application

Let us assume that Jane has just launched a client applet on her screen. Jane registers with
the conferencing application by first typing in her name in the User name field and then
clicking on the Connect button (figure 9.2).

Figure 9.2 User registration

If Jane is successful in registering with the server, she can proceed to create and join any
conference. Note, if other users are already logged on to the system and created some

Chapter 9 Demonstration through an Exemplar

 154

conferences prior to Jane’s registration, a list of the existing conferences would be displayed
under the Conference List at this stage (see figure 9.3).

9.2.3 Create new conference

If Jane wants to create a new conference called JAVA, she simply has to type in the
conference name in the New Conference field and click on the Create button (figure 9.3).
The Conference List is subsequently updated and sent out to all the participants who are
logged on to the system.

Figure 9.3 Create new conference

9.2.4 Join conference

Jane joins a conference by first selecting its name from the Conference List and then
clicking on the Join button (figure 9.4).

Figure 9.4 Join conference

Chapter 9 Demonstration through an Exemplar

 155

A new window labelled with the conference name pops up on Jane’s screen followed by a
welcome message “Hello Jane”, which is displayed on the ‘Users contribution’
area (figure 9.5). The lower ‘public chat’ text area accepts users input while the upper
‘Users contribution’ message area displays all the participants’ contributions to that
particular conference.

Figure 9.5 Pop-up conference window

Soon after Jane is active on the JAVA conference, Tom decides to join in. Jane
subsequently receives the message “Tom has just joined” which informs her of Tom’s
presence (figure 9.6).

9.2.5 Add contribution

Users can add their own contributions to a conference by typing in some text and clicking
on the Send button. The contributions are then broadcast to all the participants logged on
to the same conference.

Figure 9.6 Add contribution

Chapter 9 Demonstration through an Exemplar

 156

9.2.6 Interact with multiple conferences

Users can participate in more than one conference simultaneously. For each conference,
the user needs to select the conference name from the Conference List and then click
on the Join button (figure 9.4). A separate conference window pops up on the user’s
screen each time. Users may therefore receive several overlapping windows, each
representing a particular conference contribution.

Figure 9.7 shows two overlapping conference windows for Tom, one representing the XML
conference and the other showing the JAVA conference. Although it appears that Tom is
active on both conferences, his focus in fact lies on a specific conference at any instance in
time.

In any windowing system, the top-most window indicates the user’s focus as it has
keyboard control. From this we can deduce that, Tom’s focus is on the XML conference,
given its window position. Hence, any new contributions to the XML conference are likely to
be of more interest to Tom. The JAVA conference window is instead in the background,
which implies that Tom only has a passive interest in the changes to that conference. A
similar reasoning was applied when investigating potential scenarios for impedance matching
in Chapter 7 (Section 7.5.2).

Figure 9.7 Overlapping conference windows

Tom therefore receives changes to the XML conference immediately after a new contribution
is added. This high rate of feedthrough may in some cases be restricted by the network

Chapter 9 Demonstration through an Exemplar

 157

latency. Tom does not necessarily receive new contributions to the JAVA conference as
soon as they are sent out.

However, if Tom decides to shift his focus back to the JAVA conference or wants to catch
up on the thread of conversation going on there he simply has to click on the title bar of the
JAVA conference window at any time, to bring it into focus. This action immediately
increases the pace of feedthrough that Tom was getting for the JAVA conference.
Consequently, any outstanding contributions are displayed straightaway on Tom’s JAVA
conference window. Furthermore, Tom will receive new contributions to the JAVA
conference almost as soon as they are posted but any new contributions to the XML
conference will be communicated to him at a much lower pace. The implementation issues
surrounding pace frequency are described in Section 9.4.

9.2.7 Leave conference

A user can leave a conference at any time by clicking on the Leave button on the
conference pop-up window (figure 9.8). After Jane leaves the JAVA conference, the
conference window closes on her screen. Shortly after, Tom and any other partcipants on
the JAVA conference receive the message “Jane has just left” on their screen, which
informs them of Jane’s departure (figure 9.9).

Figure 9.8 Leave conference

Figure 9.9 Notification of departure

9.2.8 Quit application

Users can quit the conferencing application by simply clicking on the “Quit” button on the
main window of the client applet (figure 9.1). This action closes down the applet window.
Moreover, users do not have to explicitly leave the conferences they had joined before
quitting the application. For example, if Jane quits the application before leaving the JAVA
conference, Tom and any other partcipants on the JAVA conference would still be informed
that she has left.

Chapter 9 Demonstration through an Exemplar

 158

This section has demonstrated the behaviour of the example real-time Web conferencing
application at run-time. It has also examined the effect of users’ simultaneous participation
on multiple conferences and shown how the pace of feedthrough is adjusted to match their
focus. The next section will now describe how the underlying GtK framework supports the
application’s interface behaviour and assists in implementing its various functionalities.

9.3 Application implementation

The application is deployed as a number of client objects, which run as applets on a user’s
Web browser (Section 9.2) and a Conference Manager that executes on a server and uses
GtK for notification purposes. The Conference Manager is implemented at the Application
level of the GtK framework and sits on a server (possibly remote) alongside the Notification
Manager (Section 8.5). The Conference Manager manages the conferences created by the
users.

The following discussion will use some of the method calls already described in Chapter 8
and will also build on them to show the interaction between the Conference Manager and
the Notification Manager through the Event Manager. The interaction is illustrated as a
series of events and messages exchanged between the different components. The
distinction between events and messages was established in Chapter 8 (Section 8.5).

9.3.1 Connect to Conference Manager

The server runs on a pre-defined port and starts up the Conference Manager and the
Notification Manager by registering them as event handler objects with the Event Manager
(Section 8.2.2.2). A unique identifier is assigned to the Conference Manager and the
Notification Manager respectively.

// call from main() in NewServer.java

// add Notification Manager event handler with id = 99

ServerConnectionHandler.addObject(99, notifier)

// add Conference Manager event handler with id = 999

ServerConnectionHandler.addObject(999, conference)

The server then carries on listening for connections from client objects.

9.3.2 Register with Conference Manager

When a user connects to the application (Section 9.2.2), the client object registers itself with
the Notification Manager through an “add interest” event type (Section 8.3) and asks
the Notification Manager to be told about the Conference Manager by sending its identifier
CONF_MGR = 999 as part of the data packet, d. This is represented as event � in figure
9.10.

// call from public instance method action() in Client.java

Chapter 9 Demonstration through an Exemplar

 159

theSharedData.ch.sendTo(confId, NOT_MGR, notHostId, "add
interest",d.format())

Object Id: 999

Host Id: 5

Object Id: 99

Notification Manager

Client Applet Java Server Host Id: 0

Object Id: 115

Conference Manager

Conference Set
confId confName

�

�

Figure 9.10 Client object registers with Conference Manager

The client object also asks the Conference Manager to list any conferences, if some have
already been created, by sending out message � with a “list conference” event type.

// call from public instance method action() in Client.java

theSharedData.ch.sendTo(confId, CONF_MGR, confHostId, "list
conference", theSharedData.userName)

On receiving the “list conference” event type, the Conference Manager first checks to
see if the conference set is not empty. If that is the case, the Conference Manager then
sends out a “conference list” event type and a data packet d, which contains the
conference names and their identifiers, to the client object (figure 9.11).

// call from public instance method listConference() in Server
ConferenceManager class

public static synchronized void listConference(int remoteObjid,
int clientid) {

// build new conference list and send list to clients

create new BuildConferenceList(conferenceSet);

DataPacket d = buildList.getList();// get list into data packet

ServerConnectionHandler.sendTo(CONF_MGR,remoteObjid,clientid,
"conference list", d.format());}

Chapter 9 Demonstration through an Exemplar

 160

Object Id: 999

Host Id: 5

Conference Manager
Conference Set

confId confName
10001 HTML
10002 C++
10003 C
10004 VRML

Client Applet Java Server Host Id: 0

Object Id: 115

Figure 9.11 Conference Manager sends conference list to client object

9.3.3 Create new conference

When a user creates a new conference (Section 9.2.3), the client object sends message �
(figure 9.12) to the Conference Manager with a “new conference” event type and the
conference name.

// call from public instance method action() in Client
ConferencePanel class

mySharedData.ch.sendTo(confId, CONF_MGR, confHostId,
"new conference",confName)

If the conference name does not already exist in the conference set, the Conference
Manager proceeds to create the new conference.

createConference() registers the conference name as an event handler, which
automatically generates a new conference identifier (Section 8.2.2.2). The conference name
and its identifier are added to the conference set and thereafter rebuilt into a data packet.
The Conference Manager then tells the Notification Manager to broadcast the updated
conference list to all the users by sending message � with a “conference list” event
type through the tellAll()method call (Section 8.3.3).

Chapter 9 Demonstration through an Exemplar

 161

// call from public instance method createConference() in Server
ConferenceManager class

public static synchronized void createConference(String
confName,int remoteObjid,int clientid) {

create new TranscriptObject(confName); // create new event
handler for conference

// return automatically generated conference identifier

confId = ServerConnectionHandler.addObject(TranscriptObject);

add conference TranscriptObject to conferenceSet;

create new BuildConferenceList(conferenceSet); // build new
conference list

DataPacket d = buildList.getList(); // get list into data
packet

// broadcast updated conference list to all the clients

NotificationManager.tellAll (CONF_MGR, "conference list",
d.format());

}

Object Id: 999
Host Id: 5

Conference Manager

Conference Set
confId confName
10001 HTML
10002 C++
10003 C
10004 VRML
10005 JAVA

Object Id: 99

Notification Manager

Client Applet Java Server Host Id: 0

Object Id: 115

Host Id: 7

�

�

�

�

Object Id: 116

Chapter 9 Demonstration through an Exemplar

 162

Figure 9.12 Create new conference and broadcast updated list

On receiving that request, GtK uses the tellAll()method (Section 8.3.3.1) to broadcast
the updated conference list to all the registered clients with a “conference list” event
type (events � in figure 9.12). As each client maintains its own copy of the conference
table that stores the conference names and their identifiers, the “conference list” event
type triggers them to update their local copy of the conference table.

Each client applet then refreshes the conference list locally to reflect the change. By
maintaining a local copy of the conference table, client objects do not need to query the
notification server if they require any conference details, thus reducing network exchange.

9.3.4 Join conference

Consider the example of Jane joining the JAVA conference (Section 9.2.4). Jane’s client
object launches a new frame on the screen with the conference name as its title. The new
client conference object has its own identifier allocated to it, but it still runs on the same host
as the client object.

// call from public instance method action() in Client
ConferencePanel class

// find selected conference name from the conference list

String selectedConf = mySharedData.confList.getSelectedItem();

if (selectedConf != null) {// find conference id from local
conference table

selectedConfId = myconferenceTable.getConfId(selectedConf,
mySharedData);

mySharedData.theTranscriptList.createNewFrame(selectedConfId)
; // create new conference window

}

The client object sends message � (figure 9.13), which includes the conference object
identifier and “new client” event type, to the Transcript object on the Conference
Manager. Each conference is associated with a Transcript object, which is responsible for
monitoring the interaction between different clients registered to a particular conference.

The client object also sends event � to the Notification Manager with an “add
interest” event type, the client conference object identifier and a whole list of other
interested event types, as part of the data packet, to make GtK aware of the Jane’s interest
in the JAVA conference.

Chapter 9 Demonstration through an Exemplar

 163

Host Id: 5 Jane Client Applet

Object Id: 10005

Conference Transcript

Object Id: 99

Notification Manager

Java Server
Host Id: 0 Object Id: 115

Recipient Set
conf

objectid
client

objectid
eventtype

�

�

Figure 9.13 Join conference

// call from public instance method setTranscript() in Client
TranscriptPanel class

// send “new client” event and client name to Transcript object
on Conference Manager

mySharedData.ch.sendTo(myId, toObj, toHostId, "new
client",mySharedData.userName);

// add interest with Notification Manager

mySharedData.ch.sendTo(myId, NOT_MGR, notHostId, "add
interest",d.format());

The “add interest” event type triggers GtK to add Jane’s interest in the JAVA
conference through the addInterest() method (Section 8.3.2.1). This creates a new
recipient for the JAVA conference with Jane’s conference client object identifier and its
related event types. The recipient is then added to the recipient set (figure 9.14).

The Transcript object then tells the Notification Manager to notify Jane’s presence to any
other clients logged on the JAVA conference by sending event �. At the same time, the
Transcript object acknowledges Jane’s presence by sending message � with a
“greeting” event type to her conference client. The latter interprets the event type locally
to display a welcome message, ‘Hello Jane’ on her JAVA conference window.

GtK uses the tellAll()method (Section 8.3.3.1) to find the list of interested clients
(recipients) for the JAVA conference by matching the event type and object identifier in the
recipient set. Figure 9.14 shows the case when only Jane is active on the JAVA conference,
therefore GtK does not need to notify her presence to any other users.

Chapter 9 Demonstration through an Exemplar

 164

Jane JAVA conference window

Jane ClientApplet

Object Id: 10005

Conference Transcript

Java Server Host Id: 0

Object Id: 115

�

�
Object Id: 99

Recipient Set
objectid c_objid eventtype
10005 117 “new client” “new line”

“client left” “client died”

�

�

Host Id: 5

Notification Manager

Object Id: 117

Figure 9.14 Send greeting message

However, if Sue decides to join the JAVA conference shortly after, the sequence of event
and message flows changes to those shown in figure 9.15.

Sue’s client registers with the Transcript object by sending message � and with the
Notification Manager though event �. The Notification Manager updates the recipient set
with Sue’s conference client’s details. The Transcript object then tells the Notification
Manager to notify Sue’s presence to any other clients on the JAVA conference with event
�, while it responds to Sue’s conference client object with message �.

GtK responds to the Transcript object request for broadcast by searching through the
recipient set to find the list of interested clients, which in this case is Jane. GtK sends event
� to Jane’s conference client object with a “new client” event type and Sue’s client
name. Jane’s conference client object translates the “new client” event type locally by
displaying the message ‘Sue had just joined’ on her JAVA conference window.

Chapter 9 Demonstration through an Exemplar

 165

 Host Id: 7

Object Id: 116

Host Id: 5 Jane Client Applet

Object Id: 10005

Conference Transcript

Object Id: 115

Sue Client Applet

�

�

�

�

�

Sue JAVA conference window

Object Id: 99

Notification Manager
Recipient Set

objectid c_objid eventtype
10005 117 “new client” “new line”

“client left” “client died”
10005 118 “new client” “new line”

“client left” “client died”

Jane JAVA conference window

Object Id: 117

Object Id: 118

Figure 9.15 Another user joins conference

Chapter 9 Demonstration through an Exemplar

 166

9.3.5 Add contribution

When Jane adds some contribution (Section 9.2.5) to the JAVA conference, her conference
client object sends message � (figure 9.16) to the Transcript object on the Conference
Manager with a “new line” event type and the text as the data packet.

// call from public instance method action() in Client
TranscriptPanel class

// send “new client” event and input line to Transcript object

mySharedData.ch.sendTo(myId, toObj, toHostId, "new line",line);

The Transcript object then tells the Notification Manager to broadcast Jane’s input through
event �. If Jane is the only user who is active on the JAVA conference, GtK responds by
sending event � back to her conference client object with the input text and a “new line”
event type. As a result, Jane’s conference client object displays the text on her JAVA
conference window.

Object Id: 10005

Conference Transcript

Object Id: 99

Notification Manager

Java Server Host Id: 0

Recipient Set
objectid c_objid eventtype
10005 117 “new client” “new line”

“client left” “client
died”

Jane JAVA conference window

�

�

Object Id: 117

�

HostId: 5

Figure 9.16 User adds contribution

But if Sue is also active on the JAVA conference, GtK will broadcast Jane’s input to Sue’s
JAVA conference window simultaneously. Figure 9.17 shows the flow of messages and
events between the client objects, the Conference Manager and the Notification Manager
when both Sue and Jane are conversing on the JAVA conference.

Chapter 9 Demonstration through an Exemplar

 167

Host Id: 7

Jane JAVA conference window Sue JAVA conference window

Object Id: 10005

Conference Transcript

Java Server
Host Id: 0

Object Id: 99

Notification Manager
Recipient Set

objectid c_objid eventtype
10005 117 “new client” “new line”

“client left” “client died”
10005 118 “new client” “new line”

“client left” “client died”

Host Id: 5

�
�

�

��

�

� (i)
� (ii)

Object Id: 118 Object Id: 117

Figure 9.17 Contributions from multiple users

Because messages are exchanged between more than one client object, the messages may
overlap, thus giving rise to the possibility for race condition. Chapter 7 considered an
example where race conditions can occur as a result of the incorrect ordering of messages
(Section 7.6.3). However, in the conferencing exemplar, the data is managed centrally and
this at least ensures that the Notification Manager broadcasts the users input in the same
order as it received them.

Chapter 9 Demonstration through an Exemplar

 168

9.3.6 Leave conference

When Jane leaves the JAVA conference (Section 9.2.7), her conference client object sends
message � (figure 9.18) with a “client left” event type to the Transcript object on the
Conference Manager. In addition, the conference client object sends event � to the
Notification Manager with a“remove interest” event type plus a list of the client’s
registered event types enclosed in a data packet to inform the Notification Manager that the
client no longer has an interest in that conference.

// call from public instance method leave() in Client
TranscriptPanel class

// send “client left” event to Transcript object

mySharedData.ch.sendTo(myId, toObj, toHostId, "client
left",”leave”);

// tell Notification Manager to remove interest

mySharedData.ch.sendTo(myId, NOT_MGR, notHostId, "remove
interest",d.format());

GtK subsequently removes Jane’s interest in the JAVA conference from its recipient set
through the removeInterest() method (Section 8.3.2.2).

Furthermore, on receiving the “client left” event type, the Transcript object on the
Conference Manager removes Jane’s conference client object and tells the Notification
Manager to inform all clients on the JAVA conference that Jane has just left through event �.

// call from public instance method personLeft() in Server
TranscriptObject class

clientNames.remove (hostid); // remove hostid from the
ClientNames table

// tell NotificationManager to inform all interested clients of
the client’s departure

NotificationManager.tellAll(myId, "client left", client);

GtK uses the tellAll() method (Section 8.3.3.1) first, to find the list of clients that need
to be informed and second, to broadcast event � with a “client left” event type to the
relevant conference client objects.

When Sue’s conference client object receives the “client left” event type, it interprets
it locally and displays the message ‘Jane has just left’ on Sue’s JAVA conference window.

Chapter 9 Demonstration through an Exemplar

 169

Jane JAVA conference window Sue JAVA conference window

Conference Transcript

Java Server
Host Id: 0

Object Id: 99

Notification Manager
Recipient Set

objectid c_objid eventtype
10005 117 “new client” “new line”

“client left” “client died”
10005 118 “new client” “new line”

“client left” “client died”

�

�

�

Host Id: 7 Object Id: 118

�

Object Id: 117 Host Id: 5

Object Id: 10005

Figure 9.18 Leave conference

9.3.7 Quit application

When a users quits the conferencing application (Section 9.2.8), the client object sends a
message to the server Connection Handler with a “quit” event type, which tells the server
to stop listening on the user’s client socket. At the same time, the client object sends an
event to the Notification Manager with a “remove interest” event type. This triggers
GtK to remove any interest that the client object may still have on any other objects in the
recipient set through the removeInterest() method.

Chapter 9 Demonstration through an Exemplar

 170

// call from public instance method action() in Client
TranscriptPanel class

// tell Server Connection Handler that client has left the
application, line = “quit”

mySharedData.ch.sendTo(confId, CONF_MGR, confHostId, "leave
conference",line);

// tell Notification Manager to remove user interest

mySharedData.ch.sendTo(confId, NOT_MGR, notHostId, "remove
interest",d.format());

This section has described how the main functionalities of the example conferencing system
have been implemented at the application level through the GtK framework. The following
section will now discuss how users who are conversing on multiple conferences can receive
a rate of feedthrough that matches their focus or rate of interests.

9.4 Pace controlled feedthrough

GtK uses pace impedance matching to manage the rate of feedthrough that users receive
when they interact with several conferences simultaneously. This section will examine how
pace impedance matching is actually implemented in the example conferencing application
by applying the method calls in Chapter 8 (Section 8.4). The interface behaviour was
shown in Section 9.2.6.

9.4.1 Set frequency levels

The provision of feedthrough information is based on the user’s focus on a particular
conference at any instance in time. The example real-time Web conferencing application
uses two frequency levels:

(a) high-level frequency

A high pace of feedthrough is used for the top-most conference window and the client
object requests instant feedthrough (limited by network latency), corresponding to the
default pace parameters for queueLength and time (Section 8.41) namely, queueLength
= 0 and time = -1.

(b) low-level frequency

When a conference window is moved to the background this is detected by the client object
which sets a lower pace of feedthrough by using non-zero queueLength and time pace
parameters.

In order to associate the right frequency with each conference window, the users’ focus
need to be tracked.

Chapter 9 Demonstration through an Exemplar

 171

9.4.2 Track users focus

Java generates a GOT_FOCUS event if a particular window is in focus and a LOST_FOCUS
event if the window is in the background. The client object therefore monitors the Java
event generated by each conference window. As the users’ focus changes from one
conference to another, the frequency level changes accordingly.

If a conference window triggers a GOT_FOCUS event, the client object uses the
setHighFrequency() method call to set a high-level frequency to the conference.
Instead, if a conference window triggers a LOST_FOCUS event, the client object first double
checks to see if that window is still inactive after a short time delay, by setting up an alarm
that wakes up after the delay has elapsed. This safeguards against a user accidentally
clicking on a window. If the conference window is still in the background, the client object
uses setLowFrequency()method call to set a low-level frequency to the conference.

When a background window is brought to the front, the client object resets the conference
to a high-level frequency with default pace parameters.

9.4.3 Register pace interest

In order to enable GtK to provide a controlled pace of feedthrough, client objects have to
register different frequencies of pace interest with the Notification Manager through a
“change frequency” event type. The frequency level is transmitted as part of the data
packet, d.

// call from public instance method doSetFrequency() in Client
TranscriptPanel()class

// change frequency with new values for queuelength:time

mySharedData.ch.sendTo(myId, NOT_MGR, notHostId, "change
frequency",d.format())

The “change frequency” event type triggers GtK to change the client’s object pace of
feedthrough to the relevant frequency level through the changeFrequency() method
(Section 8.4.4.1). The frequency of each recipient (or interested client) for that client object
is also altered and GtK subsequently checks if it is time to flush the queue.

Contributions to the top-most conference window are flushed out immediately from the
recipients’ queue each time a new contribution is added and sent straight away to the
respective client objects. On the other hand contributions to the background conference
window remain in the recipients’ queue until it is the time to flush the queue (Section 8.4.3).
However, when a background window is brought to the front, any contributions waiting in
the recipients’ queue become ‘overdue’ and they are instantly sent out to the relevant client
objects, thus leading to the ‘catch up’ behaviour.

Chapter 9 Demonstration through an Exemplar

 172

Note that, different interface objects may require different pace of feedthrough. For
example, focus objects, such as the top-most window typically require a faster rate of
feedback and feedthrough from background or iconised windows. Therefore, GtK allows
the setting of frequency parameters on a per object basis. Furthermore, the required pace
will vary dynamically, for instance, when a new object is made visible or a window is
popped to the front. This is precisely why GtK separates registering interests, typically
once per object, from setting frequency which may happen repeatedly.

9.4.4 Illustrating pace impedance matching

Let us assume that there are three users Jane, Sue and Tom who have logged on to the
example conferencing application, as shown in figure 9.19 (a). The Recipient set for each
conference is managed by the Notification Manager and it includes the following fields:

• source id: this is of the form ObjectId:HostId (Section 8.22) and it a unique
identifier for the transcript object. Each conference has a related transcript object on the
Conference Manager. For example, the source id for the CSCW conference is
10005:0.

• target id: this is also of the form ObjectId:HostId but it identifies each client
object. The ObjectId on its own is not unique (for instance, both Jane and Sue have
the same ObjectId for their CSCW conference objects) but when it is used in
combination with the HostId, then it becomes a unique identifier.

• eventtype: this represents the type of event associated with a message or event.

• frequency: this is the frequency level that a client object registers with the Notification
Manager.

• queue: this shows the different contributions placed in the recipient’s queue.

In figure 19 (a) both Jane and Tom have joined the CSCW conference while Sue has joined
two conferences, namely the JAVA conference where her main focus lies (window in the
foreground) and the CSCW conference where she only has a passive or peripheral interest
(window in the background).

Jane and Tom clients’ register a high pace interest in the changes to the CSCW conference by
sending a “change frequency” event type to the Notification Manager with default
frequency parameters.

Sue’s main focus lies on the JAVA conference, so her client registers a high pace interest in
the changes to the JAVA conference. Sue’s client also registers a low pace interest in the
changes to the CSCW conference by sending a “change frequency” event type to the
Notification Manager with a pre-defined frequency of (3,30000).

Chapter 9 Demonstration through an Exemplar

 173

target id eventtype frequency queue
116:5 (0, -1)

114:3 (0, -1)

116:7 (3, 30000)

target id eventtype frequency queue
115:7 (0, -1)

Object Id: 114 Host Id: 3

Tom CSCW conference window

Object Id: 116 Host Id: 7

Sue CSCW conference window Object Id: 116 Host Id: 5

Jane CSCW conference window

Object Id: 115 Host Id: 7

Transcript object source id
CSCW conference 10005:0

Transcript object source id
JAVA conference 10006:0

Recipient Set

Sue JAVA conference window

Figure 9.19 (a) Example scenario

The Notification Manager will thus update Sue’s CSCW conference client when either a
maximum of 3 messages are reached or the length of time the messages have been in the
queue is over 30000 milliseconds.

Chapter 9 Demonstration through an Exemplar

 174

target id eventtype frequency queue
116:5 “newline” (0, -1) “have you finished CS112 practical yet?”

114:3 “newline” (0, -1) “have you finished CS112 practical yet?”

116:7 “newline” (3, 30000) “have you finished CS112 practical yet?”

target id eventtype frequency queue
115:7 “newline” (0, -1) “Hello anyone there?”

Object Id: 116 Host Id: 7

Sue CSCW conference window
Object Id: 116 Host Id: 5

Object Id: 114 Host Id: 3

Object Id: 115 Host Id: 7

Transcript object source id
CSCW conference 10005:0

Transcript object source id
JAVA conference 10006:0

Sue JAVA conference window

�b

�b

Tom CSCW conference window

�a

�a

Jane CSCW conference window

�a

Figure 9.20 (b) Adding contributions

Figure 9.19 (b) shows that Tom has added contribution �a to the CSCW conference while
Sue has added contribution �b to the JAVA conference. When the Notification Manager
receives input �a and �b, they are first added to their relevant recipient’s queue. GtK

Chapter 9 Demonstration through an Exemplar

 175

then verifies whether the time to flush each recipient’s queue has been reached by checking
if either one of the pace parameters, queueLength or time is met.

This condition is satisfied, in the case of the CSCW conference by Tom and Jane, and in the
case of the JAVA conference by Sue. Consequently, GtK flushes Tom and Jane CSCW
conference clients queue straight away and sends out input �a to them. The same happens
with Sue’s JAVA conference client queue and she receives input �b immediately. However
input �a remains in Sue’s CSCW conference client queue and GtK sets an alarm to wake up
at the next flush time (Section 8.4.3.1).

Chapter 9 Demonstration through an Exemplar

 176

Transcript object source id
JAVA conference 10006:0

Transcript object source id
CSCW conference 10005:0

target id eventtype frequency queue
116:5 “newline” (0, -1) “I have started - what’s up?”

114:3 “newline” (0, -1) “I have started - what’s up?”

116:7 “newline” (3, 30000) “have you finished CS112 practical yet?”
“I have started - what’s up?”

target id eventtype frequency queue
115:7 “newclient” (0, -1)

118:6 “newclient” (0, -1)

Object Id: 116 Host Id: 7

Sue CSCW conference window
Object Id: 116 Host Id: 5

Object Id: 114 Host Id: 3

Object Id: 115 Host Id: 7

Sam joins JAVA to Sam’s JAVA

�a

�a

Jane CSCW conference window

�a

Tom CSCW conference window

�b

Sue JAVA conference window

Figure 9.21 (c) Managing contributions

Figure 9.19 (c) shows Jane replying to Tom on the CSCW conference with contribution �a.
As before, GtK broadcasts input �a to Tom and Jane CSCW conference clients straight
away. But input �a is added to Sue’s CSCW conference client queue as the time to flush the
queue has not been reached.

Chapter 9 Demonstration through an Exemplar

 177

Another user Sam who has now joined the JAVA conference (represented by the blue
arrow). Note that, Sam’s conference window has been omitted from the figure in order to
keep the layout simple. The JAVA conference Transcript object on the Conference
Manager sends a message with a “newclient” event type to Sam’s JAVA conference
client, to which the latter responds by displaying a greeting message on Sam’s JAVA
conference window (Section 9.3.4).

At the same time, GtK finds all the recipients for the JAVA conference to inform them of
Sam’s presence. Sue therefore receives event �b to her conference client with a
“newclient” event type. Sue’s JAVA conference client responds by displaying the
message ‘Sam had just joined’ on her JAVA conference window (Section 9.3.4).

Chapter 9 Demonstration through an Exemplar

 178

Transcript object source id
JAVA conference 10006:0

target id eventtype frequency queue
116:5 “newline” (0, -1) “Did you reach a centralised solution?”

114:3 “newline” (0, -1) “Did you reach a centralised solution?”

116:7 “newline” (3, 30000) “have you finished CS112 practical yet?”
“I have started - what’s up?”
“Did you reach a centralised solution?”

target id eventtype frequency queue
115:7 “newline” (0, -1) “At last someone is here? I need some help urgently”

118:6 “newline” (0, -1) “At last someone is here? I need some help urgently”

Object Id: 116 Host Id: 7
Object Id: 116 Host Id: 5

Object Id: 114 Host Id: 3

Object Id: 115 Host Id: 7

 �b

Transcript object source id
CSCW conference 10005:0

�a

Tom CSCW conference window

�a

�b

Sue JAVA conference window

Jane CSCW conference window

�a

Sue CSCW conference window

�b

�a + �a+�a

to Sam’s JAVA

Figure 9.22 (d) Queue flush time reached

Figure 9.19 (d) shows Tom’s response to Jane on the CSCW conference with contribution
�a while Sue sends contribution �b to the JAVA conference. Again, GtK instantly

Chapter 9 Demonstration through an Exemplar

 179

forwards input �a to Tom and Jane CSCW conference clients and input �b to Sam and Sue
JAVA conference clients.

GtK adds input �a to Sue CSCW conference client, but now the ‘check for the flush time’
returns true as the queueLength pace parameter of the frequency equals its maximum
length of 3 messages. Consequently, GtK flushes the items from Sue’s CSCW conference
queue and Sue receives all three contributions �a,�a and �a in a single event on her CSCW
conference window. Note that, if the time pace parameter had exceeded, it would trigger
a similar reaction.

Chapter 9 Demonstration through an Exemplar

 180

Transcript object source id
JAVA conference 10006:0

Transcript object source id
CSCW conference 10005:0

target id eventtype frequency queue
116:5 “newline” (0, -1) “I thought part of it ought to be replicated”

114:3 “newline” (0, -1) “I thought part of it ought to be replicated”

116:7 “newline” (3, 30000) “I thought part of it ought to be replicated”

target id eventtype frequency queue
115:7 “newline” (0, -1) “How is your programming going?”

118:6 “newline” (0, -1) “How is your programming going?”

Object Id: 116 Host Id: 7
Object Id: 116 Host Id: 5

Object Id: 114 Host Id: 3

Object Id: 115 Host Id: 7

Sue CSCW conference window

 �b

�a

�a

Jane CSCW conference window

�b

Sue JAVA conference window

�b

�a

Tom CSCW conference window

to Sam’s JAVA

Figure 9.23 (e) Adding contributions

Figure 9.19 (e) shows Jane’s contribution �a to the CSCW conference and Sue’s
contribution �b to the JAVA conference. GtK broadcasts input �a to Tom and Jane CSCW
conference clients immediately but adds input �a to Sue’s empty CSCW conference queue.
GtK also broadcasts input �b to Sue and Sam JAVA conference clients straight away.

Chapter 9 Demonstration through an Exemplar

 181

In the final scenario, Tom replies to Jane on the CSCW conference with contribution �a.
Once again, GtK sends out input �a to both Tom and Jane CSCW conference clients but
adds it to Sue’s CSCW conference queue.

However, if Sue suddenly decides to catch up on the thread of conversation in the CSCW
conference, she simply clicks on the conference window to bring it into her focus, as shown
in figure 9.19 (f). This action triggers Sue’s CSCW conference client object to register a high
pace interest with the Notification Manager by sending a “change frequency” event type
with default pace parameters. As a result, the frequency level for Sue’s CSCW conference is
reset and any outstanding contributions waiting in the queue now become overdue.
Consequently, GtK flushes out contributions �a and �a from Sue’s CSCW conference
queue and sends them out to her CSCW conference window immediately, thus leading to a
‘catch up’ behaviour.

Sue’s JAVA conference window has now moved to the background, hence her JAVA
conference client object alters her interest in the JAVA conference with the Notification
Manager by sending a “change frequency” event type with low pace frequency
parameters (3,3000). As a result, GtK will only broadcast Sam’s contribution �a on the
JAVA conference to his own conference client object. GtK adds contribution �a to Sue’s
JAVA conference queue and it will remain there until the flush time is reached or Sue’s focus
changes back to the JAVA conference.

Chapter 9 Demonstration through an Exemplar

 182

Transcript object source id
JAVA conference 10006:0

target id eventtype frequency queue
116:5 “newline” (0, -1) “You mean more of a hybrid solution then”

114:3 “newline” (0, -1) “You mean more of a hybrid solution then”

116:7 “newline” (0, -1) “I thought part of it ought to be replicated”
“You mean more of a hybrid solution then”

target id eventtype frequency queue
115:7 “newline” (3, 30000) “I am having trouble with it too”

118:6 “newline” (0, -1) “I am having trouble with it too”

Object Id: 116 Host Id: 5

Object Id: 114 Host Id: 3

to Sam’s JAVA
�b

�a

�b Sam’s input on JAVA

Transcript object source id
CSCW conference 10005:0

�a

Tom CSCW conference window

�a

Jane CSCW conference window
Object Id: 115 Host Id: 7

�a+�a

Sue CSCW conference window

Sue JAVA conference window

Object Id: 116 Host Id: 7

Figure 9.24 (f) Change in conference focus

Chapter 9 Demonstration through an Exemplar

 183

The scenario discussed in this section has demonstrated pace impedance matching within
the example real-time Web conferencing application. Pace impedance matching is very
useful for providing an effective level of feedthrough to group members collaborating
through different artefacts. The pace of interaction (how often one interacts) is generally
more important than the bandwidth (how much one communicates) when providing
feedthrough in collaborative systems. This is even more obvious on the Web as faster
modem and network speeds have meant that large pages and graphics can download very
rapidly, but these download times are usually dominated by the time it takes to establish a
connection with the remote server.

However, a fast pace of feedthrough is not only unnecessary, but also undesirable. For
awareness purposes, rapid change at the periphery of our vision becomes distracting.
Indeed, if updates were propagated too quickly, applications would need to suppress some
updates or 'smooth' the output. Consequently, it makes sense that if an application object
or artefact is the focus of the user’s attention then the user requires high pace, high fidelity
notification about that object. But if the object is in the background within the user’s
peripheral awareness, the user will require a much lower pace and lower fidelity notification.

9.5 Summary

The discussion of the real-time Web conferencing application in this chapter demonstrates
the practicality of the GtK framework. The conferencing exemplar was designed in order to
investigate the issues surrounding impedance matching and it has been implemented to
execute specifically within the GtK framework. The focus of the design is on those aspects
that facilitate the provision of a controlled pace of feedthrough and not on developing a fully
functional system with enhanced features that exploit server-side technologies. In some
ways, the implementation described here is representative of more complex issues than a
general conferencing system.

The behaviour of the example application at run-time was first examined with a view to
analyse how users interact with the different functionalities offered by the interface. The
application offers functionalities that are common to many chat systems, but its novel feature
lies in providing collaborative users, who are interacting with multiple conferences
simultaneously, with a pace of feedthrough that matches their rate of interests. The way in
which the example application uses the GtK framework to support its interface behaviour
was also thoroughly explored.

This was later augmented with a description of how the functionalities of the GtK notification
server were applied to provide users with a pace of feedthrough that matches their interest
levels. Users are informed of the changes to the conferences depending on the pace interest
frequency that their client objects have registered with the notification server. As the users
focus change from one conference to another, the client objects alter the conference pace
interest frequency accordingly, thus allowing GtK to readjust the user’s pace of
feedthrough, eventually leading to a catch up behaviour.

Chapter 9 Demonstration through an Exemplar

 184

In the example application, users’ client objects register a high pace interest with the
changes to the top-most conference window but only a low pace interest with the
background conference windows. Users therefore see the updates to the top-most
conference window, which is also their focus object, almost immediately (limited by
network latency). However, updates to the background conferences, which lie in the users’
periphery, are placed in a queue and only sent out to them when either one of the pace
impedance parameters is reached.

The example application has demonstrated that the GtK notification server can indeed act
as an impedance matcher both in terms of the temporal dimension, by restricting the pace of
feedthrough and in terms of the bandwidth, by not sending all the information across
simultaneously. The matching of the rate of feedthrough with the users’ pace of interaction
(in this case, the users’ interest levels in particular conferences) may not necessarily result in
a remarkable inprovement in the user interface, but the gain in performance is significant.
Information sent in chunks or batches reduce overheads considerably as the transmission of
message headers and process swapping is minimal. Besides, it is usually more efficient to
send data over a network in bursts.

The real-time Web conferencing system is not the only application that can apply impedance
matching. It was chosen merely as an example to show the potential of pace impedance
matching in providing a controlled pace of feedthrough through the GtK framework. The
use of the top-level window to manage the rate of feedthrough is just an application of the
example but it is not limited to it. The demonstration presented here is complemented with
an analysis of the GtK framework from an architectural point of view.

185

Chapter 10 Architectural Evaluation

The design space for notification servers in Chapter 6 showed that the notification server
should ideally be an independent component that separates notification issues from the data.
Chapter 7 proposed that a separable notification server could indeed facilitate the provision
of an effective rate of feedthrough through impedance matching. This approach was applied
in the implementation of the GtK experimental notification server that also supports pace
impedance matching in Chapter 8.

The practicality of the GtK notification server as a pace impedance matcher was further
explored within a distributed collaborative environment via the construction of an example
real-time Web conferencing application. Chapter 9 described how the example application
had been built on the GtK framework and how pace impedance was achieved by matching
the frequency of notification with the users interest levels in the different conferences.

This chapter complements the previous assessment of the GtK framework by evaluating it
from an architectural viewpoint. The benefits and limitations the GtK architectural
framework are analysed and a number of potential issues for further consideration are
raised. The conferencing exemplar is used to support the discussion accordingly. Also, the
notification server taxonomy is employed to assess ways of change discovery and
propagation.

Section 10.1 assesses the flexibility of the GtK framework within the design space for
notification servers. Section 10.2 explores the possibility for migrating the components
within the GtK framework to a distributed platform. Section 10.3 investigates whether the
GtK framework can execute in a dynamic mobile environment. Dynamic mobile interaction
causes implicit pace changes and opens up the possibility for impedance matching further.
Section 10.4 examines the event management scheme of the GtK framework and considers
whether impedance matching has any effect on the ordering of events within the existing
infrastructure. Finally, Section 10.5 briefly looks at the possibility of using the GtK
notification server for handling existing forms of data.

10.1 Flexibility

An important criterion for any framework that facilitates distributed interaction lies in the
ease of supporting flexible architectures. This section revisits the notification server
taxonomy (Section 6.5) to analyse the role that the GtK framework plays in the design
space of notification servers. The number of possible arrangements in reaching a notification
cycle (Section 6.5) was represented as a 4x2 matrix (figure 10.1).

Chapter 10 Architectural Evaluation

 186

A4

A3

A2

A1 (NS èpolls Data)

(AC ètells NS)

(NS ≡ bound Data)

(NS èasks AC)

B2 B3
(NS ètells PC) (PC èasks NS)

Figure 10.1 Revisiting the 4x2 matrix

A full notification cycle consists of:

A: the way in which the notification server (NS) is made aware of the changes from the
active client (AC) and

B: how those changes are then broadcast to the passive client (PC).

This method of analysing change discovery and change propagation will be applied to
examine the type of notification supported by the example conferencing application. The
possibility for any further arrangements in the taxonomy of notification server types will also
be investigated.

10.1.1 Current notification arrangement

The three main components of the example conferencing application are the clients, the
Conference Manager and the Notification Manager (figure 10.2).

 Clients

Conference
Manager

Notification
Manager

Figure 10.2 Main components of conferencing exemplar

The Notification Manager handles the functions of the GtK notification server while the
Conference Manager mainly acts as the data repository. Both the Conference Manager
and the Notification Manager are located on the server. Although all the components are
independent of each other, the clients are aware of the Conference Manager and the
Notification Manager.

The propagation of updates usually relies on issues such as the location of the data, the
location of the control and who takes the initiative to send the updates. In the example
conferencing application, the active client (client who initiates the change) takes the initiative
to send update events to the Conference Manager (figure 10.3). The Conference Manager

Chapter 10 Architectural Evaluation

 187

then tells the Notification Manager to broadcast the changes to all the passive clients (clients
who view the changes). This action triggers the GtK notification server to invoke its
tellAll() method (Section 8.4.3.1). The Conference Manager thus assumes an active
role in change propagation; however, it is separate from the Notification Manager.

Conference
Manager

Notification
Manager

Server

 Clients

Data / Event
Control

Key

Figure 10.3 Flow of events during change propagation

The flow of events between the different components of the example conferencing
application therefore satisfies the A4–B2 arrangement (figure 10.4).

 B2
(NS ètells PC)

B3
(PC èasks NS)

A1 (NS èpolls Data)

A2 (AC ètells NS)

A3 (NS èasks AC)

A4 (NS ≡ Data)

Conference
Manager

Notification
Manager

Server

 Clients

Figure 10.4 GtK within the conferencing exemplar

The GtK notification server knows that data objects exist and that other objects are
interested in them, but it has no other application knowledge. Similarly, the data objects
have to inform GtK to broadcast updates by using the ‘tell all’ function, but they need not
be aware of other remote or local interested objects. GtK is thus only loosely coupled to
the data repository.

As the GtK framework already achieves a separation of concern between the notification
server and the data repository, one could ask whether there is a possibility that the
framework may actually function in any other arrangement within the notification server
taxonomy.

Chapter 10 Architectural Evaluation

 188

10.1.2 GtK as a pure notification server

The taxonomy of notification server types emphasised that a 'pure' notification server
arrangement A2–B2 was desirable for promoting feedthrough on the Web, where the
protocols that access data are fixed, thus forcing notification to be added at a separate level.
The example conferencing application does not exploit the GtK framework in such a way
that allows the GtK notification server to function as a 'pure' notification server. However,
this is not a fundamental restriction on the GtK framework. Because the data service is not
tied to the notification service, GtK can in fact function in different ways, including that of a
'pure' notification server.

If GtK were to satisfy a 'pure' notification server arrangement within the conferencing
exemplar, the flow of events between the different architectural components would need to
follow the model shown in figure 10.5.

 B2
(NS ètells PC)

B3
(PC èasks NS)

A1 (NS èpolls Data)

A2 (AC ètells NS)

Conference
Manager

Notification
Manager

Server

 Clients

A3 (NS èasks AC)

A4 (NS ≡ Data)

Figure 10.5 GtK as a pure notification server

The active clients still send update events to the Conference Manager, as was the case in
the A4–B2 arrangement (figure 10.4). However, the Conference Manager will no longer
trigger updates to be broadcast. The active client itself will do so by sending ‘tell all’ events
directly to the Notification Manager. GtK can then inform the passive clients who are
interested in the updates that some changes have taken place. This will enable the interested
passive clients to find the changes in the data straight from the Conference Manager. The
Conference Manager therefore has a very passive role in the A2–B2 arrangement − it
merely acts as a data repository.

The existing GtK architecture does not need to undergo any major alterations if the
conferencing exemplar is to operate in the A2–B2 location. The Conference Manager
should merely function as a data repository that has no knowledge of the Notification
Manager. In addition, when an active client makes any changes to the data, it has to take
the initiative to inform the Notification Manager directly of this occurrence.

Chapter 10 Architectural Evaluation

 189

10.1.3 Further architectural possibilities

This section will now explore any further arrangements that the GtK framework may
support in the notification server taxonomy and assess their efficiency.

A1-B2 arrangement

Figure 10.6 shows the flow of events between the different components of the conferencing
exemplar under the A1-B2 arrangement.

 B2
(NS ètells PC)

B3
(PC èasks NS)

A1 (NS èpolls
Data)

Conference
Manager

Notification
Manager

Server

 Clients

A2 (AC ètells NS)

A3 (NS èasks AC)

A4 (NS ≡ Data)

Figure 10.6 Additional location for GtK

The active clients still send update events to the Conference Manager. But the Notification
Manager has to watch for changes in the data, for instance by polling the Conference
Manager. GtK does not currently support polling, thus it will not function in the A1-B2
arrangement within the existing framework, unless it is modified.

Although the Conference Manager assumes a less active role, the Notification Manager has
to be aware of it. In order to send the updates directly to the clients after polling the data
repository, the Notification Manager needs to be aware of each client’s location. For
instance, clients could inform the Notification Manager of their URL when they register at
launch time.

The main problem with the A1-B2 arrangement lies with deciding on the frequency with
which the notification server should poll the data repository. Frequent polling increases both
network and computational load. However, this opens up the prospect of using impedance
matching for determining the frequency of polling. Also, the updates can remain in a queue
for a certain length of time, thus offsetting any delays that the notification server may
introduce when polling for the changes.

Chapter 10 Architectural Evaluation

 190

While it is possible to modify the GtK framework to allow GtK to function in the A1-B2
arrangement in the example conferencing application, there will be no gain in performance
because the exemplar largely supports synchronous interaction. The A1-B2 arrangement is
more efficient during asynchronous communication on the Web.

A3-B2 arrangement

In this arrangement, the data repository has to be completely separate from the notification
server and the notification server has to ask for changes directly from the clients.

This implies that the notification server will have to send control messages all the clients to
query for changes, even if only a few of them may have actually made those changes.
Furthermore, the notification server may not necessarily discover the changes from the
clients in the same order as they initially happened, thus generating the possibility of race
conditions during change propagation. Consequently, the A3-B2 arrangement is not viable
under normal circumstances, as it requires some complex computational mechanism to
synchronise the order of events.

B3 options

The arrangements under the B3 options involve the passive clients asking for changes
directly from the notification server. This is undesirable both in terms of network and
computation load because each client will need to continually poll the notification server.

However, if the network suffers from frequent disconnections, then this method of change
discovery is useful. Also, it is recommended on the Web that applets should not maintain a
permanent socket connection with the server as the latter may suddenly run out of file
descriptors. In the example conferencing application, the client applets do hold on to their
socket connection, after registering with the server, for the whole duration of the exchange.
If polling is to be supported within the GtK infrastructure, the notification server has to
associate each client with an identifier. So, at each polling interval or after a disconnection,
the notification server can perform a handshake operation to establish the nature of the
identifier.

The discussion in this section has established the flexibility of the GtK framework by
showing that GtK can occupy different arrangements within the notification server
taxonomy. Although, GtK was used in the A4–B2 arrangement in the example real-time
conferencing application, GtK is in fact a 'pure' notification server. The exemplar can
execute in the A2–B2 arrangement after some minor changes to the GtK framework. GtK
can also reside in other viable locations in the taxonomy but the existing framework will
need to be modified.

Chapter 10 Architectural Evaluation

 191

10.2 Distribution

Another important architectural criterion lies in the ease of moving components to different
physical locations. This section will examine whether the GtK framework can operate in a
distributed layout and assess any related performance issues that may arise.

10.2.1 Existing physical location

Although the notification server is logically distinct from the data source in the example
conferencing application, both components currently reside in the same physical address
space. The Conference Manager represents the data source in figure 10.7 and the
Notification Manager implements the functions of the notification server.

Client

Conference
Manager

Notification
Manager

Server

Data / Event link
Control link

Key

Figure 10.7 Physical structure of conferencing exemplar

The data link allows messages to be transferred between components. Note the arrow
direction starts from the agent who initiated the transfer. The event link is more like an event
control that also carries some data, such as the tellAll()method call from the
Conference Manager to the Notification Manager (Section 8.3.3.1). The control link is a
form of meta control (Section 5.5.2) that exists between the clients and the Notification
Manager. The clients use the control link to inform the notification server of the different
types of updates they are interested in (data) and the rate at which they want to be notified
of those updates (event).

The separation of concern between the notification server and the data source is an inherent
property of the GtK framework (Section 10.1.1). This facilitates the GtK notification
server to run in a different address space as the data objects. Consequently, the functions
of the notification server (Section 8.3.1) can be invoked both locally via method calls and
remotely through asynchronous messages.

Let us consider the behaviour of the components of the GtK framework in a distributed
environment, with possibly multiple data sources. Although the issue of distribution and the
use of multiple data sources are independent, they do tend to be linked together.

Chapter 10 Architectural Evaluation

 192

10.2.2 Possibility for supporting multiple data sources

Figure 10.8 shows the physical structure of the GtK framework with several heterogeneous
data sources located on different servers.

Client
GtK

Notification
Server

Data

Server
Data

Server

Data

Server

Data / Event link
Control link

Key

Figure 10.8 GtK framework with heterogeneous data servers

Options A1–A4 from the notification server taxonomy (Section 10.1) will now be used to
assess the feasibility of change discovery and propagation between the components of the
GtK framework within a distributed setting.

In the conferencing exemplar, the data repository triggers the GtK notification server to
broadcast updates to the clients through the ‘tell all’ function. But when the architectural
components are physically distributed, the load transfer between the data store and the
remote notification server becomes significant. Therefore change discovery through option
A4 can only be supported if the data repository knows about the notification server, in
other words, the data repository must behave like an active database.

Similarly, if the notification server were to discover the updates by polling the data
repository directly (option A1), this would involve a large number of network exchanges
and high computational load between the data store and the remote notification server.
Consequently, the rate of change propagation may be affected and the rate of feedthrough
may slow down. Change discovery through option A1 will depend heavily on where the
complexity lies.

However, in both options A4 and A1, the active clients do not have to be aware of the
notification server when they make any changes. So, even if the clients are not very
cooperative, change propagation can still take place. Also, this prevents clients from finding
out changes directly from the data repository, which would otherwise amplify the volume of
data transferred over the network and subsequently increase both computational and
network load.

Chapter 10 Architectural Evaluation

 193

Unlike the link between the notification server and the data store, change discovery between
the client and the notification server does not involve much transfer of data. The notification
server can either ask the clients directly if they have made any changes in the shared data
(option A3) or the active clients can independently inform the notification server after they
have made the changes (option A2).

The problem with option A3 is that not all the active clients will necessarily respond at the
same rate when the notification server queries them, thus affecting the timeliness in which
passive clients will receive the updates. The task of synchronising the order of events
discovery is more daunting in a distributed environment. However, option A3 optimises on
the number of control messages exchanged and reduces the message overheads. But if the
notification server ends up acting as a database, the message load will definitely increase.

Option A2 is the most efficient solution for change propagation on a distributed setting with
a separable notification server. It will show a similar behaviour as the locking mechanism
used in the UNIX file system where applications explicitly request locks on remotely stored
files from the lock daemon. The lock daemon has no control over the files it is referred to
and is thus logically distinct from the file store. The GtK framework can support this form
of change discovery, but all the clients need to cooperate with each other and they will have
to be aware of the notification server.

This section has highlighted the various issues that arise with change discovery and
propagation within a distributed GtK framework. The discussion has also shown that the
use of separable notification server like GtK is most effective within a distributed
environment.

10.3 Mobility

The GtK infrastructure is primarily a static framework. It may enable some form of mobile
communication, for instance a PDA could interact with a notification server that sits
remotely from the data. However, the GtK framework itself does not generate components
that are dynamically mobile. Dynamic mobility poses two main problems: firstly, the
components usually have a roaming IP address and secondly, the network is very often
subject to disconnections, hence the clients’ connections are not persistent. It is therefore
more problematic for the notification server to handle the timing and delivery of events to the
clients; consequently, the system’s efficiency may be affected.

This section will first examine how dynamic mobility can influence change discovery through
the GtK framework and then consider some important pace issues that are inherent within a
mobile environment.

10.3.1 Introducing mobility in the GtK framework

The GtK framework consists of the following logical components: the client interface, the
data repository and the notification server (figure 10.9).

Chapter 10 Architectural Evaluation

 194

Client
Interface

Data

Notification
Server

Figure 10.9 Logical components of GtK framework

But in order to support a dynamic mobile environment, a Point of Presence is required
within the framework.

10.3.1.1 Point of Presence

A previous work15 that investigated the architectures for mobile user interfaces proposed
the need for a Point of Presence (PoP) in a mobile network, which acts as an important
additional site for computation (Dix et al., 2000). The PoP was defined as the point where
a client machine has its connection to the physical network (figure 10.10).

Figure 10.10 Point of Presence

For example, with a hand-held PDA, the PoP may be the local cell’s base station. The PoP
is not necessarily the first point of contact. It also satisfies some functionality criteria, such
as the closest point with greater computational power or better network connectivity.
Consequently, the PoP is able to engage in a faster pace of interaction than a server-based
interaction.

10.3.1.2 Interaction through the PoP

The logical components the GtK framework (figure 10.9) can be mapped onto the PoP
layout (figure 10.10) to produce the logical components of the GtK framework within a
mobile environment (figure 10.11).

15 Interfaces and Infrastructure for Mobile Multimedia Applications research project − as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

client serverPoP

Chapter 10 Architectural Evaluation

 195

Figure 10.11 Logical components in mobile environment

The client interface still sits on the client, but the presence of the PoP opens up the
possibility of having either the data store or the notification server distributed in the PoP.
Each case will now be analysed in turn by applying options A1–A4 from the notification
server taxonomy.

Data repository distributed in PoP

When the data repository is distributed in the PoP, the PoP acts as a cache and the
notification server remains centralised. A centralised notification server will facilitate options
A2 (the active client tells the notification server) and A3 (the notification server asks the
active client) for change discovery. However, because the PoP only holds a cached copy
of the data, the interested passive clients may take longer to find out the real changes in the
data.

In order to perform change discovery though option A1 (the notification server polls the
data), the notification server has to be aware of the data location prior to polling. Also, the
success of this option relies on how far the data is cached and on the state of the network
connection. Option A4 (the notification server is bound to the data) is more practical
because the notification server is already aware of the data location. So, even if the data is
mobile, the notification server can still discover the changes.

Notification server distributed in PoP

This is an interesting layout, which can be useful in a scenario where two users are working
together in the same meeting room through their digital pads. For feedthrough reasons, it is
more efficient if the users actions get propagated through a local notification server instead
of linking with a remote central notification server. The purpose of a notification server is to
know when the data has changed but not its actual content. So, if the data repository is
kept centralised when the notification server is distributed in the PoP, the notification server
will take longer to retrieve the updates, thus slowing down feedthrough. Hence, the data
too has to be distributed when the notification server is distributed in the PoP.

Change discovery via option A1 (the notification server polls the data) is impractical with a
distributed data repository. However, change discovery through option A4 (the notification
server is bound to data) may still be possible as the local notification server can be closely
bound to some locally cached data.

client server PoP
Client

Interface Data
Notification

Server

Chapter 10 Architectural Evaluation

 196

Change discovery via options A2 (the active client tells the notification server) and A3 (the
notification server asks the active client) can also be supported when the notification server
is distributed in the PoP. However, if one of the clients in the above meeting room example
leaves the room, this will generate some significant notification issues. For instance, how will
the notification server know the new location of the client and more importantly, should the
client keep a persistent connection with the local notification server within the PoP or should
it connect to the central notification server.

Another difficulty with using a distributed notification server and data repository lies with
data synchronisation. If the data gets lost, the notification server can at least contact the
central repository, but if notification events get lost (e.g. there is a sudden network
disconnection or the same network connection is not maintained during an exchange), it is
more problematic to retrieve those events. These issues need further consideration.

10.3.2 Pace issues in mobile interaction

The very nature of mobile interaction introduces some implicit pace changes − the hosts are
mobile, the context of execution is dynamic and above all, the network connection is
intermittent. If users are provided with a uniform pace of feedthrough in such an
environment, the load on the network will be too high. Therefore the users context of
interaction has to be taken into account and impedance matching can be applied to provide
a controlled pace of feedthrough.

Consider the following scenario. John and Mary are interacting in the same room through
their digital pads, for instance copying data to each other. As they are both in the same
room, they require a high pace of feedthrough. But if Mary moves to another room shortly
after to carry on working offline for a while, she does not require the same pace of
feedthrough until she meets up with John later to resynchronise their work.

Consequently, the users’ pace of feedthrough can vary depending on their location − pace
impedance. Furthermore, the volume of data can be reduced as the users move to lower
the network load − volume impedance. Given that the GtK framework already enables
pace impedance matching, it could be applied in a mobile environment to adjust the pace of
feedthrough that users receive. But unlike the conferencing exemplar, where the
feedthrough rate matched the users interests (Section 9.4.2), the pace of feedthrough in a
mobile environment can be adjusted depending on the users location.

There are in fact three ways in which the pace of feedthrough can be managed remotely:

(a) application driven − the application can change the pace by informing the notification
server that the user has moved.

(b) user driven − the user can send a request for a change in the pace when moving to a
new location.

(c) via a generic component − a generic component can be used to track the users location
and send location events to the notification server.

Chapter 10 Architectural Evaluation

 197

The GtK framework requires an additional generic component within its infrastructure − the
Location Manager, to provide pace impedance in a mobile environment. The Location
Manager will be responsible to send information such as the type of application and the type
of location to the notification server (figure 10.12). The latter can then use this information
to provide a pace of feedthrough that matches both application type and location type. This
will not only enhance location awareness but it will also provide users with a better service.

Location
Manager

Notification
Server

application type

location type
pace of

feedthrough

Figure 10.12 Pace impedance matching in mobile environment

This section has shown that the GtK framework requires a PoP within its infrastructure to
support dynamic mobile interaction. As the PoP is an additional computational component,
it will influence the ways in which the notification server discovers and propagates changes
to the users. Mobile interaction causes implicit pace changes, thus impedance matching can
be applied to improve the timing and delivery of events to the users. The GtK framework
can be enhanced to provide pace impedance in a mobile environment.

10.4 Event Management

Event management is a key architectural concern with impedance matching as it introduces
delays in change propagation. As a result, certain types of ordering problems that would
not normally arise can in fact surface here. Chapter 7 gave an example that explored the
effects of impedance matching on the ordering of events and the resulting impact on the
users interaction (Section 7.6.3). This section will analyse the event management scheme
within the GtK framework and consider the impact of impedance matching on the existing
infrastructure.

Chapter 10 Architectural Evaluation

 198

10.4.1 Event ordering in the GtK framework

Event ordering in the GtK framework is based on a star configuration (figure 10.13). This
simplifies the serialisation of events, as the notification server is the single locus of control.
The central notification server facilitates the synchronisation of client events when they are
broadcast even if the notification server initially accepted the events in a different order or
the events hit the server at the same time. Note that, the events may not necessarily reach
the notification server in ‘real-time’ order due to network latency. It is more complex to
ensure that events are broadcast in ‘real-time’ order, as each client event will need to be
time stamped with some ‘global’ time.

Notification
Server

Client

Client

Client

Figure 10.13 Star configuration in GtK framework

An alternative method for event propagation is through a decentralised peer-peer network.
This generates multiple paths for event propagation. Also, when a client performs an action
it may trigger changes in other clients, which is a direct consequence of the causality effect.
The peer-peer network does not guarantee the ordering of events as illustrated by the
scenario in figure 10.14.

Client A Client B

Client C

m1

m1

m2

Figure 10.14 Possibility of race condition with peer-peer network

Client A sends message m1 to both client B and client C. Message m1 reaches client B
almost instantly but for some reason, it gets delayed in transit to client C. When client B
receives message m1, it processes it and generates message m2, which is then sent to client
C. If the network connections are equally fast along both paths, client C will receive the
messages in the right order; that is m1 followed by m2. But because there are different
paths for change propagation, there is a possibility that client C receives message m2 before
message m1. So, if client C processes message m2 and then receives message m1, race
condition will arise.

Chapter 10 Architectural Evaluation

 199

The star configuration in the GtK framework guarantees the order in which the Event
Manager transmits events at the lowest level. However, at the higher Notification Manager
level, impedance matching introduces delays as the events are placed in a queue when they
reach the notification server (Section 8.4.3). Hence there is a risk that the notification
server may not necessarily broadcast the events in the same order that it received them
originally.

10.4.2 Maintaining event ordering with impedance matching

The incorrect ordering of events can lead to inconsistencies in the interpretation of messages
exchanged between users (see example in Section 7.6.3). The conferencing exemplar
avoids such inconsistencies by being a simple application that stays in a quiescent state.
Also, the fact that the data is managed centrally is a contributory factor.

The following example illustrates event ordering with pace impedance in the GtK framework
(figure 10.15). A client object generates two types of events: A and B. The queue length
(Section 8.4.1) for type A event is 3 and that for type B event is 0.

 Action Event Effect of action

tellAll() A1 place in queue

tellAll() B send immediately B

tellAll() A2 add to queue

tellAll() A3 flush queue A1, A2, A3

Figure 10.15 Event ordering with impedance matching

After a tellAll() action (Section 8.4.3.1) for broadcast, GtK sends out the type B event
to the interested clients immediately after receiving it. However, GtK places the type A
event in a queue and subsequent type A events are added until the queue has reached its
maximum length of 3. GtK then flushes the queued events and broadcast them to the
interested clients in a single stream (A1, A2, A3). So as long the events are of the same
type, the notification server will broadcast them to all the interested clients in the right order,
even with impedance matching.

The conferencing exemplar treats all user contributions as a “newline” event type (Section
8.2.3) to ensure that they reach their destination in the right order. Furthermore, the clients
set the same frequency of updates with the notification server. This guarantees that the
events are removed from the queue and broadcast to the users in the same order. If
inconsistencies still occurred despite these measures, users can simply click on the relevant
conference window to bring it into focus and they will receive any outstanding events
instantly (Section 9.4.3).

10.4.2.1 Limitations

Chapter 10 Architectural Evaluation

 200

Although the star configuration helps to preserve the order of events in the GtK framework
with impedance matching, it does have certain limitations. A single path for event ordering
through a central notification server will promote consistency within the application and
provide users with a fast rate of feedthrough. But the rate of feedback rate may not be so
fast. However, if an application uses GtK as a 'pure' notification server, the users will still
receive a rapid feedback.

The ordering of events becomes more problematic when different modes of data exchange
are allowed, such as images. The conferencing exemplar only supports data transmission in
text form. Because images usually take longer to send than text, the clients will need to set
different frequencies of updates with the notification server. This will obviously generate
events of different types and it will be more problematic for the notification server to
broadcast them in the right order. Event ordering in such cases, have to be dealt with by
using fairly complex algorithms. Another possible solution is to let the notification server
decide when it wants to flush the event queue by synchronising the events from the same
objects.

This section has examined the event management scheme within the GtK framework.
Although the star configuration can preserve the ordering of events even with impedance
matching, it does have some limitations.

10.5 Interacting with existing data

Whereas other studies have implemented notification servers that are tightly bound to the
data they regulate, GtK is a 'pure' notification server (Section 10.1.2). Any application built
using the GtK framework will require a bespoke data manager, such as the Conference
Manager in the conferencing exemplar. Because GtK is separate from the data service, it
has the advantage that it can handle many types of data − from a standard database to third
party databases including multiple data sources (Section 10.2.2) and more importantly,
legacy data.

NSTP (Patterson et al., 1996) is an example of a bundled solution that combines the data
service and the notification service together. The notification service cannot be easily
integrated with existing applications, thus reducing its scalability considerably. The lack of a
clear separation between the functionalities of the notification server and the data restricts
NSTP capability for reuse in a different environment with different types of data. Also,
because the data is shared with the notification server, the quality of the code will be
affected during reuse.

In contrast, GtK is solely a notification service that can be easily plugged with other
components in a different environment, thus making it easily portable and adaptable for
reuse with legacy data.

Chapter 10 Architectural Evaluation

 201

10.6 Summary

This chapter has provided a systematic critique of the GtK framework by focussing on
architectural issues such as flexibility, distribution, mobility, event management and data
interaction. The options for change discovery and propagation from the notification server
taxonomy were applied throughout this analysis to show how they influence the different
architectural criteria.

The flexibility of the GtK framework was assessed by examining the effects of placing the
components of the example real-time Web conferencing application in the different
arrangements of the notification server taxonomy. The conferencing exemplar does not
exploit the GtK framework in such a way that allows GtK to function as a 'pure' notification
server. But as the notification service is only loosely coupled with the data service, GtK can
in fact function in different arrangements, including that of a 'pure' notification server.
Basically, the client objects will need to inform GtK after they have made some changes in
the conferencing exemplar. GtK can then pass on this information to all the interested
clients or recipients and the latter can pull the updates straight from the data repository.
GtK can also satisfy other arrangements within the design space, such as poll for changes,
but the existing framework will need to be modified.

The separation of concern between the notification server and the data source can enable
GtK to function in a distributed environment with multiple data sources. The notification
server can discover changes in the data either directly from the data repository or from the
clients themselves. The former option involves data transfer over the network, thus issues
such as network and computational load become significant. The latter option is more
efficient especially when the clients themselves inform the notification server when they make
the changes, which implies a 'pure' notification server arrangement. However, all the
distributed clients should be aware of the notification server and their peers to improve user
feedthrough.

The GtK infrastructure is primarily a static framework. In order to support dynamic mobile
interaction, it is desirable to have a Point of Presence (PoP) within its infrastructure. The
PoP is an additional site for computation, which can hold either the data or the notification.
This will influence the way in which the notification server discovers and propagates changes
to the users. The nature of mobile interaction causes implicit pace changes. Impedance
matching can be applied to provide users with timely feedthrough depending on their context
of interaction. The GtK framework can be used to provide pace impedance in a mobile
environment by matching the rate of feedthrough with the users’ location. However, an
additional generic component for location awareness is required within the infrastructure.

The event management scheme within the GtK framework was also analysed. The GtK
framework uses a star configuration and all client events are managed through the central
notification server. The star configuration helps the marshalling of events at the lower levels
of the GtK framework. However, impedance matching does not consolidate the ordering

Chapter 10 Architectural Evaluation

 202

of events at higher levels, when propagating changes to the clients, because it introduces
delays. The alternative peer-peer network for event management increases the likelihood of
race conditions. The star configuration at least ensures that events of the same type will be
broadcast in the right order, even with impedance matching.

The scope of the star configuration is however limited to applications with simple event
management schemes. It will be more problematic for the central notification server to
preserve the ordering of events in applications that support different modes of data
exchanges, as they will generate different types of events. Event ordering in such cases,
have to be dealt with by using more substantial algorithms.

The separation of the notification service from the data service is a desirable feature of the
GtK framework for handling different types of data. The GtK notification server can
interact with a standard database or third party databases including multiple data sources.
But more importantly, GtK can be easily plugged with other components in a different
environment, thus making it easily portable and adaptable for reuse with legacy data.

203

Chapter 11 Conclusion

This thesis has presented an architectural framework that allows the construction of
temporally coherent collaborative applications. The analytic focus of this work was on
gaining a deep understanding of how collaborative applications can be built within a
distributed environment in order to provide a desirable temporal behaviour. The emphasis
throughout this work has been on the architectural aspects of application building through a
number of analytical studies.

The temporal issues of interaction were analysed in Chapter 2. Chapter 3 examined the
interface and architectural issues involved in single-user interaction. A similar investigation
was carried out for multi-user interaction in Chapter 4. Chapter 5 provided an analytical
framework for analysing collaborative architectures on the Web. The design space of
notification servers were analysed in Chapter 6 and a taxonomy of notification server types
was presented. Chapter 7 proposed impedance matching as a method for providing
collaborative users with a controlled pace of feedthrough.

The results of the above studies were applied to develop the Getting-to-Know (GtK)
separable notification server that provides pace impedance matching. Chapter 8 described
the implementation details of the GtK notification server. Chapter 9 demonstrated the
practicality of the GtK framework through a real-time Web conferencing exemplar. Finally,
Chapter 10 provided an architectural evaluation of the GtK framework.

This chapter reflects on the work described above. Figure 11.1 shows an overall structure
of the discussion that now follows.

Chapter1
Introduction

Chapters 2-7
Analytic studies

Chapters 8-10
GtK development, use

and evaluation

11.1
Issues
raised

11.2
Meeting

objectives

11.3
Broader

research themes

Thesis

Chapter 11

broader use of concepts
outside thesis

Figure 11.1 Chapter structure

Section 11.1 considers the salient issues raised by the analytical studies described in
Chapters 2 − 7. Section 11.2 then reviews the objectives set out in Chapter 1 to show how
these have been met through the development of the GtK framework, its use and evaluation

Chapter 11 Conclusion

 204

in Chapters 8 − 10. The work described in the thesis is already being developed in several
areas of research. So instead of discussing the possibility of future work, Section 11.3
describes the ongoing work as broader research themes.

11.1 Issues raised by analytical studies

Chapter 2 discussed the importance of temporal issues and their effects on users’
interaction. Delays and interruptions generate inappropriate timing and increase user
frustration and application errors. Temporal properties have traditionally been linked to the
system response time. Feedback is the dominant temporal property during single-user
interaction. But in collaborative interaction, feedthrough is another vital temporal property.
Cooperative users require both timely feedback of their own actions and feedthrough of
others actions to enable successful collaboration. Temporal problems become more
significant in distributed collaborative applications as delays are likely to arise from both
network-related issues and the nature of collaborative work. The theoretical foundations of
interface behaviour and pace of interaction were applied to analyse the temporal problems
that users perceive at the interface.

Chapter 3 investigated the interface and architectural concerns for single-user applications.
The discussion showed that the underlying architecture of a system affects its external
behaviour. A number of desirable requirements for single-user interfaces were identified;
among which separation, direct manipulation and rapid semantic feedback have a major
influence on the temporal properties of the interface.

Some common architectural models and interface development tools were also reviewed.
Most of these architectures promote the separation of the application semantics from the
user interface functionality. However, such a degree of separation is sometimes difficult to
achieve in practice and often ignored. Separation conflicts with the needs of rapid semantic
feedback in direct manipulation interfaces. Consequently, aspects of the user interface may
‘leak’ into the application and vice versa in single-user applications.

Chapter 4 extended the architectural analysis to the context of multi-user collaborative
applications. Separation was found to be an essential architectural requirement in such an
environment for providing effective user-level behaviour. In addition to rapid feedback, the
requirements of timely feedthrough, awareness and sharing are critical in meeting the needs
of collaborative users. Furthermore, the shared data should be kept consistent and an
effective control mechanism is required to handle change propagation.

Chapter 11 Conclusion

 205

Some multi-user architectural models and interface development tools were also reviewed.
Most systems use a networked solution with access to information through either centralised
or replicated window architecture. A hybrid architecture is employed in some cases, where
certain parts of the system are centralised and others are replicated. However, there is
always a tension between the responsive nature of replicated architectures that allow rapid
local feedback and the need for a centralised component to promote feedthrough.

The provision of feedthrough is a major concern in collaborative applications. Most
collaborative solutions tend to assume 'control' over the entire system, with bespoke
software running at the users' own workstations and at various servers. In addition, they
also implicitly assume that the machines are connected to a single local area network and the
properties of this network are stable. These assumptions are challenged by the dynamic
nature of the Web.

Chapter 5 presented an analytic framework for constructing collaborative applications on
the Web. The examination of behavioural requirements identified the key architectural
components of collaborative systems. The placement decisions revealed the conflicting
needs of feedback and consistency on the Web. This is commonly dealt with by using
either caching or replication to bring the shared data ‘closer’ to the user. The Web also
forces the concern between where the data is stored and where the control lies, thus
generating various alternatives for the location of architectural components.

For example, Web applications use Java applets to download code to users’ own
machines. This implies that both code and data can be stored in a permanent location while
having an ephemeral location for execution or use. The mobility issues associated with data
and code generated a storage/use matrix for data and a storage/execution matrix for code.
The combinations for code and data placement showed that dynamically downloaded code
of which applets are the most common together with caching is a truly Web-based option.
Although this favours rapid feedback, as the real data is located centrally, it does conflict
with the needs of feedthrough.

The analysis in Chapter 5 narrowed the focus of this work on facilitating the important
behavioural requirement of feedthrough. Feedthrough is an intrinsic limitation of Web-based
collaborative applications. Also, the provision of feedthrough is more demanding, as both
the pace of group users interaction and network-related delays have to be taken into
account. This work proposed an architectural solution to address this problem by using a
suitable notification mechanism, which not only manages the rate of feedthrough, but also
optimises on the temporal performance. The standard Web protocol offers some weak
forms of notification, which are essentially polling mechanisms that are largely semantics
free.

Chapter 6 explored the different ways in which notification services can be managed in a
collaborative system by applying the foundation of Status–Event analysis. The analytic
study generated a framework and vocabulary to compare and discuss different notification
mechanisms. The taxonomy of notification server types showed that a notification server

Chapter 11 Conclusion

 206

should ideally allow a separation of concern between notification and data, thus behaving as
a ‘pure’ notification server. This is particularly important on the Web as the protocols that
access data are mostly fixed; hence notification has to be added at a separate level.

Chapter 7 presented an analytic framework for providing collaborative users with timely
feedthrough and awareness through impedance matching − the matching of the required and
supplied of update events. The notification server, through its central mediating position, is
ideally placed to support impedance matching, by adjusting the frequency of notification to
meet the users pace of interaction. Users should however inform the notification server of
their required pace interests in the shared objects. The communication between the user
clients and the notification server does not require the latter to have any knowledge of the
application semantics; hence the notification server can still remain separate from the data.

Impedance matching enhances both goal-directed feedthrough − by allowing users to see
the changes in the objects they are highly interested in almost instantly, and awareness − by
informing them about the changes to the peripheral objects, albeit at a lower pace. This
exploits the limited availability of computer resources and network bandwidth. Chapter 7
also explored the different ways of achieving impedance matching, namely through pace
impedance and volume impedance. Pace impedance policies were analysed in details.
Different triggers for regulating pace were identified and their effects on the flow of events
were shown through the use of time-space diagrams.

Because impedance matching controls the pace of feedthrough to the clients by delaying the
updates events, this may affect the order of event propagation. The incorrect ordering of
events will not have a major impact on a system where there is no causality or dependency
between the users’ exchanges. But in systems where the ordering of events is crucial, the
semantics and interconnections between those events have to be dealt with by using some
complex algorithms.

The successive analytical studies led to the construction of a separable notification server
called Getting-to-Know (GtK) that provides pace impedance matching. Table 11.1
summarises the important issues raised in Chapters 2 − 7.

Chapter 11 Conclusion

 207

Chapter Main issues

2: Time and Interactivity • temporal problems traditionally linked to response time

• single-user interaction => feedback dominant temporal property

• BUT collaborative interaction also need feedthrough ∗

• delays arise due to network + nature of group work ∗

• applies analysis of interface behaviour + pace of interaction ∗

3. Single-user Interface
and Architecture
Issues

• application architecture affects its behaviour ∗

• need for separation, direct manipulation, rapid semantic feedback

• separation conflicts with needs for rapid semantic feedback

• separation often ignored in direct manipulation interfaces ∗

4: Multi-user Interface
and Architecture
Issues for
Collaboration

• separation is vital in multi-user collaborative applications ∗

• also require timely feedthrough + awareness in addition to rapid feedback

• need consistent data + effective control mechanism

• replicated vs. centralised architecture ≡ feedback vs. feedthrough ∗

• overall 'control' + stable local area network connection commonly assumed

• BUT assumption challenged by dynamic nature of the Web ∗

5: Why, What, Where,
When: An analysis of
Collaborative
Architectures
on the Web

• behavioural analysis => identified key architectural components ∗

• placement decisions => feedback conflicts with consistency on the Web ∗

• code and data storage location ≠ execution location on the Web

• presents framework for analysing location options for data and code ∗

• true Web-based option: dynamically downloaded code with caching

• favours rapid feedback BUT conflicts with needs of feedthrough

• provision of feedthrough is problematic and lacking on the Web ∗

• proposes an architectural solution through suitable notification mechanism ∗

6: Exploring the Design
space for Notification
Servers

• uses Status–Event analysis to analyse design space for notification services

• generated framework + taxonomy to discuss notification mechanisms ∗

• ‘pure’ notification server is ideal – separates notification issues from data ∗

• separate notification vital on the Web due to fixed protocols for data access

7: Impedance Matching:
Coping with Limited
Resources

• presents impedance matching framework for timely feedthrough ∗

• use notification server to match updates with users pace of interaction ∗

• BUT users have to inform notification server of their pace interests

• impedance matching supports both goal-directed feedthrough + awareness ∗

• exploits limited availability of computer resources + network bandwidth

• examines volume impedance + pace impedance issues ∗

• identifies pace triggers and showed effects on time-space diagrams ∗

• event ordering is a main concern that may require complex algorithms

Table 11.1 Summary of issues raised in analytical studies

Chapter 11 Conclusion

 208

11.2 Meeting the objectives of the work

The overall objective of the work was broken down into three sub-goals in Chapter 1
(Section 1.2). The way in which each sub-goal has been met is examined below.

Objective 1

 “To develop an architectural framework that enables the construction of
collaborative applications that satisfy appropriate temporal properties”

The GtK architectural framework that was constructed supports the GtK separable
notification server, which provides pace impedance matching to manage the temporal
behaviour at the user interface level. Chapter 8 described the implementation of the GtK
framework. GtK does not provide volume impedance matching and it does not handle the
ordering of events. A solution to the latter problem lies either at the underlying system level
or at the programmer level in understanding the semantics of the infrastructure. GtK only
supports pace impedance matching based on the ‘volume of messages’ and ‘fixed time
interval’ triggers.

GtK is a separable notification server that has been built on a distributed object layered
infrastructure. The Event Manager controls the exchange of messages and events within the
infrastructure by using an asynchronous messaging protocol. This gives GtK a uniform,
generic location-independent event model. The Notification Manager handles the main
functions of the GtK notification server. GtK allows a client object to add an interest in
another object or remove some or all of its interests for a certain object. GtK maintains a
list of interested clients for specific objects and their recipients, and broadcasts notification
events to all the interested clients’ recipients. These functions together with a few
housekeeping operations, allow the expression of a wide range of different application
specific notification strategies.

Pace impedance was implemented by introducing two pace parameters to control the
frequency of updates namely, queue length and maximum delay time. GtK maintains a
queue of outstanding events for each recipient. Events are flushed from the queue and
broadcast to the recipients when either pace parameter is reached. An alarm process sets
and resets the maximum delay time parameter. Client objects can request GtK to change
their frequency of notification through a ‘change frequency’ event. Subsequently, GtK
modifies the rate of feedthrough for each recipient of that client object accordingly.

Objective 2

 “To demonstrate the feasibility of the conceptual framework by using it as a basis
for developing an exemplar that provides collaborative users with a temporal
behaviour that meets their pace of interaction”

Chapter 9 demonstrated the practicality of the GtK notification server as a pace impedance
matcher through an example real-time Web conferencing application built on the GtK
framework. The application offers similar functionalities as many Web chat systems, but its

Chapter 11 Conclusion

 209

novelty lies in allowing collaborative users to interact with multiple conferences, while
adjusting their pace of feedthrough to match their pace of interaction.

The conferencing application enables users to create conferences on various topics and
launch discussion sessions with different participants at the same time. The discussion
sessions are mainly held in real-time but late joiners can also catch up with any ongoing
session. The conferencing application executes on the server and users connect to the
application through an applet interface from any common Web browser. The Conference
Manager on the server is responsible for managing the conferences and acts as the data
repository. The GtK notification server is only loosely coupled to the Conference Manager.

Each conference session is represented as a separate window on the users’ screen. As the
top-most window usually indicates the user’s focus, users are more likely to have a high
interest in the changes to the conference which features on that particular window.
Likewise, users may only have a passive interest in the changes to the background
conference windows, as they lie within the user’s peripheral awareness. The users’ clients
apply this reasoning to register the relevant pace interest for each conference with GtK.

GtK provides users with the updates to their top-most conference window almost
instantaneously (limited only by network latency) but it sends out the changes to their
background conference windows less frequently, depending on the interest rate associated
with them. However, users can shift their focus to catch up on the thread of conversation in
a background conference at any time by simply clicking on the window. GtK subsequently
readjusts the pace of feedthrough for that particular conference, thus allowing users to see
any outstanding contributions immediately.

The example conferencing application thus provides collaborative users with a pace of
feedthrough that match their interest rates on the different conferences. The focus of the
design was on those aspects that facilitate the provision of a controlled pace of feedthrough
and not on developing a fully functional system. Also, the use of the top-level window to
manage the rate of feedthrough is just a function of the exemplar but it is not limited to it.

Objective 3

 “To evaluate the effectiveness of the approach embodied by the model”

The GtK framework was assessed through the example real-time Web conferencing
application in Chapter 9 by examining the effects of pace impedance matching on the
interaction between the different components within the infrastructure. This was then
complemented with an architectural evaluation of the GtK framework in Chapter 10. Such
a method of evaluation was chosen because it is often problematic to evaluate a framework
that is embodied in code. Furthermore, it would have been impractical to cover a more in-
depth evaluation within the scope of this work, given its extensive analytic focus.

The example application supports pace impedance matching by allowing client objects to
register pace interest frequencies with the GtK notification server for each conference that

Chapter 11 Conclusion

 210

the user joins. The pace frequency is related to the pace parameters queue length and
maximum delay time. Client objects therefore register a high pace frequency with default
pace parameters for the changes on the conference that features on the user’s top-most
window but they only register a low pace frequency (using some pre-defined pace
parameters) for all the other contributions in the background conference windows.

The GtK notification server maintains each conference contributions in a separate queue.
GtK immediately flushes out all contributions that are associated with a high pace frequency
conference from the queue and sends them out to the respective client objects. The low
pace frequency conference contributions remain in the queue until one of the pace
parameter is reached. When the user’s focus changes to a background conference
window, the client object resets the pace interest frequency and informs GtK about it. GtK
subsequently readjusts the user’s pace of feedthrough, thus leading to a catch up behaviour.

The exemplar has therefore demonstrated the behaviour of the GtK notification server as an
impedance matcher both in terms of the temporal dimension, by restricting the pace of
feedthrough and in terms of the bandwidth, by not sending all the information across
simultaneously. Although a controlled pace of feedthrough may not necessarily provide a
remarkable improvement in the user interface, the gain is performance is significant.
Information sent in chunks or batches over a network reduce overheads considerably.

The critique in Chapter 10 evaluated the GtK framework in architectural terms by assessing
issues such as flexibility, distribution, mobility, event management, and data interaction. The
GtK framework supports a separable model where the notification service is only loosely
coupled with the data service and this offers a number of advantages.

Although the conferencing exemplar does not exploit the GtK framework in such a way that
allows GtK to function as a 'pure' notification server, the separable nature of the GtK
framework increases its flexibility. GtK is in fact a 'pure' notification server within the
framework. In addition, GtK can satisfy other feasible arrangements in the notification
server taxonomy. However, the GtK framework will have to be modified to satisfy those
purposes.

The separation of concern between the notification server and the data source can also
allow GtK to function in a distributed environment with multiple data sources. The 'pure'
notification server arrangement is the most efficient solution in such a setting, but all the
distributed clients will have to be aware of the notification server and their peers to improve
user feedthrough.

The nature of mobile interaction causes implicit pace changes. Impedance matching can
thus be applied effectively in such an environment for providing users with a timely
feedthrough depending on their context of interaction. While the GtK infrastructure is
primarily a static framework, its pace impedance matching functionality could for instance,
enable the matching of the users’ rate of feedthrough with their location. However, this
requires an additional generic component for location awareness within the GtK framework.

Chapter 11 Conclusion

 211

The GtK framework adopts a star configuration for event management. Although this helps
the marshalling of events at the lower levels of the infrastructure, impedance matching does
not consolidate the ordering of events at the higher notification level because it introduces
delays. However, the star configuration ensures that events of the same type are broadcast
in the right order, even with impedance matching.

The scope of the star configuration is limited to applications with simple event management
schemes. The ordering of events could in fact be enhanced in two ways − either the
application could provide a better control, for example through explicit flush requests, or the
framework could itself do so. However, the latter option requires substantial algorithmic
and conceptual advances, which involve capturing semantic knowledge directly from the
applications.

The separable nature of the GtK framework promotes interaction with different types of
data. The GtK notification server can thus interact with a standard database or third party
databases including multiple data sources. But more importantly, GtK can be easily
adapted for reuse with legacy data in a different environment without affecting the quality of
its code.

Table 11.1 summarises how the objectives of this work have been met in Chapters 8 − 10.

Objectives Main issues

1: develop an
architectural
framework that
enables the
construction of
collaborative
applications that
satisfy appropriate
temporal properties

• addressed in Chapter 8 through the GtK architectural framework

• supports GtK separable notification server that provides pace impedance

• GtK is built on a distributed object layered infrastructure

• Event Manager: uses asynchronous protocol for messages and events

• Notification Manager: handles main functions of GtK

• two pace parameters: maximum event queue length + delay time

• GtK maintains a queue of outstanding events for each recipient

• GtK flushes events for broadcast when either pace parameter is reached

• user clients use ‘change frequency’ event to change rate of notification

• GtK does not address volume impedance and event ordering

2: demonstrate the
feasibility of the
conceptual framework
by using it as a basis
for
developing an
exemplar that provides
collaborative users
with
a temporal behaviour
that meets their pace
of interaction

• addressed in Chapter 9 through Web conferencing exemplar

• Conference Manager − on server
 − holds central data for conferences

• user client − applet on Web browser
 − provide user interface and rapid feedback

• GtK is only loosely coupled to the Conference Manager

• clients register pace interest for conferences
 − top conference window (user focus) => high pace
 − other conferences (users’ periphery) => low pace

• GtK matches pace of feedthrough with users interest rates
 − focus conference => almost instantaneous updates
 − other conferences => less frequent updates

Chapter 11 Conclusion

 212

• GtK readjusts pace of feedthrough as users’ focus change
 − sends outstanding contributions immediately

• use of top window to manage feedthrough is only a function of exemplar
 − but not limited to it

3: evaluate the
effectiveness of the
approach embodied
by the model

• addressed in Chapter 9 + Chapter 10

• objective 2 shows GtK can be used for temporally rich exemplar

• client objects register pace frequency with GtK
 − high pace (focus conference) => default pace parameters
 − low pace (other conferences) =>pre-defined pace parameters

• GtK maintains conference contributions in a queue
 − high pace ⇒ flushes queue immediately
 − low pace ⇒ remain in queue until either pace parameter is reached

• exemplar demonstrates GtK as impedance matcher
 − restricted pace of feedthrough => temporal reduction
 − chunking of transmitted information => network reduction

• notification and data service only loosely coupled in GtK framework
 − offers many architectural possibilities

• GtK is a 'pure' notification server within framework
 − GtK can satisfy other arrangements in notification server taxonomy
 − but framework will need to be modified

• GtK can also function in distributed environment with multiple data sources

• can use GtK framework in a dynamic mobile environment
 − match users’ rate of feedthrough with their location

• GtK framework uses star configuration for event management
 − correct order for same event types even with impedance matching
 − but better support requires substantial algorithms

• GtK can interact with other types of data without affecting its code
 − in particular, legacy data

Table 11.2 Summary of how objectives have been met

Chapter 11 Conclusion

 213

11.3 Broader research themes

The work described in the thesis has taken place over a number of years. Consequently, it
has already led and contributed to a number of projects that are not described in the thesis.
This section examines the broader themes that this work has been leading out into research
for a long time. This also acts as a test to the value of the concepts and the work within the
thesis.

The first contribution originates from the study of temporal problems during long-term
interaction. The second stems from the analytic technique employed in investigating
collaborative architectures on the Web. The third emerges from the main focus of this
work, which was primarily concerned with the underlying computational infrastructure to
support feedthrough in collaborative systems.

11.3.1 Trigger analysis

The insights gained from the study into long-term interaction (described in the Appendix)
have important ramifications that have reached far afield from the scope of the thesis. Both
the case study and its later application16 reinforced the collaborative aspects of
organisational modelling and emphasised the importance of reminders as an enabling
mechanism for resuming activities following delays and interruptions.

The 4Rs (Request, Receipt, Response, Release) framework is a generic pattern, which
repeats itself with similar triggers and similar failure modes. The 4Rs framework can be
applied to any process-oriented task analysis. The existence of generic patterns can
uncover potential problems before they actually occur and solutions found in one situation
can be adapted and applied to another. Also, any deviation in the generic pattern will
indicate possible breakdown points.

The trigger analysis technique has therefore been proposed as a method for task
decomposition in HCI (Dix et al., 2003) and it can be used in conjunction with many task
analysis and workflow methods. The strength of the 4Rs analysis lies in uncovering triggers
that cause each process to occur. Triggers can determine whether a process is robust to
interruptions or forgetfulness and if not, identify the cause of the failure and the instance
where any problem is likely to arise. The theoretical and practical design implications of the
4Rs analysis can benefit anyone who is investigating the ecology of the workplace.

16 MaPPiT project for mapping the Placement Process with Information Technology, a HEFCE project.
Details available at: http://www.hud.ac.uk/scom/mappit/home2.htm

Chapter 11 Conclusion

 214

11.3.2 Analysing architectural options for mobile interfaces

There has recently been a massive growth in mobile communications and mobile computing.
Although the end points here may be well understood (but in the case of small mobile
devices difficult to design for), the network itself is much more dynamic than even the
Internet, with limited bandwidth, temporary disconnection, and an ever changing network
topology. The widespread use of mobile devices has increased the importance of designing
appropriate user interfaces for mobile environment. This is reflected by the growing
research interests in communities such as CSCW, mobile HCI and Ubicomp.

The need to consider the dynamic nature of this infrastructure and its effects on interaction
places new demands on the software architecture and the overall role of the architecture.
Essentially, software architecture is about 'what goes where'. In stationary networks, the
'where's tend to be fairly obvious and are normally characterised as either clients or servers.
Even this can lead to a rich set of architectural alternatives, as described in Chapter 5.
However, in mobile systems, the changing network topology suggests a much richer set of
possibilities.

The systematic technique used during the analysis of collaborative architectures on the Web
in Chapter 5 was applied in a later research project17 to investigate software architecture
options for mobile user-interfaces. This generated a PoP mobile framework (Dix et al.,
2000) which clarified the design options of mobile systems with the aim of improving
collaborative interaction.

There is an important trade-off between efficiency and locality issues in a mobile
environment as people are more likely to move between contexts. These complex issues
can be thoroughly analysed by combining the PoP mobile framework (Dix et al., 2000) with
that of the notification server taxonomy (Ramduny et al., 1998). Such an analysis remains a
very interesting possibility for extending this work.

11.3.3 Requirements for notification mechanisms

The main concern of this work was on the underlying computational infrastructure that
enables collaborative systems to support feedthrough, and in particular, in the requirements
and design of notification servers. This work has highlighted three main requirements for
notification mechanisms to support feedthrough and awareness:

(a) the notification server should be a separate component

(b) it should be possible to control the pace of notification

(c) it should be possible to control the quality/fidelity of notified information

17 Interfaces and Infrastructure for Mobile Multimedia Applications research project − as part of the
EPSRC MNA programme, GR/L64140 & GR/L64157

Chapter 11 Conclusion

 215

The issue of separability (a) led to the investigation of the design space of notification
servers, as described in Chapter 6. The systematic method applied to categorise the design
options of notification servers contributes to the academic credibility of the discipline, as it
clarifies the similarities and differences between different example systems and identifies new
directions. The framework for notification servers commenced a design vocabulary in
CSCW (Ramduny et al., 1998) for the implementation of notification services with the aim
of improving design.

The taxonomy of notification server types highlighted the critical features of a 'pure'
notification server, separate from the data it regulates and the clients it supports. This work
has confirmed, through the development of GtK, that notification servers should be
regarded as separate entities − certainly at a conceptual level and often physically distinct.

The possibility for controlling the pace of notification (b) was explored through pace
impedance matching. GtK implemented pace impedance based on both ‘time delay’ and
‘number of outstanding updates’. Pace impedance matching facilitates the development of
client applications that require rapid detailed feedthrough for goal-directed activities while
supporting lower pace and lower granularity notification for awareness purposes.

The last requirement (c) for notification mechanisms corresponds to volume impedance
matching. Although volume impedance can be supported within the GtK infrastructure, it
has not been implemented in this work. Volume impedance can largely be met by having
different forms of application-specific, low-granularity update events. However, more
generic approaches to this issue would be a valuable extension to this work.

The GtK framework thus implements both requirements (a) and (b) for a Web-based
feedthrough and awareness infrastructure. Table 11.3 compares the main functionalities of
GtK with some existing notification systems.

notification system functionalities

GtK • pure notification service ∗

• pace impedance matching support feedthrough and awareness ∗

• explicit notification to improve user-level performance ∗

NSTP • tightly bound notification service

• cannot be re-used with different types of data

• no consideration for time and pace issues

Elvin • pure notification service ∗

• only operates at the system level with little explicit user notification

• no impedance matching

Table 11.3 Comparing GtK with other notification systems

Although Elvin (Fitzpatrick et al., 1999) supports a 'pure' notification service, it primarily
operates at the system level by allowing applications to exchange notifications. It has very
little explicit support for user notification and impedance matching is non-inexistent.

Chapter 11 Conclusion

 216

NSTP (Patterson et al., 1996) instead offers a bundled solution that combines the data
service and the notification service. This restricts its capability for reuse in a different
environment with different types of data. Performance considerations of time and pace are
also absent.

GtK is the only extant notification service that embodies true separability from data, while
also providing pace impedance matching to improve temporal behaviour, thus increasing
user-level performance and reducing network load.

11.4 Final remark

Timing issues are becoming increasingly more important on both large scale group work and
fine scale networked environments. Delays and temporal properties are vital concerns in
the design of ubiquitous and mobile devices. Thus, the understanding of temporal problems
and the management of delays are likely to become ever more significant.

As the thesis is being finalised, a whole session was devoted to the issues of time in the
recent CSCW conference where some studies (Begole et al., 2002), (Reddy and Dourish,
2002) have applied the notion of rhythm (Zerubavel, 1985) for interpreting the temporal
pattern of work iterated over time and for coordinating work. By integrating rhythms in
system design, people not only become aware of their current activities but they can also
see how those activities are related to past activities and how they may influence future
activities.

Current research on notification servers (Shen and Sun, 2002) is also drawing on the work
on notification server taxonomy described in the thesis. Timing issues are already playing a
major role in the provision of awareness or notification services and their importance will
continue in the future.

217

References

(Abowd and Dix, 1994) Abowd, G. and Dix, A. (1994) Integrating status and event
phenomena in formal specifications of interactive systems,
SIGSOFT'94, New Orleans, ACM Press, pp. 44-52.

(Anderson, 1994) Anderson, R. J. (Ed.) (1994) Representations and
Requirements : The Value of Ethnography in System
Design, Human-Computer Interaction, Vol. 9, Lawrence
Erlbaum pp. 151-182.

(Baecker et al., 1995) Baecker, R., Grudin, J., Buxton, B. and Greenberg, S.
(Eds.) (1995) Readings in Human-Computer
Interaction:Towards the Year 2000, Second edition,
Morgan-Kaufman pp. 950.

(Barth, 1986) Barth, P. S. (1986) An Object-Oriented Approach to
Graphical Interfaces, In ACM Transactions on Graphics,
5 (2), pp. 142-172.

(Bass, 1993) Bass, L. (1993) Architectures for Interactive Software
System: Rationale and Design, In Trends in Software Issue
on User Interface Software, 1, pp. 31-44.

(Beaudouin-Lafon and Karsenty, 1992) Beaudouin-

(Begeman et al., 1986) Begeman, M., Cook, P., Ellis, C., Graf, M., Rein, G. and
Smith, T. (1986) Project Nick: meetings augmentation and
analysis, Proceedings of the ACM 1986 conference on
Computer Supported Cooperative Work, Austin, Texas,
ACM Press.

(Begole et al., 2002) Begole, J. B., Tang, J. C., Smith, R. B. and Yankelovich,
N. (2002) Work Rhythms: Analyzing Visualisations of
Awareness Histories of Distributed Systems, Proceedings
of Computer Supported Collaborative Work (CSCW
2002), New Orleans, USA, ACM Press, pp. 334-343.

(Benford et al., 1993) Benford, S., Bullock, A., Cook, C., Harvey, P., Ingram, P.
and Lee, O. (1993) From room to cyberspace: models of
interaction in large virtual computer spaces, In Interacting
with Computers, 5 (2), pp. 217-237.

(Benford and Fahlén, 1993) Benford, S. and Fahlén, L. (1993) A Spatial model of
Interaction in Large virtual Environments, Proceedings of

 References

 218

the third European Conference on CSCW, ECSCW'93,
Sept., Milan, Italy, Kluwer Academic, pp. 109-124.

(Benford et al., 1994a) Benford, S., Bowers, J., Fahlén, L., Mariani, J. and
Rodden, T. (1994) Supporting Cooperative Work in Virtual
Environments, In The Computer Journal, 37 (8), pp. 653-
668.

(Benford et al., 1994b) Benford, S., Fahlen, L., Greenhalge, C. and Bowers, J.
(1994) Managing mutual awareness in collaborative virtual
environments, ACM SIGCHI conference on Virtual
Reality and Technology (VRST'94), Singapore, ACM
Press.

(Benford et al., 1997) Benford, S., Greenhalgh, C. and Lloyd, D. (1997)
Crowded Collaborative Virtual Environments, Proceedings
of CHI'97, March 22-27, Atlanta, Georgia, pp. 59-66.

(Bentley et al., 1992a) Bentley, R., Hughes, J. A., Randall, D., Rodden, T.,
Sawyer, P., Shapiro, D. and Sommerville, I. (1992)
Ethnographically-informed systems design for air traffic
control, Proceedings of CSCW'92, Nov., Toronto,
Ontario, ACM Press, pp. 123-129.

(Bentley et al., 1992b) Bentley, R., Hughes, J. A., Randall, D. and Shapiro, S. Z.
(1992) Technological support for decision making in a
safety critical environment, Computing Department,
Lancaster University, CSCW/5/92.

(Bentley, 1994) Bentley, R. (1994) Supporting Multi-User Interface
Development for Cooperative Systems, PhD Thesis,
University of Lancaster, UK.

(Bentley et al., 1994) Bentley, R., Rodden, T., Sawyer, P. and Sommerville, I.
(1994) Architectural support for cooperative multi-user
interfaces, In IEEE COMPUTER special issue on CSCW,
27 (5), pp. 37-46.

(Bentley et al., 1996) Bentley, R., Horstmann, T., Sikkel, K. and Trevor, J.
(1996) The BSCW Shared Workspace System, In ERCIM
workshop on CSCW and the Web (Eds, U. Busbach, D.
Kerr and K. Sikkel), GMD/FIT, Sankt Augustin, Germany.

(Bentley, 1997) Bentley, R. (1997) Time and the Web: Experiences from
BSCW, Time and the Web Seminar, June, Staffordshire
University.

 References

 219

(Bentley et al., 1997a) Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr,
D., Sikkel, K., Trevor, J. and Woetzel, G. (1997) Basic
Support for Cooperative Work on the World Wide Web,
In International Journal of Human-Computer Studies,
special issue on 'Innovative Applications of the World
Wide Web', 46, pp. 827-846.

(Bentley et al., 1997b) Bentley, R., Horstmann, T. and Trevor, J. (1997) The
World Wide Web as Enabling Technology for CSCW: The
Case of BSCW, In Computer Supported Cooperative
Work: The journal of Collaborative Computing, 6, pp.
111-134.

(Berners-Lee et al., 1994) Berners-Lee, T., Cailliau, R., Luotonen, A., Frystyck
Nielsen, H. and Secret, A. (1994) The World Wide Web,
In Communications of the ACM, 37 (8), pp. 76-82.

(Bier and Freeman, 1992) Bier, E. and Freeman, S. (1992) MMM: A user interface
architecture for shared editors on a single screen,
Proceedings of UIST'91, Hilton Head, pp. 79-86.

(Brewster, 1994) Brewster, S. A. (1994) Providing a structured method for
integrating non-speech audio into human-computer
interfaces, PhD Thesis, University of York, UK.

(Brewster et al., 1994) Brewster, S. A., Wright, P. C. and A.D.N., E. (1994) The
design and evaluation of an auditory-enhanced scrollbar,
Proceedings of CHI'94, Boston, Massachusett, ACM
Press, pp. 173-179.

(Brink and Gomez, 1992) Brink, T. and Gomez, L. M. (1992) A Collaborative
Medium for the Support of Conversational Props,
Proceedings of CSCW'92, Nov., Toronto, Ontario, ACM
Press, pp. 171-178.

(Byrne and Picking, 1997) Byrne, A. and Picking, R. (1997) Is Time Out to be the Big
Issue?, Time and the Web Seminar, June, Staffordshire
University.

(Card et al., 1983) Card, S. K., Moran, T. P. and Newell, A. (1983) The
psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

(Card et al., 1991) Card, S. K., Robertson, G. C. and Mackinlay, J. D. (1991)
The information visualizer: An information workspace,
CHI'91 Conference Proceedings : Human Factors In
computing Systems, 28 April-2 May, New Orleans, LA,
ACM Press, pp. 181-188.

 References

 220

(Computer, 1985) Computer, A. (1985) Inside Macintosh, Addison-Wesley.

(Conn, 1995) Conn, A. P. (1995) Time affordances: the time factor in
diagnostic usability heuristic, CHI'95 Conference
Proceedings: Human Factors In computing, ACM Press,
pp. 186-193.

(Coutaz, 1987) Coutaz, J. (1987) PAC, An Object Oriented Model For
Dialog Design, Human-Computer Interaction -
INTERACT '87 (Eds, H.J. Bullinger and B. Shackel), pp.
431-436.

(Crowley et al., 1990) Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and
Tomlinson, R. (1990) MMConf: An infrastructure for
building shared multimedia application, Proceedings of
CSCW'90, ACM Press, pp. 329-342.

(Curtis et al., 1988) Curtis, B., Krasner, H. and Iscoe, N. (1988) A Field Study
of the Software Design Process for Large Systems, In
Communications of ACM, 31 (11), pp. 1268-1287.

(Cypher, 1986) Cypher, A. (1986) The Structure of Users' Activities, In
User Centred System Design - New Perspectives on
Human Computer Interaction (Eds, D.A Norman and S.
Draper Lawrence), Erlbaum Associates, pp. 243-263.

(Dewan, 1990) Dewan, P. (1990) A tour of the Suite user interface
software, UIST'90: Proceedings of 3rd ACM SIGGRAPH
Symposium on User Interface Software and Technology,
ACM Press, pp. 57-65.

(Dewan and Choudhary, 1991) Dewan, P. and Choudhary, R. (1991) Primitives for Programming Multi

(Dewan, 1992) Dewan, P. (1992) Principles of designing multi-user user
interface development environments, Proc. 5th IFIP
Working Conf. on Engineering for HCI (Eds, J. Larson
and C. Unger), August, Ellivuori , Finland, pp. 35-48.

(Dewan and Choudary, 1992) Dewan, P. and Choudary, R. (1992) A High-level and
Flexible Framework for Implementing MultiUser User
Interfaces, In ACM Transactions on Information
Systems, 10 (4), pp. 345-380.

(Dewan, 1993) Dewan, P. (1993) Tools for Implementing Multiuser User
Interfaces, In Trends in Software: Issue on User Interface
Software, 1, pp. 149-172.

 References

 221

(Diaper, 1989) Diaper, D. (1989) Task Analysis for Knowledge
Descriptions (TAKD); the method and an example, In Task
Analysis for Human-Computer Interaction (Ed, D.
Diaper), Chapter 4, Ellis Horwood, Chichester, pp. 108-
159.

(Dix et al., 1993) Dix, A., Finlay, J., Abowd, G. and Beale, R. (1993)
Human-Computer Interaction, second edition 1998,
Prentice Hall.

(Dix, 1994a) Dix, A. (1994) Que sera sera - The problem of the future
perfect in open and cooperative systems., Proceedings of
HCI'94: People and Computers IX, Glasgow, Cambridge
University Press, pp. 397-408.

(Dix et al., 1995) Dix, A., Ramduny, D. and Wilkinson, J. (1995)
Interruptions, Deadlines and Reminders: Investigations into
the Flow of Cooperative Work, University of Huddersfield,
RR9509.

(Dix and Abowd, 1996a) Dix, A. and Abowd, G. (1996) Modelling status and event
behaviour of interactive systems, In Software Engineering
Journal, 11 (6), pp. 334-346.

(Dix and Abowd, 1996b) Dix, A. and Abowd, G. (1996) Delays and Temporal
Incoherence Due to Mediated Status-Status Mappings, In
SIGCHI Bulletin, 28 (2), pp. 47-49.

(Dix et al., 1996) Dix, A., Ramduny, D. and Wilkinson, J. (1996) Long-Term
Interaction: Learning the 4Rs, CHI'96 Conference
Companion Proceedings: Human Factors In computing
Systems, Apr., Vancouver, British Columbia, ACM Press,
pp. 169 -170.

(Dix, 1997) Dix, A. (1997) Challenges and Perspectives for
Cooperative Work on the Web: An Analytical Approach, In
CSCW: The Journal of Collaborative Computing, 6 (2-
3), pp. 135-156.

(Dix, 1998) Dix, A. (1998) Finding Out - event discovery using status-
event analysis, Formal Aspects of Human Computer
Interaction FAHCI98, 5-6th September 1998, Sheffield.

(Dix et al., 1998) Dix, A., Ramduny, D. and Wilkinson, J. (1998) Interaction
in the large, In Interacting With Computers, Special Issue
on Temporal Aspects of Usability, 11, pp. 9-32.

 References

 222

(Dix et al., 2000) Dix, A., Ramduny, D., Rodden, T. and Davies, N. (2000)
Places to stay on the move: software architectures for
mobile user interfaces, In Personal Technologies - Special
Issue on Human Computer Interaction with Mobile
Devices, 4 (2), pp. 171-181.

(Dix et al., 2003) Dix, A., Ramduny, D. and Wilkinson, J. (2003) Trigger
Analysis: understanding broken tasks, In The Handbook of
Task Analysis for Human-Computer Interaction (Eds, D.
Diaper and N. Stanton), Lawrence Erlbaum Associates.

(Dix, 1987) Dix, A. J. (1987) The Myth of the Infinitely Fast Machine,
Proceedings of the Third Conference of the BCS HCI
SIG: People and Computers III, Cambridge University
Press, pp. 215-228.

(Dix, 1991) Dix, A. J. (1991) Formal Methods for Interactive
Systems, Academic Press.

(Dix, 1992a) Dix, A. J. (1992) Pace and interaction, Proceedings of
HCI'92: People and Computers VII, Sept., York,
Cambridge University Press, pp. 193-208.

(Dix, 1992b) Dix, A. J. (1992) Beyond the Interface, Engineering for
Human-Computer Interaction: Proceedings of IFIP
TC2/WG2.7 Working Conference, Ellivuori, Finland,
North-Holland.

(Dix, 1994b) Dix, A. J. (Ed.) (1994) Computer-supported cooperative
work - a framework, Design Issues in CSCW, D.
Rosenburg and C. Hutchison (Series Eds.), Springer Verlag,
Berlin pp. 9-26.

(Dix, 1995a) Dix, A. J. (1995) Cooperation without (reliable)
Communication: Interfaces for Mobile Applications, In
Distributed Systems Engineering, 2 (3), pp. 171-181.

(Dix, 1995b) Dix, A. J. (1995) LADA-A logic for the analysis of
distributed action, Interactive Systems: Design,
Specification and Verification (Ed, F. Paternó), 1st
Eurographics Workshop, Bocca di Magra, Italy, June 1994,
Springer Verlag, Berlin, pp. 317-332.

(Dourish and Bellotti, 1992) Dourish, P. and Bellotti, V. (1992) Awareness and
coordination in shared workspaces, CSCW'92, Toronto,
Canada, ACM Press, pp. 107-114.

 References

 223

(Dourish and Bly, 1992) Dourish, P. and Bly, S. (1992) Supporting Awareness in a
Distributed Work Group, Human Factors in Computing
Systems, CHI'92 Conference Proceedings, Monterey,
CA, pp. 541-547.

(Edmonds, 1992) Edmonds, E. A. (Ed.) (1992) The Separable User
Interface, Computer and People Series, Academic Press.

(Ellis et al., 1990) Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1990) Design and
use of a group editor, Proceedings of the IFIP
Engineering for Human-Computer Interaction
Conference (Ed, G. Cockton), North-Holland,
Amsterdam, pp. 13-15.

(Ellis et al., 1991) Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1991)
Groupware: Some issues and experiences, In
Communications of the ACM, 34 (1), pp. 38-58.

(Ellis et al., 1994) Ellis, G. P., Finlay, J. E. and Pollitt, A. S. (1994)
HIBROWSE for Hotels: bridging the gap between user and
system views of a database, IDS'94 2nd International
Workshop on User Interfaces to Databases, April 1994,
Ambleside, UK, Springer Verlag, Workshops in Computer
science (July 1994), pp. pp.45-58.

(Engelbart, 1975) Engelbart, D. (1975) NLS Teleconferencing Features, In
Proceedings of Fall COMPCON, pp. 173-176.

(Ensor et al., 1988) Ensor, J. R., Ahuja, S. R., Horn, D. N. and Lucco, S. E.
(1988) The Rapport Multimedia Conferencing System: A
Software Overview, Proceedings of the 2nd IEEE
Conference on Computer Workstations, March, pp. 52-
58.

(Erickson et al., 1999) Erickson, T., Smith, D. N., Kellogg, W. A., Laff, M. R.,
Richards, J. T. and Bradner, E. (1999) Socially translucent
systems: Social proxies, persistent conversation and the
design of 'Babble', Proceedings of CHI'99, May 15-20,
Pittsburgh, PA, ACM, New York, pp. 72-79.

(Fielding et al., 1997) Fielding, R., Gettys, J., Moghul, J., Frystyk, H. and
Berners-Lee, T. (1997) Hypertext Transfer Protocol --
HTTP/1.1, In RFC 2068, U.C. Irvine, DEC, MIT/LCS.

(Fitzpatrick et al., 1995) Fitzpatrick, G., Tolone, W. and Kaplan, S. (1995) Work,
Locales and Distributed Social Worlds, ECSCW'95, 10-14
September 1995, Stockholm, Dordrecht: Kluwer, pp. 1-16.

 References

 224

(Fitzpatrick et al., 1999) Fitzpatrick, G., Mansfield, T., Kaplan, S., Arnold, D.,
Phelps, T. and Segall, B. (1999) Augmenting the workaday
world with Elvin, Proceedings of the sixth European
Conference on Computer Supported Cooperative Work
(ECSCW'99) (Eds, S. Bødker, M. Kyng and K. Schmidt),
12-16 September 1999, Copenhagen, Denmark, Kluwer
Academic Publishers, Netherlands, pp. 431-450.

(Flannagan, 1997) Flannagan, D. (1997) Java in a Nutshell, 2nd Edition (Java
1.1), O'Reilly.

(Foundation, 1989) Foundation, O. S. (1989) OSF/Motif, Programmer's
Reference Manual., In Open Software Foundation.

(Garfinkel, 1967) Garfinkel, H. (1967) Studies in Ethnomethodology,
Prentice Hall, Englewood Cliffs, NJ.

(Gaver et al., 1992) Gaver, W., Moran, T., MacLean, A., Lövstrand, L.,
Dourish, P., Carter, K. and Buxton, W. (1992) Realizing a
Video Environment: EuroPARC's RAVE System,
Proceedings of CHI'92: Human Factors in Computing
Systems (Eds, P.Bauersfield, J.Bennett and G. Lynch),
ACM Press, pp. 27-35.

(Gillian and Breedin, 1990) Gillian, D. J. and Breedin, S. D. (1990) "Designers" Models
of Human-Computer Interface, Proceedings of
SICCHI'90, Apr. 1990, Seattle, WA, pp. 391-398.

(Gleick, 2000) Gleick, J. (2000) Fa:st:er the acceleration of just about
everything, Reissue 6 July, 2000, Abacus, London.

(Goland et al., 1999) Goland, Y. Y., J., W. J. E., Faizi, A., Carter, S. R. and
Jensen, D. (1999) HTTP Extensions for Distributed
Authoring -- WEBDAV, In RFC 2518, Microsoft, U.C.
Irvine, Netscape, Novell.

(Gram and Cockton, 1996) Gram, C. and Cockton, G. (Eds.) (1996) Design
Principles for Interactive Software, Chapman & Hall,
UK.

(Grasso et al., 1997) Grasso, A., Meunier, J., Pagani, D. and Pareschi, R. (1997)
Distributed Coordination and Workflow on the World Wide
Web, In Computer Supported Cooperative Work: The
Journal of Collaborative Computing, pp. 175-200.

(Gray et al., 1994) Gray, P., England, D. and McGowan, S. (1994) XUAN:
Enhancing UAN to Capture Temporal Relationships among

 References

 225

Actions, Proceedings of HCI'94: People and Computers
IX, Glasgow, Cambridge University Press, pp. 301-312.

(Greenberg, 1990) Greenberg, S. (1990) Sharing views and interactions with
single-user applications, Proceedings of COIS'90,
Cambridge, Massachussets, pp. 227-237.

(Greenberg et al., 1992a) Greenberg, S., Roseman, M., Webster, D. and Bohnet, R.
(1992) Issues and experiences in implementing two group
drawing tools, IEEE Proc. 25th Annual Hawaii Intl.
Conf. System Sciences, Vol. 4, pp. 139-150.

(Greenberg et al., 1992b) Greenberg, S., Roseman, M., Webster, D. and Bohnet, R.
(1992) Human and technical factors of distributed group
drawing tools, In Interacting with Computers, 4 (3), pp.
364-392.

(Greenhalgh and Benford, 1995) Greenhalgh, C. and Benford, S. (1995) Massive: A virtual reality system for teleconferencing, In

(Greenhalgh et al., 2000) Greenhalgh, C., Purbrick, J. and Snowdon, D. (2000)
Inside MASSIVE-3: flexible support for data consistency
and world structuring, Proceedings of the third
international conference on Collaborative virtual
environments, ACM Press, pp. 119-127.

(Gust, 1988) Gust, P. (1988) SharedX: X in a distributed group work
environment, 2nd annual X Conference.

(Hall et al., 1996) Hall, R. W., Mathur, A., Jahanian, F., Prakash, A. and
Rassmussen, C. (1996) Corona: A Communication Service
for Scalable, Reliable Group Collaborative Systems, ACM
Conference on Computer Supported Cooperative Work
(CSCW 96), Nov. 1996., Boston, MA, ACM Press, pp.
140-149.

(Hammersley and Atkinson, 1995) Hammersley, M. and Atkinson, P.

(Hayne et al., 1993) Hayne, S., Pendergast, M. and Greenberg, S. (1993)
Gesturing through cursors: Implementing multiple pointers in
group support systems, Proceedings of the HICSS Hawaii
International Conference on System Sciences, Vol. IV,
January 1993, Los Alamitos, Calif., IEEE Computer
Society, pp. 4-12.

(Heath et al., 1993) Heath, C., Jirokta, M., Luff, P. and Hindmarsh, J. (1993)
Unpacking Collaboration: The Interactional Organisation of
Trading in a City Dealing Room, Proceedings of

 References

 226

ECSCW'93, Sept., Milan, Italy, Kluwer Academic
Publishers, Dordrecht, pp. 155-171.

(Heath and Luff, 1994) Heath, C. and Luff, P. (1994) Crisis management and
multimedia technology in London Underground line control
rooms, In Journal of CSCW, 1 (1-2), pp. 69-94.

(Herskind, 1997) Herskind, S. (1997) Computer support for temporal
aspects of coordination of cooperative work, ECSCW'97
Conference Supplement, Lancaster, UK, Kluwer
Academic Press, Dordrecht, pp. 67.

(Hill, 1992) Hill, R. D. (1992) The Abstraction-Link-View Paradigm:
Using Constraints to connect User Interfaces to
Applications, Proceedings of CHI'92, ACM Press, pp.
335-343.

(Hill et al., 1994) Hill, R. D., Brinck, T., Rohall, S. L., Patterson, J. F. and
Wilner, W. (1994) The Rendezvous Architecture and
Language for Constructing Multiuser Applications, In ACM
Transactions on Computer-Human Interaction, 1 (2),
pp. 81-125.

(Hix, 1990) Hix, D. (1990) Generations of User-Interface Management
Systems, In IEEE Software, (Sept.), pp. 77-87.

(Hudson et al., 2002) Hudson, J. M., Christensen, J., Kellogg, W. A. and
Erickson, T. (2002) "I'd be overwhelmed, but it's just one
more thing to do": Availability and interruption in research
management, Proceedings ACM Conference on Human
Factors in Computing Systems (CHI'02), ACM Press,
pp. 97-104.

(Ingram et al., 1996) Ingram, R. J., Benford, S. D. and Bowers, J. M. (1996)
Building Virtual Cities: Applying Urban Planning principles
to the Design of Virtual Environments, Proceedings
VRST'96, July 1-4, Hong Kong, ACM Press, pp. 83-91.

(Johnson and Gray, 1995) Johnson, C. and Gray, P. (Eds.) (1995) Workshop on
Temporal Aspects of Usability, 2, Vol. 28, SIGCHI
Bulletin.

(Johnson et al., 1995) Johnson, C. W., McCarthy, J. and Wright, P. C. (1995)
Using Petri Nets to support natural language in accident
reports, In Ergonomics, 38 (6), pp. 1265-1283.

(Johnson, 1997) Johnson, C. W. (1997) The impact of time and place on the
operation of mobile computing devices, Proceedings of

 References

 227

HCI'97: People and Computers XII, Bristol, UK, pp.
175-190.

(Joosten, 1994) Joosten, S. (1994) Trigger modelling for workflow analysis,
Proceedings of CON'94: Workflow Management (Ed, R.
Oldenbourg), Vienna, pp. 236-247.

(Knight and Munro, 1998) Knight, C. and Munro, M. (1998) Using an Existing Game
Engine to Facilitate Multi-User Software Visualization, In
Second Annual Workshop on System Aspects of Sharing
a Virtual Reality.

(Krasner and Pope, 1988) Krasner, G. E. and Pope, S. T. (1988) A Cookbook for
Using the Model-View-Controller User Interface Paradigm
in Smalltalk-80, In Journal of Object Oriented
Programming, 1 (3), pp. 26-49.

(Kuhmann et al., 1987) Kuhmann, W., Boucsein, W., Schaefer, F. and Alexander,
J. (1987) Experimental investigation of Psychophysical
Stress-Reactions induced by different Response Times in
Human-Computer Interaction, In Ergonomics, 30 (6), pp.
933-943.

(Kutar, 2001) Kutar, M. S. (2001) Specification of Temporal Properties
of Interactive Systems, PhD Thesis, University of
Hertfordshire, UK.

(Lamport, 1978) Lamport, L. (1978) Time, Clocks, and the Ordering of
Events in a Distributed System, In Communications of the
ACM, 21 (7), pp. 558-565.

(Lantz, 1986) Lantz, K. A. (1986) An Experiment in Integrated
Multimedia Conferencing, Proceedings of Conference on
Computer-Supported Cooperative Work, December, pp.
267-275.

(Lauwers and Lantz, 1990) Lauwers, J. C. and Lantz, K. A. (1990) Collaboration
Awareness in support of Collaboration Transparency:
Requirements for the next generation of shared window
systems, CHI'90 Conference Proceedings: Human
Factors computing Systems, Apr., Seattle, Washington,
ACM Press, pp. 303-311.

(Lee et al., 1997) Lee, A., Girgensohn, A. and Schlueter, K. (1997) NYNEX
Portholes: Initial User Reactions and Redesign Implications,
Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work (GROUP'97),
Phoenix, AZ, pp. 385-394.

 References

 228

(Leland et al., 1988) Leland, M. D. P., Fish, R. S. and Kraut, R. E. (1988)
Collaborative document production using quilt, Proceedings
of CSCW'88, Sept., Portland Oregon, ACM Press, pp.
206-215.

(Lewis, 1995) Lewis, S. (1995) The Art and Science of Smalltalk,
Hewlett-Packard, Prentice Hall.

(Linton, 1993) Linton, M. A. (1993) Making User Interfaces Easy-to-
Build, In User Interface software (Eds, L. Bass and P.
Dewan), pp. 45-59.

(Long, 1976) Long, J. (1976) Effects of delayed irregular feedback on
unskilled and skilled keying performance, In Ergonomics,
19 (2), pp. 183-202.

(Macedonia et al., 1994) Macedonia, M., Zyda, M., Pratt, D., Barham, P. and
Zeswitz, S. (1994) NPSNET: A Network Software
Architecture for Large-Scale Virtual Environments, In
Presence: Teleoperators and Virtual Environments, 3
(4), pp. 265-287.

(McManus, 1997) McManus, B. (1997) Compensatory Actions for Time
Delays, Time and the Web Seminar, June, Staffordshire
University.

(Microsoft, 1993) Microsoft (1993) Microsoft Windows, Version 3.1.

(Microsystems, 1996) Microsystems, S. (1996) Java: Programming for the Internet

(Miller, 1956) Miller, G. A. (1956) The magical number seven, plus or
minus two: some limits on our capacity to process
information., In Psychological Review, 63 (2), pp. 81-97.

(Miller, 1968) Miller, R. B. (1968) Response time in man-computer
conversational transactions, 33, Proceedings of the AFIPS
Fall joint Computer Conference, pp. 267-277.

(Miyata and Norman, 1986) Miyata, A. and Norman, D. A. (1986) Psychological Issues
in Support of Multiple Activities, In User Centred System
Design - New Perspectives on Human Computer
Interaction (Eds, D.A. Norman and S. Draper), Lawrence
Erlbaum Associates, pp. 265-284.

(Myers, 1985) Myers, B. A. (1985) The importance of percent-done
indicators for computer-human interfaces., Proceedings of
CHI'85: Human Facors in Computing Systems, 14-18
April, San Francisco, CA, ACM Press, pp. 11-17.

 References

 229

(Myers, 1989) Myers, B. A. (1989) User-Interface Tools: Introduction
and survey, In IEEE Software, pp. 15-23.

(Myers, 1990) Myers, B. A. (1990) A New Model for Handling Input, In
ACM Transactions on Information Systems, 8 (3), pp.
289-320.

(Myers et al., 1990) Myers, B. A., Guise, D. A., Dannenburg, R. B., Vander
Zanden, B., Kosbie, D. S., Pervin, E., Mickish, A. and
Marchal, P. (1990) Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces, In IEEE
Computer, 28 (11), pp. 71-85.

(Myers, 1991) Myers, B. A. (1991) Separating Application Code from
Toolkits: Eliminating the Spaghetti of Call-Backs,
SIGGRAPH Symposium on Users Interface Software
and Technology (UIST'91), Hilton Head, South Carolina,
pp. 211-220.

(Myers, 1995) Myers, B. A. (1995) User Interface Software Tools, In
ACM Transactions on Computer-Human Interaction, 2
(1), pp. 64-103.

(Newell and Simon, 1972) Newell, A. and Simon, H. A. (1972) Human Problem
Solving, Prentice-Hall, Englewood Cliffs, New Jersey.

(Newman, 1968) Newman, W. M. (1968) A System for Interactive Graphical
Programming, Proceedings of the Spring Joint Computer
Conference, Atlantic City, NJ, AFIPS Press, pp. 47-54.

(Nielsen, 1993) Nielsen, J. (1993) Usability Engineering, ACM Press.

(Nielsen, 1995) Nielsen, J. (1995) Multimedia and Hypertext: The
Internet and Beyond, AP Professional, Boston, MA.

(Nielsen, 1997) Nielsen, J. (1997) The need for Speed, Alert box,
http://www.useit.com/alertbox/9703a.html

(Nigay and Coutaz, 1993) Nigay, L. and Coutaz, J. (1993) A Design Space for
Multimodal Systems: Concurrent Processing and Data
Fusion, Proceedings of INTERCHI'93, April 1993, pp.
172-178.

(Norman, 1984) Norman, D. A. (1984) Stages and Levels in Man-Machine
Interaction, In International Journal of Man-Machine
Studies, 21, pp. 365-375.

 References

 230

(Norman, 1986) Norman, D. A. (Ed.) (1986) New views of information
processing: Implications for intelligent decision support
systems, Intelligent Decision Support Process
Environments, E. H. et al. (Series Eds.), Springer-Verlag.

(Norman, 1988) Norman, D. A. (1988) The Psychology of Everyday
Things, Basic Books, New York.

(Olsen Jr, 1992) Olsen Jr, D. (1992) User Interface Management
Systems: Models and Algorithms, Morgan Kaufmann.

(OSF, 1995) OSF (1995) OSF/Motif Programmer's Guide, Revision 2,
Open Software Foundation, Prentice Hall.

(Ousterhout, 1994) Ousterhout, J. K. (1994) An Introduction to Tcl and Tk,
Addison-Wesley.

(Palanque and Bastide, 1995) Palanque, P. and Bastide, R. (1995) Formal specification
and verification of CSCW, Proceedings of the HCI'95
Conference: People and Computers X, Huddersfield,
UK, Cambridge University Press, pp. 213-231.

(Palay, 1988) Palay, A. e. a. (1988) The Andrew toolkit: An Overview,
Winter USENIX Technical conference, Dallas, Texas, pp.
9-12.

(Palfreyman and Rodden, 1996 Palfreyman, K. and Rodden, T. (1996) Protocol for User Awareness on the World Wide Web,

(Paternó and Faconti, 1992) Paternó, F. and Faconti, G. (1992) On the use of LOTOS
to describe graphical interaction, Proceedings of the
HCI'92 Conference: People and Computers VII,
Cambrigde University Press, pp. 155-173.

(Patterson et al., 1990) Patterson, J. F., Hill, R. D., Rohall, L. and Meeks, W. S.
(1990) Rendezvous: An architecture for synchronous multi-
user application, Proceedings of CSCW'90, ACM Press,
pp. 317-328.

(Patterson, 1991) Patterson, J. F. (1991) Comparing the Programming
Demands of Single-User and Multi-User Application, In
Proceedings of the ACM Symposium on User Interface
Software and Technology, pp. 87-94.

(Patterson et al., 1996) Patterson, J. F., Day, M. and Kucan, J. (1996) Notification
Servers for Synchronous Groupware, Proceedings of
CSCW'96, Nov. 1996, Boston, Massachusetts, ACM
Press, pp. 122-129.

 References

 231

(Pausch, 1991) Pausch, R. (1991) Virtual reality on five dollars a day,
Proceedings of Human Factors in Computing Systems,
CHI'91 (Eds, S.P. Robertson, G.M. Olson and J.S. Olson),
New Orleans, Addison Wesley, pp. 265-270.

(Pausch et al., 1992) Pausch, R., Conway, M. and DeLine, R. (1992) Lessons
learned from SUIT, the Simple User Interface Toolkit, In
ACM Transactions of Office Information Systems, 104
(4), pp. 320-344.

(Payne, 1993) Payne, S. J. (1993) Understanding Calendar Use, In
Human-Computer Interaction, 8 (2), pp. 83-100.

(Pfaff and Hagen, 1985) Pfaff, G. and Hagen, P. J. W. (Eds.) (1985) Seeheim
Workshop on User Interface Management Systems,
Berlin, Springer-Verlag.

(Rada, 1995) Rada, R. (1995) Interactive Media, Springer-Verlag, New
York.

(Ramduny, 1994) Ramduny, D. (1994) Increasing User Awareness in UNIX,
B.Sc. Project Report, Lancaster University, UK.

(Ramduny, 1996) Ramduny, D. (1996) Temporal Interface Issues and
Software Architecture for Remore Cooperative Work,
CSCW'96 Doctoral Colloquium.

(Ramduny and Dix, 1997a) Ramduny, D. and Dix, A. (1997) Why, What, Where,
When: Architectures for Cooperative Work on the World
Wide Web, Proceedings of HCI'97, Aug. 1997, Bristol,
UK, Springer-Verlag, pp. 283-301.

(Ramduny and Dix, 1997b) Ramduny, D. and Dix, A. (1997) In the Right Place at the
Right Time: Placement Options for Web-based
Architectures, ECSCW'97 Conference Supplement, Sep,
1997, Lancaster, UK, pp. 37-38.

(Ramduny et al., 1998) Ramduny, D., Dix, A. and Rodden, T. (1998) Exploring the
design space for notification servers., Proceedings of
CSCW'98, Nov. 14-18, Seattle, Washington, ACM Press,
pp. 227-235.

(Ramduny, 1999) Ramduny, D. (1999) Impedance Matching: Enhancing
temporal interactivity on the web, Proceedings of The
Active Web, A British HCI Group Day Conference (Eds,
Dave Clarke, Alan Dix and Fiona Dix), January,
Staffordshire University, UK, pp. 227-235.

 References

 232

(Ramduny and Dix, 2002) Ramduny, D. and Dix, A. (2002) Impedance Matching:
When You Need to Know What, People and Computers
XVI: memorable yet invisible: proceedings of HCI 2002
(Eds, X. Faulkner, J. Finlay and F. Détienne), London, UK,
Springer-Verlag, pp. pp 121 - 137.

(Randall, 1995) Randall, D. (1995) Ethnography for Systems Development:
Bounding the Intersection, University of Huddersfield,
Tutorial Notes HCI'95.

(Reddy and Dourish, 2002) Reddy, M. and Dourish, P. (2002) A Finger on the Pulse:
Temporal Rythms and Information Seeking in Medical
Work, Proceedings of Computer Supported
Collaborative Work (CSCW 2002), New Orleans, USA,
ACM Press, pp. 344-353.

(Reeves, 1996) Reeves, S. (1996) Specifying and reasoning about CSCW,
Design, Specification and Verification of Interactive
Systems '96, Namur, Belgium, Springer Verlag, Berlin, pp.
366-383.

(Rein and C., 1991) Rein, G. and C., E. (1991) rIBIS: a real-time group
hypertext system, In International Journal of Man
Machine Studies, 34 (3), pp. 349-368.

(Rodden and Blair, 1991) Rodden, T. and Blair, B. (1991) CSCW and Distributed
Systems: The problem of Control, Proceedings of the
second European Conference on CSCW (ECSCW'91)
(Eds, L. Bannon, L. M. Robinson and K. Schmidt),
September 25-27, Amsterdam, The Netherlands, Kluwer
Academic Publishers, pp. 49-64.

(Rodden, 1996) Rodden, T. (1996) Populating the Application: A Model of
Awareness for Cooperative Applications, Proceedings of
CSCW'96, Nov. 1996, Boston, Massachusetts, ACM
Press, pp. 87-96.

(Rohall et al., 1992) Rohall, S. L., Patterson, J. F. and Hill, R. D. (1992) Go
Fish! A Multi-User Game in the Rendezvous System,
SIGGRAPH Video Review 76, ACM, NewYork.

(Roseman and Greenberg, 1992) Roseman, M. and Greenberg, S. (1992) GroupKit: A Groupware Toolkit for Building Re

(Rouncefield et al., 1994) Rouncefield, M., Hughes, J. A., Rodden, T. and Viller, S.
(1994) Working with 'Constant Interruption' CSCW and
the Small Office, Proceedings of CSCW'94, Oct., Chapel
Hill, North Carolina, ACM Press, pp. 275-286.

 References

 233

(Sandor et al., 1997) Sandor, O., Bogdan, C. and Bowers, J. (1997) Aether: an
awareness engine for CSCW, Proceedings of ECSCW'97,
Lancaster, UK,, Kluwer Academic, pp. 221-236.

(Satyanarayanan et al., 1990) Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M.
E., Siegel, E. H. and Steere, D. C. (1990) Coda: a highly
available file system for a distributed workstation
environment, In IEEE Transactions Computers, 39 (4),
pp. 447-459.

(Sawyer and Mariani, 1995) Sawyer, P. and Mariani, J. A. (1995) Database systems:
challenges and opportunities for graphical HC, In
Interacting with Computers: the Interdisciplinary
Journal of Human-Computer Interaction, 7 (3), pp. 273-
303.

(Scheifler and Gettys, 1986) Scheifler, R. and Gettys, J. (1986) The X Window System,
In ACM Transactions of Graphics, 5 (2), pp. 79-109.

(Schneiderman, 1983) Schneiderman, B. (1983) Direct Manipulation: A Step
Beyond Programming Languages, In Computer pp. 57-69.

(Sellen and Harper, 1997) Sellen, A. and Harper, R. (1997) Paper as an analytic
resource for the design of new technologies, Proceedings
of the Conference on Human Factors In Computing
Systems CHI'97, ACM Press, pp. 319-326.

(Shen and Sun, 2002) Shen, H. and Sun, C. (2002) Flexible Notification for
Collaborative Systems, Proceedings of Computer
Supported Collaborative Work (CSCW 2002), New
Orleans, USA, ACM Press, pp. 77-86.

(Shepherd, 1995) Shepherd, A. (1995) Task analysis as a framework for
examining HCI tasks, In Perspectives on HCI: Diverse
Approaches (Eds, A. Monk and N. Gilbert), Academic
Press, London, pp. 145-174.

(Shneiderman, 1992) Shneiderman, B. (1992) Response time and display rate, In
Designing the user interface: Strategies for effective
human-computer interaction, 2nd ed., Addison Wesley,
Reading, Mass, pp. 278-301.

(Smith, 1983) Smith, D. (1983) A business case for subsecond response
time: Faster is better, In Computerworld, Vol. 17 (16) pp.
1-11.

(Smith et al., 1989) Smith, R. B., O'shea, T., O'Malley, C., Scanlon, E. and
Taylor, J. (1989) Preliminary experiments with a distributed,

 References

 234

multi-media, problem solving environment, Proceedings of
ECSCW'89, pp. 19-34.

(Smith and Mosier, 1986) Smith, S. L. and Mosier, J. N. (1986) Guidelines for
designing user interface software, Mitre Corporation
Report, Mitre Corporation, MTR-9420.

(Stefik et al., 1987a) Stefik, M., Bobrow, D. G., Foster, G., S., L. and Tatar, D.
(1987) "WYSIWIS revisited" early experiences with
multiuser interfaces, In ACM Transactions on Office
Information System, 5 (2), pp. 147-167.

(Stefik et al., 1987b) Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S.
and Suchman, L. (1987) Beyond the chalkboard: computer
support for collaboration and problem solving in meetings,
In Communications of the ACM, 30 (1), pp. 32-47.

(Suchman, 1987) Suchman, L. A. (1987) Plans and Situated Actions: The
Problem of Human-Machine Communication,
Cambridge University Press.

(Szekely, 1987) Szekely, P. (1987) Modular Implementation of
Presentations, Proc SIGCHI & GI 87, ACM Press, New
York, pp. 235-240.

(Tang, 1991) Tang, J. (1991) Findings from observational studies of
collaborative work, In International Journal of Man-
Machine Studies, 34, pp. 143-160.

(Teal and Rudnicky, 1992) Teal, S. L. and Rudnicky, A. I. (1992) A performance
model of system delay and user strategy selection,
Proceedings of CHI'92, pp. 295-305.

(Thau, 1996) Thau, R. (1996) Design Considerations for the Apache
Server API, Computer Networks and ISDN Systems 28:
Proceedings of the 5th International World Wide Web
Conference, 6-11 May, Paris, pp. 1113-1122.

(Thomas, 1998) Thomas, R. C. (1998) Long Term Human-Computer
Interaction: An Exploratory Perspective, Springer
Verlag.

(Trevor et al., 1994) Trevor, J., Mariani, J. and T., R. (1994) The use of
adaptors to support cooperative work, Proceedings of
CSCW'94, Oct. 1994, Chapel Hill, North Carolina, ACM
Press, pp. 22-26.

 References

 235

(Trevor et al., 1997) Trevor, J., Koch, T. and Woetzel, G. (1997) MetaWeb:
Bringing synchronous groupware to the World Wide Web,
Proceedings of the Fifth European Conference on
Computer Supported Cooperative Work (ECSCW'97),
September 7-11, Lancaster, UK, pp. 65-80.

(Vaghi, 2002) Vaghi, I. R. (2002) Augmenting the Virtual: Model,
Architecture and Techniques for the Representation of
Delay-Induced Phenomena in CVEs, PhD thesis,
University of Nottingham, UK.

(Warboys, 1994) Warboys, B. (1994) Reflections on the relationship between
BPR and software process modelling, Proceedings of
ER'94, Berlin, Springer Verlag, pp. 1-9.

(Welie and Eliëns, 1996) Welie, V. M. and Eliëns, A. (1996) Chatting on the Web, In
Proceedings of the 5th ERCIM/W4G workshop on
CSCW and the Web, GMD/FIT, Sankt Augustin,
Germany.

(Whitehead, 1997) Whitehead, J. E. J. (1997) World Wide Web Distributed
Authoring and Versioning (WEBDAV) -- An Introduction,
In ACM Standard View, 5 (1), pp. 3 - 8.

(Whitehead and Y., 1999) Whitehead, J. E. J. and Y., G. Y. (1999) WebDAV: A
network protocol for remote collaborative authoring on the
Web, Proceedings of the sixth European Conference on
Computer Supported Cooperative Work (ECSCW'99)
(Eds, S. Bødker, M. Kyng and K. Schmidt), Copenhagen,
Denmark, Kluwer Academic Publishers, Netherlands, pp.
291-310.

(Winograd and Flores, 1986) Winograd, T. and Flores, F. (1986) Understanding
computers and cognition : a new foundation for design,
Addison-Wesley Publishing Company, Inc, New York.

(Zelezny and Langley, 1999) Zelezny, P. and Langley, A. (1999) XChat 1.2
http://xchat.linuxpower.org/doc/xchat.html

(Zerubavel, 1985) Zerubavel, E. (1985) Hidden rhythms: schedules and
calendars in social life, Berkeley: University of California
Press.

236

Appendix Case Study of Long-term Interaction

Long-term interaction poses even more problems than fast pace interaction, as the
communication is more likely to be interrupted at different intervals through the process and
short-term memory is volatile. This appendix describes an empirical case study that was
carried out to analyse the temporal problems that users face during long-term collaborative
interaction, where the tight cycle between action and feedback is broken.

Several problems may arise when the expected responses do not occur during long-term
interaction. Users will for instance have to remember that they have things to do, that others
should do things and also they need to infer why things happen when they do. In order to
provide an insight into the ways in which team-based interactions operate on both a co-
located and a remote basis, a case study was carried out based on the long-term
cooperative processes associated with the running of a past HCI conference. This scenario
was especially interesting as it involved many procedures that crossed organisational
boundaries.

The theoretical foundation of the case study lies in the study of pace of interaction (Dix,
1992a), (Dix, 1994a), (Dix, 1995a). Although the main focus was on triggers − events that
initiate the occurrence of activities, a recurrent pattern of activities and triggers was
discovered and it was named the 4Rs. Issues discussed here have been reported in (Dix et
al., 1995), (Dix et al., 1996), (Dix et al., 1998), (Dix et al., 2003).

Section 1 identifies the problems faced during long-term interaction. Section 2 describes
the approach adopted for analysing triggers and the method used to represent the flow of
work through processes and activities. Section 3 gives a detailed account of the case study.
The emerging classes of triggers for activities and in particular the 4Rs – a recurrent pattern
of long-term work, are then analysed in Section 4. Section 5 compares the method used in
this analysis with other approaches like ethnography, business process re-engineering and
work flow. Finally, Section 6 proposes some general results based on potential design
heuristics. It also shows how the trigger analysis and 4Rs pattern have been validated
through a practical application.

1 Problems of long-term interaction

Long-term interaction takes place at a much slower pace. The lack of short-term memory
and sequenced communication can make long-term interaction even more complex than a
fast pace interaction. Stretching the pace of interaction poses many problems as compared
to those studied by traditional researchers in HCI.

The pace of interaction (see Section 2.4.2) is defined as the rate at which users interact with
computer systems, the physical world and with one another. In many collaborative
situations, the pace of communication takes place over a longer time scale. This may be

Appendix Case Study of Long-term Interaction

 237

partly due to the nature of the communication medium, such as normal postal delays, or
partly due to the nature of the task, for example a doctor waiting for X-ray results.

The critical point is that standard models of interaction, as typified by Norman’s interaction
cycle (figure 1a) concentrate on a tight cycle between action and feedback (Section 2.2).
But when interaction is considered over a long-term scale, such models eventually break
down.

Figure 1. (a) Norman’s interaction cycle (b) stimulus–response model

Another model of interaction often applied in industrial settings is to treat the worker in a
stimulus–response manner (figure 1b). Commands and alarms act as stimuli and workers
respond to these in the appropriate manner. However, in its pure form, this model does not
allow workers to formulate any long-term plans or goals. The worker is treated in a
mechanistic manner, merely a cog in the machine.

In order to incorporate both of these perspectives, the user interaction with the environment
should be examined over a protracted timescale. The term environment here includes
interactions with other users, computer systems or the physical environment. Such
interaction is typically of a turn-taking fashion: the user acts on the environment, the
environment ‘responds’, the user sees the effects then acts again and so on.

 user

environment
u w

v

Figure 2. Problems of long-term interaction

This process is illustrated in figure 2. The Norman loop concentrates on the user–
environment–user part of the interaction whereas the stimulus–response model centres on
the environment–user–environment part. Long-term interaction will affect this diagram in
various ways:

Appendix Case Study of Long-term Interaction

 238

u action–effect gap – The user performs an action, but the effects of that action only
becomes apparent after a long delay. The main problem here is loss of context. For
instance, someone sends you an email and you respond to it but you do not receive a reply
back from the sender until some days later. How do you recall the context of the message
when the feedback eventually arrives? You should not only remember the reason why the
original message was sent but also what sort of reply was expected. Email systems tend to
address this problem by including the sender’s message in the reply. In paper
communications, the use of ‘my ref./your ref.’ fulfils a similar purpose.

v stimulus–response gap – The user must respond to some event, but for some reason
cannot do so immediately. For example, at a chance meeting in the corridor, someone asks
you to do something. The problem here is that you may forget, hence the need for to-do
lists or other forms of reminders. In the psychological literature this has been called
prospective memory (Payne, 1993).

w missing stimulus – The user performs an action, but something goes wrong and there is
never a response. For example, you send a letter to someone, but never get a reply. For
short-term interactions this is immediately obvious – if you are waiting for a response and
nothing happens then you know that something is wrong. However, for long-term
interactions you cannot afford to do nothing for several days waiting for a reply to a letter!
Therefore you need a reminder that someone else needs to do something – a to-be-done-to
list!

All the above problems have a negative effect on long-term interaction and they can cause
potential failures in the work process. A previous work (Dix, 1992a) focussed on the
problem of missing stimuli and proposed some potential design solutions. Although it was
clear from that work that some of the problems could theoretically occur, it was difficult to
assess how prevalent they were without any empirical evidence.

A case study was therefore carried out to validate the analysis in a real situation. The
problems due to missing stimuli and long-term interaction are closely linked to issues of
interruptions on the work process as both cases cause disruptions in the flow of activities
within a task. Hence, the techniques used in the case study were designed to expose these
problems as well.

2 Analytic method

A long-term cooperative process is first divided into activities performed by either
individuals or groups and the interdependencies between these activities are recorded. The
activities and their interdependencies are then catalogued in a traditional workflow fashion
but this only acts as the superstructure of the analysis. The focus is on when activities are
performed and whether they happen at all. The main distinguishing aspect of this work is
the emphasis placed on triggers that initiate activities.

Triggers

Appendix Case Study of Long-term Interaction

 239

A trigger is essentially an event, which makes the activity happen when it does. The method
used for analysing triggers is influenced by the status and event phenomena (Section 2.4.1).
Events aim at informing, but more often initiating actions, which in turn may generate further
events. The actions of agents may change the status of the agent or the world, but changes
in status are themselves events that may trigger further actions.

Triggers ensure the transition between activities. The dependencies between activities imply
that one activity is a pre-condition for another. This is precisely the sort of dependency that
is captured in a workflow or process model (Warboys, 1994).

However, there will typically be a gap between the completion of one activity and the start
of the next – an event is therefore required to trigger each activity. Depending on the nature
of the trigger, one can determine the possibility or likelihood that an activity will be missed
or if the activity fails to occur, whether those failures will be noticed. For instance, if
someone has to remember to perform an activity, this involves short-term memory and it
can be regarded as a fragile part of the process, especially if it is performed in a complex
and busy environment.

The crucial aspect of this analysis is not to capture the events that enable an activity to carry
on – these are the preconditions. Instead, the focus is on the trigger – the event that made
the activity happen when it did.

Processes and activities

Processes are recorded as a series of circles or bubbles, each one representing an activity.
The bubble is labelled with the agent(s) who perform(s) the activity and the nature of the
activity. Lines between the bubbles record dependencies and arrows at the beginning of
each bubble record the trigger for the activity (figure 3).

 preceeding
activity

trigger

who does it subsequent
activity(ies)the activity:

what is done

dependency

Figure 3. Recording processes

The case study adopted a minimalist approach for recording processes. Instead of
recording all the complexities of real processes in a single diagram, a number of separate
diagrams are used, often concentrating on a specific scenario. The crucial point is that for
each activity we look for the corresponding trigger.

Appendix Case Study of Long-term Interaction

 240

In general, activity boundaries are placed wherever there is the likelihood of a delay or gap.
The most obvious situation that shows such a break is when subsequent activities in a
process are performed by people at different sites. However, there are often distinct
activities performed sequentially by an individual. In principle, such an exercise could go
down to the full detail found in Hierarchical Task Analysis (HTA) (Shepherd, 1995). This
would be reasonable if, say, interruptions were possible in the middle of typing a letter. But
for the purpose of this analysis, such fine-grained tasks are ignored in order to retain a tight
focus on long-term interaction.

The term activity rather than action is deliberately used to indicate that the lowest level of
this analysis is far from atomic. Activities may be shared between individuals, for example
having a meeting or dictating a letter would still be regarded as a single activity involving
several people. Again, one could dissect such an interaction further, but this would be the
remit of conversational analysis. Furthermore, if an activity is of no interest or if there is not
enough knowledge about it, its details are ignored. For instance, if a firm issues an order to
an external organisation and then waits for the goods to arrive, the internal processes of the
external organisation may not be of any interest to us.

Finally, certain activities that are normally omitted in a traditional process model are included
here. In particular, the receipt of a message is treated as a distinct activity to emphasise the
gap that may occur between receipt and response.

3 Details of the study

The case study was based on a thorough investigation of the flow of work during the
administration and organisation of a past HCI conference. A number of activities had to be
carried out prior to the actual conference and most of them required the coordination of
information among several people at various sites. Ann, the conference organiser acted as
the central coordinator in many of these activities. She was the first point of contact in any
enquiry, but this was only part of her work for the duration of the conference. Although the
study covered an extensive range of activities that Ann had to coordinate, the activities
relating to the flow of work during the life cycle of a paper were examined in detail (for a
longer report see (Dix et al., 1995)).

Most of the processes encountered in this case study were in lock-step and only made up a
small part of Ann’s overall work. Data collection methods generally used for traditional
task analysis or requirement elicitation such as direct observation and documentation were
impractical for this study due to the long-term, ecologically rich and cross-organisational
nature of the processes. Although documentation of long-term processes is likely to be
relatively accurate, it may omit the activities beyond organisational boundaries, and above
all, most of the triggers. However documentation can be used as an initial framework and
later supplemented by observation or subsequent interviews.

Given that the processes of interest were geographically dispersed, direct observation was
inappropriate. The necessary protracted field studies would not be acceptable as a part of
normal commercial design practice. However, the lock-step nature of a conference is not

Appendix Case Study of Long-term Interaction

 241

typical of office processes. In many office situations, there are several instances of the same
process at different stages of completion, for instance, in an insurance office many claims are
processed, each at a different stage. In these cases, a day-in-the-life observation may be
sufficient as long as each activity seen during the study period can be pieced together
afterwards, even if the process in question is never seen to run from end to end.

The most effective way to gather information for the purpose of this case study was through
in-depth interviews. Interviewing is often regarded as problematic since the accounts
people give of their actions are frequently at odds with what they actually do. However, the
interviewing exercise adopted here was governed by the analytic focus − the structure
imposed by the process flow and the specific interest in triggers. This allowed omissions
and inconsistencies to be traced back to produce reliable results from the interviews.
Studies of this nature should normally be sustained by some additional direct observation
but it is important that practical design should rely principally on more directed and less
intrusive techniques.

Finally, the importance of environmental cues gives a vital source of information – the work
environment itself. Typical items found in an office include papers, files on the desk, post-it
notes, contents of an in-tray, annotated wall calendar. So by just looking at those items one
can ask several questions. For instance, why is that file sitting on the desk? What will
happen to it? What would happen if it were not there? Each item in the environment fulfils
a specific role and by its very presence one can determine the activity it triggers. At the
very least, a piece of paper left on the desk is saying, “file me please”.

Example 1 – paper submissions

The rest of this section will now consider some of the processes during the life cycle of a
paper and they are typical of any scientific conference.

The paper submission sub-process starts when the author sends the paper to the conference
office (figure 4). Ann receives the paper through the post, records its details in a database
and then files a copy of the paper, ready for subsequent review.

author

send
paper

Ann

receive
paper

Ann

enter
record

file copy of
paper

1
32

send
acknowled-

gement

4

author

Ann Ann

receive
acknowled-

gement

Figure 4. Paper submissions

Appendix Case Study of Long-term Interaction

 242

Each activity above is triggered by a certain event.

Trigger 1 is simply when the packet containing the paper reaches Ann via a
communication channel, in this case it was by post. The postal system could be investigated
in detail but since it is an external organisation, it is ignored. However, the possibility of a
failure due to the unreliability and timeliness of the medium of interaction is recorded, as this
will affect the whole system's operation. A possible solution to guard against such a failure
is to augment the existing communication channel with a more reliable protocol. For
instance, electronic mail could be used in parallel with postal mail, but this might result in a
situation where humans, unlike software, may find the additional protocol too time
consuming to maintain. Moreover, the reliability of electronic mail could be questioned as
well.

Ann did not immediately enter the paper’s details in the database. Instead, she waited until
a small pile had accumulated before entering all the details together. Trigger 2 is therefore
the pile of papers on the desk. This trigger is an environmental cue that allows Ann to pick
up the threads of her activities. Environmental cues are important triggers that serve as
reminders. As soon as the paper details were recorded, Ann sent an acknowledgement to
the authors and filed a copy of the papers.

Both triggers 3 and 4 are such that in an interruption-free environment, the end of the
previous activity acts a trigger for the next activity. However, Ann may be interrupted for
some length of time while she is in the midst of sending an acknowledgement and filing a
copy of the paper. In case of an interruption, the secondary or fall-back trigger is
examined. The fall-back triggers for 3 and 4 are the same as 2, in other words, the
unfiled papers on the desk.

Because the activities have the same trigger, an activity will potentially either be repeated
after an interruption or omitted entirely (if Ann mistakenly thought an interruption had
previously occurred). Clearly, it is a mental strain to keep track of all the tasks one is
engaged in. If someone fails to complete or close tasks held in short-term memory, or is
prevented from doing so by interference, the subject is liable to lose track of what she is
doing and can consequently make errors. Luckily, Ann’s memory was good enough and
these problems were not encountered in this case. However, interruptions can have major
consequences on the flow of work within a collaborative system (Rouncefield et al., 1994)
and its likelihood should not be discarded.

Example 2 – referee allocation

The next stage after the paper submission process was the referee allocation exercise (figure
5). The process starts with Ann sending the authors papers to the conference committee.
The committee holds a meeting to decide which paper is assigned to which referee. The
papers are afterwards sent back to Ann together with the decisions reached. Ann then
updates the database and dispatches the paper copies to the relevant referees.

Appendix Case Study of Long-term Interaction

 243

Ann

forward
paper

HCI
office
receive
paper

1

3
2

4

assign
referees

HCI
office

send
paper

HCI
office

Ann

receives
paper

5
Ann

update
record

Ann

send
paper

6 7

Figure 5. Referee allocation

This is an interesting scenario as it highlights some new types of triggers. Trigger 1 is the
deadline that prompted Ann to forward the papers to the conference committee. As there
was only one deadline for all the papers, it was not too difficult to remember the date.

Triggers 2 and 5 represent the communication channel through which Ann send the
papers to the committee and receives them back. In this case it was via internal mail, which
was a relatively reliable medium.

Trigger 3 is an external event – here a meeting session, which allowed decisions to be
made regarding referee allocation to papers.

Trigger 4 directly follows from the previous activity, so as soon as the referees were
nominated, the conference committee sent the papers back to Ann.

Trigger 6, the papers on the desk, reminded Ann to update the database and allowed pick
up the thread of her activities.

Trigger 7 directly follows from the previous activity and when faced with such a trigger,
interruption can disrupt the flow of the activities as highlighted in Example 1. For instance, if
Ann was interrupted in between updating the records and sending the papers and if the
paper was left lying on the desk she could enter the record twice; or else if she did not see
the paper, she could assume that the paper was already sent and omit sending it altogether,
although the paper could have been mislaid.

Example 3 – refereeing process

As a final example, let us consider the refereeing process, which involves referees annotating
the papers they have received and sending the reviewed papers back to Ann (figure 6).

Appendix Case Study of Long-term Interaction

 244

Ann

send
reminder

referee

receive
paper

send
refereed

paper 1

referee referee

referee

annotate
paper

receive
reminder

Figure 6. Part of refereeing process

In this case, the agents involved no longer reside within a single organisation. Organisational
boundaries have been crossed and the success of the whole process is entirely dependent
on the referees based at different locations. So how does Ann coordinate the referees’
activities when there is a temporal gap between the dispatch of the papers and the return to
the referees’ reviews?

Trigger 1, the deadline, enables Ann to regain control. If Ann does not receive the
refereed papers by the date set for return, she sends reminders to the referees. As there
was only one deadline in this case, the date was easy to remember. However, if each paper
were allowed a different date for submission, Ann would have to keep track of deadline
dates periodically. When faced with a periodic action, one can ask how does the person
remember to perform the action at the appropriate time?

This scenario therefore shows that in a long-term collaborative situation, especially when the
control resides among different agents and when there is a gap between an event and its
subsequent action, it is vital to prevent activities getting out of synchronisation otherwise a
range of failures can occur.

Appendix Case Study of Long-term Interaction

 245

4 Findings of the study

Although the initial aim of this empirical study was to verify the analysis of pace (Dix,
1994a), the techniques employed generated a range of interesting issues. Firstly, the
modelling of activities during the work process became clearer. Secondly, based on
previous theoretical analysis and refined by the results of the study, different classes of
triggers emerged. Finally, a pattern of activities was discovered which might be regarded as
a fundamental unit of long-term work.

Types of triggers

From the examples discussed in Section 3, trigger types recurred in various scenarios and
some general classes of triggers emerged as follows.

(a) Completion of previous activity – This is when one activity begins immediately after
the previous activity has reached completion. But we may treat this with suspicion −
does the second activity always proceeds immediately? If there is any chance of a gap
or interruption, we must look for secondary triggers.

(b) Memory (sporadic actions) – Very often, people have to remember that they need to
do something. For instance, when a request is made verbally, the recipient has to
remember that the request is outstanding until either it can be performed or some record
of the commitment is made. In the latter case, the recording of the commitment is itself
an important activity.

(c) Periodic actions – These are actions that occur at regular intervals, for example,
reading email every morning. But when faced with a periodic action, how does one
remember to perform a certain task at the relevant period? It may be due to a routine
behaviour one has acquired, such as consulting a diary every morning. However, if it is
an hourly activity then one may ask how does the person know when it is the hour?
Perhaps the clock strikes or the watch beeps on the hour, but this is an external signal
trigger (see below).

(d) Temporal gaps – Unlike periodic activities, temporal gaps are characterised by a single
significant moment or delay. For instance, we may need to perform a generic task by a
deadline or expect a response by a certain date. Again we must ask what makes a
person notice the actual event has occurred.

(e) External events – Very often, periodic actions and temporal events are signalled by a
wristwatch or an automatic calendar set to pop up a reminder at a specific time. Also,
non-time based events may occur to prompt actions, for instance the completion of an
automatic activity, an event in the world or even the (electronic) receipt of a message.

(f) Receipt of a message – This is a special kind of external event, which includes a
telephone call, a face-to-face request or the receipt of a letter or a fax. Such events can

Appendix Case Study of Long-term Interaction

 246

only be considered to be the trigger for an action if that action occurs immediately after
the request is received. If the request is dealt with later (as is more often the case) the
receipt of the request and the response to the request are treated as separate activities.
Furthermore, we have to record the reliability of the communication media, the
possibility of communication delays and the consequences of any failure in the channels.

(g) Environmental cues – These are things in our environment that remind us that activities
ought to be done. Sometimes this may be explicit, like a diary entry or sometimes
implicit, such as a partly written letter in the typewriter. Environmental cues may
manifest themselves in paper form, for instance, to-do-lists, diaries, or in electronic
form, such as an email waiting in the in-box.

Triggers of type (a) and (b) are insecure as they are liable to interruptions and poor memory
respectively. In each case, we look for a secondary or back-up trigger or where this is
absent, we look at the process as a whole and assess the consequences should the activity
fail to trigger at all.

Other triggers also lead to follow-on questions. For instance, if a temporal event (d) is
triggered because it is in a diary, what makes one look in the diary? It may possibly be due
to a periodic activity (c) in which case, how does one know when the period occurs?
Environmental cues (g) are fundamental but even here one must ask what makes a subject
notice a particular cue?

We can carry on asking such follow-up questions indefinitely, but at some point we must
stop and either assume that a trigger does always occur as specified, or if not, assess the
reliability of the trigger and perhaps any delays associated with noticing it.

The 4Rs

Although the initial focus of this case study was on individual triggers, a pattern in the
processes emerged as they were recorded. This pattern was called the 4Rs: Request,
Receipt, Response, Release. Figure 7 shows a simplified version of figure 4, which
exemplifies the 4Rs.

 1 3 2

author
send
paper

Ann

receive
paper

Ann

enter
record

Ann

file
paper

request receipt response release

Figure 7. The 4Rs

The pattern of activities shows a general structure: request – someone sends a message (or
implicitly passes an object) requiring a certain action; receipt – the receiver receives the

Appendix Case Study of Long-term Interaction

 247

message through a communication channel; response – the receiver performs the necessary
action; and release – the receiver files or disposes of the things used during the process. At
this point, if the functional goal has been achieved, the process can be considered to have
reached completion.

Not only is the pattern of activities common between different processes, but a similar
pattern can also be seen in the types of triggers. Trigger 1 is always some form of
communication mode (trigger type (f)), and can be assessed for reliability and timeliness.
Trigger 2 is most likely to be the presence of a document or another object (trigger type
(g)), which activates the response activity. Trigger 3 is the completion of the previous
activity (trigger type (a)), and it usually removes the presence of the environmental cue but
also relies on its existence as a secondary trigger.

The above pattern has several refinements, for example when a note is made of a verbal
request, this adds an extra stage to the receipt activity. Another interesting variation is
linked to the response activity, which may involve more than one action. For instance, in
figure 4 the response consisted of two activities ‘enter record’ and ‘send
acknowledgement’. When faced with such a situation, we need to look very carefully at the
triggers for the two parts of the response, as they may in fact be the same trigger. This was
the case in figure 4 as both response activities were triggered by the presence of the pile of
papers on the desk. On the other hand, in some situations, for example receiving
information for filing, there may be no separate response as the response and release
activities are merged.

Figure 8 also demonstrates a frequent aspect of the 4Rs − the response of one 4Rs pattern
forms the request activity initiating a new 4Rs pattern. For example, the response activity
‘send acknowledgement’ in figure 4 is itself a message to the author and may generate
another 4R sub-process. A chain of such iterative 4Rs patterns can create a format for
long-term conversation. However, this generic pattern is at a much lower level than those
identified in speech-act theory (Winograd and Flores, 1986) and may thus be considered to
be the long-term interaction equivalent of adjacency pairs found in conversational analysis.

 req 1 … ..

rec1 resp 1

 = req 2

r ec2

rel 1

resp 2

 = req 3

rec 3

rel 2

resp 3

 = req 4
r e l3

Figure 8. The 4Rs chain

5 Related approaches

The nature of the study discussed bears some similarity with other approaches in the general
field of the ‘social analysis of work’, particularly workflow, speech-act theory, ethnography,

Appendix Case Study of Long-term Interaction

 248

ethnomethodology and formal techniques including Petri Nets. The following points,
however, summarise the critical differences between the approach adopted here and the
above-mentioned disciplines.

Workflow

Workflow18 implies technological solutions to improve the nature of work and usually hints
at cultural changes. However, the case study was neither targeted at introducing any
technological solutions nor at dictating any cultural changes. Most of the processes
considered crossed organisational boundaries and consequently they were unpredictable.
Unless some formal collaboration was established beforehand, workflow would have been
unsuccessful at ensuring that the links of communication and activity do not break down in
such an open environment.

Although the initial aim of the study was not to automate the processes of work or even to
facilitate them through computerisation, as is the case with workflow, some design
implications were reached (see Section 6). So, to avoid confusion or disagreement over the
use of the term ‘workflow’, the approach adopted here is referred to as an investigation of
the 'flow of work', with its principal focus being on events triggering activities.

Speech-act theory

The basic structure of speech-act theory (SAT) consists of all possible stages in
conversational interaction (Winograd and Flores, 1986) but the approach used in the case
study is more abstract. For example, the arrival of an email message may be a potential
trigger whereas SAT would analyse the contents of the email itself. In contrast, the 4Rs
pattern is at a lower level of granularity than SAT patterns such as conversation for action
(CfA) − each action pair in a SAT diagram expands to a complete 4R.

Ethnography

Ethnography is committed to inquiring into patterns of interaction and collaboration, based
on the assumption that human activities are socially organised (Hammersley and Atkinson,
1995). The method used here is also enquiring about a particular pattern but with a
difference. Ethnography has an open-ended approach of gathering information and is based
on the belief that one cannot know in advance of inquiry which elements of organisational
life will prove to be of interest, value and importance for work (Randall, 1995). In contrast,
the case study started with a precise focus on triggers that initiate activities. This implies that
certain aspects that an ethnographer would normally record are ignored. However, a more
restricted approach is better suited to inform systems design unlike ethnographers’ open-

18 One of the main centres within the workflow community − the Workflow Management Coalition, 1994
− has defined all the terms relating to workflow in organisations. Details available at
<http://www.aiai.ed.ac.uk/WfMC>

Appendix Case Study of Long-term Interaction

 249

endedness, which is seen as a weakness when it is used for requirements capture
(Anderson, 1994).

Ethnomethodology

Ethnomethodology has also been used within HCI (Suchman, 1987) as a particular form of
sociological analysis (Garfinkel, 1967). It involves observing, collecting and analysing data
and deciding what is relevant about work activity as it really is, rather than an idealised
conception of work as can be the case with process-modelling and workflow.
Ethnomethodology differs from other modes of sociology in that it seeks to describe from
within the ways in which people actually order their work activities through mutual
attentiveness to what has to be done (Anderson, 1994). This case study also aims to
describe peoples’ work activities, but again, its a priori focus on specific aspects of work
makes it distinct. Armed with the knowledge of what work had to be done, the aim here
was to discover ‘breakdowns’ which could affect the completion of that work process.

Several studies (Bentley et al., 1992a), (Bentley et al., 1992b), (Heath et al., 1993), (Heath
and Luff, 1994) have considered the importance of the environment for how work is
executed. Traditionally, such studies emphasise the social actors and the close teamwork
within that environment. However, more recent studies of office work (Herskind, 1997),
(Rouncefield et al., 1994) have brought the surroundings in which people work and the
artefacts into the limelight, in particular recognising the importance of paper (Sellen and
Harper, 1997). This trend is also followed in this empirical work but with a more specific
formulation of the purpose of artefacts as triggers for activity.

Formal techniques

Formal techniques have been applied to the study of time and collaboration including Petri
Nets (Johnson et al., 1995), (Palanque and Bastide, 1995), various forms of temporal and
modal logic (Dix, 1995b), (Johnson, 1997), (Reeves, 1996) and process algebras such as
LOTOS (Paternó and Faconti, 1992). Any of these methods could be used to capture
precedence relationship between the activities, but not the nature of triggers. However, a
study (Joosten, 1994) applied Petri Nets to model workflow and used the word trigger in
the same context, that is an event which initiates an activity. But this is where the similarity
ended as the ecology of triggers was not investigated at the level of detail found in this study.

Appendix Case Study of Long-term Interaction

 250

6 Design implications

The analysis employed in this empirical study was initially targeted at increasing the
understanding of long-term interaction, but in use, it has some direct design implications. It
can be used to determine whether a process is robust to interruptions and forgetfulness, and
if not, identify where potential problems may occur.

Robustness of work process

The reliability of the work process can be assessed by asking specific questions about the
triggers for activities. However, it is inevitable that triggers will fail for some reason,
activities may be missed or perhaps the whole process may fail to continue because
something goes wrong somewhere. The combination of a process model together with a
well-founded assessment of the reliability of each activity can allow us to assess the
robustness of the whole process.

If someone fails to complete an activity and consequently, the next activity is never
triggered, what happens? Does the whole process seize up, or will the failure be eventually
noticed. The approach adopted in this case study is not simply an ad hoc procedure, on the
contrary, one can systematically go to each trigger and ask: what happens to the entire
process if the trigger fails?

Furthermore, by looking at the process as a whole we can improve our assessment of the
reliability of any trigger. For instance, if the trigger for an activity is a report lying in
someone’s in-tray, we can examine the wider context and assess the likelihood of whether
the report will indeed be there when required.

Importance of environmental cues

As expected, the case study confirmed the importance of environmental cues as one of the
principal and most robust triggering mechanisms. As mentioned above (Section 5) various
studies have recognised the importance of the ecology of the workplace, including
whiteboards, calendars, individual papers and piles on desks (Herskind, 1997),
(Rouncefield et al., 1994), (Sellen and Harper, 1997). Indeed, in many cooperative
processes there may be little direct communication, instead activities are coordinated by
implicit communication through the artefact (Dix, 1994b).

This case study focussed on a particular role of these environmental cues, namely their
ability to remind and trigger future actions. An understanding of the importance of papers is
essential if there are plans to automate parts of an office procedure. One can assess
whether automation will break the existing work patterns and if so whether alternative cues
could be implemented in the new system.

Whereas many studies have concluded that papers are important, the analysis discussed
here takes this a step further by developing an understanding of why paper is important.

Appendix Case Study of Long-term Interaction

 251

Applying triggers and the 4Rs

The 4Rs framework was applied in the MaPPiT Project19 to analyse the existing work
processes and inform design decisions in developing a Lotus Notes20 implementation of the
student placement activity. The example scenarios are discussed in detail in (Dix et al.,
1998). This evaluation process was particularly interesting in that it raised some new issues
and confirmed some existing beliefs and these are summarised below.

Several variations of the 4Rs process were encountered; some with multi-stage responses.
The possibilities of breakdowns in the work process as a result of interruptions,
forgetfulness and long delays were clearly visible when the analysis was applied to the
different scenarios. Different levels of automation were suggested by the 4Rs analysis. At
one level this involved the complete bypassing of the human process, but in others only part
of the procedures required automation. More importantly, the 4Rs analysis has ensured that
the automated solution does not hide existing triggers, as is often the case with electronic
filing, but is instead explicitly designed to enhance the triggers through the use of automatic
reminders and electronic environmental cues.

Some of the solutions adopted included building navigators or agents into the automated
system to act as automatic reminders for triggering activities. Also, automatic submission of
data through Web browser forms was opted for to avoid losing data by handling it
physically. Another interesting implementation was the introduction of new environmental
cues by creating Notes forms to record the receipts of data and monitor the flow of
processes.

The 4Rs framework was remarkably successful in describing patterns of activity and
prompting appropriate questions to drive the Notes implementation. However the study
also highlighted the fact that the salience of certain kinds of triggers could change over time.
As a result, environmental cues could fail for exactly the same reasons that our memory
finds to-be-done-to items difficult. We cannot therefore assume that the detailed triggers
are homogeneous over time. Instead, we should establish by enquiry or observation
whether triggers vary in kind or salience.

From the findings of the case study and its validation through the MaPPiT Project, it is clear
that the broad techniques would be applicable to any process-oriented task analysis, such
as Hierarchical Task Analysis (Shepherd, 1995). Consequently, a trigger analysis technique
has been proposed (Dix et al., 2003) as a means for task decomposition, which can be
applied in combination with many task analysis and workflow methods. The novelty of this
approach lies in uncovering triggers that cause each subtask to occur at each step along the
task decomposition process.

19 MaPPiT – Mapping the Placement Process with Information Technology, a HEFCE project. Details
available at: http://www.hud.ac.uk/scom/mappit/home2.htm

20 http://www.lotusnotes.com/home.nsf

Appendix Case Study of Long-term Interaction

 252

7 Summary

This case study has focussed on the problems that arise during long-term interaction. In
particular, people may have difficulty in recalling the context of a delayed response (action–
effect gap), in resuming activities after an interruption (stimulus–response gap) and in
remembering the non-occurrence of anticipated events (missing stimulus). The problem of
stimulus-response gap calls for to-do-lists and aide mémoires while missing stimulus requires
to-be-done-to lists or similar reminders.

The above considerations led to an in-depth analysis of the importance of triggers in
initiating activities. Very often, it is assumed that an activity is triggered by the completion of
the previous activity. But this is unlikely to be the case in an office-based situation due to
the competing demands and frequent interruptions. Triggers not only determine when a
particular activity occurs, but more importantly they also show whether that activity happens
at all.

The investigation of the flow of work during the HCI conference was used as a case study
to validate the theoretical analysis of temporal problems linked with prolonged interaction
such as interruptions and delays. It also provided a deeper understanding of the issues and
problems surrounding long-term interaction. The findings were later validated by a second
case study, the MaPPiT project. Both studies have highlighted the collaborative aspects of
organisational modelling and the importance of reminders as an enabling mechanism for
resuming activities following delays and interruptions.

During the analysis of the first case study, a recurrent pattern of activities emerged and it
was named the 4Rs – Request, Receipt, Response, Release. This pattern is believed to be
a fundamental unit of long-term work. The existence of generic patterns makes it easier to
uncover problems situations quickly and to adapt solutions found in one situation to another.
Both studies have shown that the same sequence repeats itself with similar triggers and
similar failure modes. Any deviation in the 4Rs pattern indicated possible breakdown
points.

Problems are most likely to occur when implementing changes in the work process by
automating existing paper-based systems. This often leads to the loss of important
environmental cues. The 4Rs analysis allows one to ask pertinent questions about the
triggers for activities and also assess the reliability of individual parts of a work process.
Furthermore, as confirmed by the second case study, the use of the 4Rs enabled the design
of semi-automated processes where physical environmental cues were replaced and in
some cases, enhanced with electronic cues.

The 4Rs framework can be applied to any process-oriented task analysis as it has some
very powerful design implications. Although the nature of the study applied here may at first
show some similarity to other approaches in the general field of the ‘social analysis of
work’, there are however some crucial factors that distinguish this work. Its strength lies in
uncovering triggers that cause each process to occur. Triggers enable us to determine

Appendix Case Study of Long-term Interaction

 253

whether a process is robust to interruptions or forgetfulness and if not, identify the cause of
the failure and the instance where any problem is likely to arise.

