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Abstract: Next-generation Grid applications will operate 
within and across many heterogeneous network types; will 
employ a wide range of device types ranging from 
supercomputers to sensor motes; and will require many more 
“interaction paradigms” than merely RPC and message-
passing (e.g., publish-subscribe, multicast, tuple spaces etc.). 
In this paper, we propose a middleware approach to meeting 
these emerging needs. Our approach is to provide a highly 
flexible “overlay network framework”  that underpins an 
extensible set of plug-in interaction paradigms. The 
middleware is structured using a lightweight run-time 
component model that enables appropriate profiles to be 
configured on a wide rage of device types, and facilitates run-
time reconfiguration (as required for reasons of adaptation to 
dynamic environments). For proof of concept, we are 
exploring a wildfire scenario which involves mobile groups of 
firefighters, mobile sensors, control centres, and access to 
parts of the wider fixed Grid for simulation. We are also 
investigating the application of our approach more generally 
in the management of the “e-Environment”. 

1. Introduction 

As Grid computing evolves, there is an accelerating trend 
towards diversity in terms of both end-systems and networked 
infrastructures. For example, with the emergence of the 
“pervasive Grid” [Davies,04], we have a spectrum that ranges 
from cluster systems, through high-speed LAN-based 
systems, lower-speed WANs, infrastructure-based wireless 
networks, ad-hoc wireless networks (themselves ranging from 
relatively static to highly dynamic configurations) that employ 
PDA-type devices, and specialised sensor networks that 
employ miniature sensor devices. 
 
In parallel, the range of types of “interaction paradigms” in 
use at the application level has also burgeoned. Beginning 
with basic point-to-point interactions (e.g. RPC and SOAP 
messaging), the range of interaction paradigms is expanding 
to include (e.g.): reliable and unreliable multicast; workflow; 
media streaming; publish-subscribe; tuple-space/ generative 
communication; and peer-to-peer based resource location or 
file sharing.  
 
In the Open Overlays project [Grace,04], we are seeking to 
provide a Grid middleware infrastructure that can span and 
integrate this growing diversity at both the infrastructure level 
and the “interaction paradigm” level. This clearly cannot be 
done using standard Grid middleware such as Globus for three 
main reasons: i) current Grid middleware won’t run on 
primitive devices because of its heavyweight and non-
profilable nature; ii) current middleware is not network-
centric—it assumes fixed TCP/IP support and deals only with 
end-systems; and iii) current middleware supports only SOAP 

messaging and not the range of other interaction paradigms 
required. 
 
To motivate our work more clearly, consider an application 
scenario that is being developed by the project which involves 
forest or savannah fire fighting in a remote region with poor 
accessibility. In the scenario, fire fighters carry PDA-like 
devices that enable communication with other fire fighters and 
with on-site controllers who coordinate the work. The PDAs 
support: cameras to give the controllers a view of the fire; 
GPS to enable location tracking; screens on which text and 
graphics-based commands from controllers are displayed; and 
audio capabilities to enable group communication among fire 
fighters and controllers. In addition, portable environmental 
sensors are used to provide controllers with information such 
as wind speed and direction. These are placed by fire fighters 
and are networked wirelessly. As well as helping to directly 
inform the controllers, sensor output is fed into 
computationally-intensive real-time “fire evolution” 
simulations running in the fixed-infrastructure Grid. These are 
maintained and monitored by remotely-located experts who 
video-conference among themselves and strategically advise 
controllers based on longer-term projections of the progress of 
the fire. 
 
Note that not only does this scenario clearly involve highly 
heterogeneous device and networking technologies—it also 
calls for a wide range of interaction paradigms (e.g. reliable 
ad-hoc multicast for command propagation, stream-based 
multicast for group audio communication, publish-subscribe 
for sensor data collection, SOAP-based messaging for 
communication with objects in the fixed Grid, etc.). 
 
The essence of our approach to addressing the requirements of 
scenarios such as these is to place a flexible and configurable 
set of middleware frameworks over a layer of overlay 
networks, and to construct the whole architecture in terms of a 
lightweight component model that can be implemented on a 
wide range of device types, including very small devices such 
as sensor motes. A general definition of overlay networks is 
that they are virtual communication structures that are 
logically “laid over” one or more underlying physical 
networks (such as the Internet and/or a wireless ad-hoc 
networking environment). The benefits of the overlay 
approach are that i) it can mask the heterogeneity of the 
underlying networked infrastructure, providing a separation of 
engineering implementation from high-level functionality; ii) 
it can provide needed network services (e.g. multicast) in 
network environments that don’t support them; and iii) it is 
inherently configurable and run-time adaptive so as to be able 
to address the high degree of dynamism inherent in our target 
environments. 
 
The remainder of this paper is structured as follows. First, in 
section 2, we consider the overall architecture of our 



middleware. Then, in subsequent sections we consider three 
key elements of the architecture: the underlying component 
model in section 3; the overlay framework in section 4; and 
the interaction paradigm framework in section 5. Finally, we 
discuss related work in section 6 and outline areas of future 
work in section 7. 

2. Architecture 

Our basic approach to the support of such “pervasive Grid” 
scenarios is to provide a highly configurable middleware 
framework the architecture of which is shown in Figure 1. 
 
This architecture, called Gridkit [Grace,04], is built in terms 
of a component model called OpenCOM v2 [Coulson,04]. 
This employs a minimal runtime that supports the loading and 
bindings of lightweight software components at run-time. The 
runtime is so minimal that it can be supported even on  very 
primitive devices. OpenCOM is used in the construction of all 
the layers above.  
 
The next layer up is a distributed framework for the 
deployment of overlay networks as discussed in section 1. 
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Figure 1: The Gridkit Architecture 
 

Above this is a set of “vertical” frameworks that provide 
functionality in various orthogonal areas, and can optionally 
be included or not included on different devices. We discuss 
only one of these frameworks—the interaction framework—in 
any detail in this paper. In brief, the rest are as follows: the 
service discovery framework accepts plug-in strategies (e.g. 
SLP, uPnP, Salutation) to discover WSDL services in the 
Grid; the resource discovery framework accepts plug-in 
strategies (e.g. peer-to-peer search, Globus MDS) to discover 
Grid resources such as CPUs and storage; the resource 
management and resource monitoring frameworks are 
respectively responsible for managing and monitoring Grid 
resources; and the security framework provides general 
security services for the rest of the frameworks. These 
frameworks are discussed in more detail in [Grace,04]. 
 
Finally, above the vertical frameworks is an XML/ SOAP/ 
WSDL-based API layer that provides access to the underlying 
frameworks in terms that are familiar to Grid application 
programmers. This layer is optional and programmers can 
choose to use the framework APIs directly, and write their 
code in terms of OpenCOM components, if desired. This 
possibility, of course, is particularly relevant in the context of 
primitive resource-poor devices such as sensor elements and 
even PDAs. 

3. The OpenCOM component model 

An outline of the component model is illustrated in Figure 2. 
Components are language-independent encapsulated units of 
functionality and deployment that interact with other 

components exclusively through “interfaces” and 
“receptacles” (see below). Capsules are containing entities 
that offer the above-mentioned runtime API. Importantly, 
capsules can be implemented differently on different 
devices—e.g. they might be implemented as a Unix or 
Windows process on a PDA or PC; or directly on top of 
physical memory on a sensor mote with no OS. Components 
can be deployed at any time during run-time, and their loading 
can be requested from within any component within the 
capsule (this is called third-party deployment). Interfaces are 
expressed in terms of sets of operation signatures and 
associated datatypes; OMG IDL is used for interface 
specification to give language independence (note, however, 
that this does not imply the overhead of CORBA-like stubs 
and skeletons.) Components can support multiple interfaces: 
this is useful in embodying separations of concern (e.g. 
between base functionality and component 
management). Receptacles are “required” interfaces that are 
used to make explicit the dependencies of a component on 
other components: when deploying a component into a 
capsule, one knows by looking at its receptacles precisely 
which other components must be present to satisfy its 
dependencies. Finally, bindings are associations between a 
single interface and a single receptacle. Like deployment, the 
creation of a binding is inherently third-party in nature. That 
is, it can be performed by any party within the capsule, not 
only by the first-party components that will themselves 
participate in the binding. 
 

 
 

Figure 2: The OpenCOM component model 
 

OpenCOM also supports the notions of reflection and 
component frameworks. Reflection is used to reason about 
component configurations and to dynamically alter 
configurations at runtime. Component frameworks are scoped 
compositions of components that accept plug-in components 
that are validated according to component framework specific 
constraint rules. The overlays framework and the 6 vertical 
frameworks discussed above are all implemented as 
OpenCOM component frameworks. More details are give in 
[Coulson,04]. 
 
The required heterogeneous realisation of the component 
model in various types of devices is achieved by providing 
different implementations of the runtime API, and by 
implementing components themselves in various ways. For 
example, on a PDA running a standard OS we might 
implement components as sets of Java classes or as Linux 
“shared objects”; whereas on a sensor mote’s microcontroller, 
components might be implemented simply as segments of 
machine code. This is possible because the component model 
is a local model: distribution is built on top of this 
foundational layer. 

 

 



4. The overlay framework 

The overlay framework supports the design, deployment and 
management of plug-in overlay networks in support of 
pervasive Grid computing. In practice, this amounts to 
hosting, in a set of distributed overlay framework instances, a 
set of per-overlay plug-in components, each of which 
embodies i) a control element that cooperates with its peers on 
other hosts to build and maintain some virtual network 
topology, and ii) a forwarding element that appropriately 
routes messages over its virtual topology.  
 
In terms of deployment, the overlay framework allows one to 
dynamically instantiate new overlays in a straightforward and 
lightweight manner. This is supported in a recursive fashion 
by using overlays to deploy overlays. For example, a 
flooding-based overlay (e.g. Gnutella) can be used to 
disseminate a message that (a filtered subset of) receiving 
hosts act upon by deploying a node of a new overlay of some 
desired type (e.g. an application-level multicast overlay). This 
is achieved by employing a stack structure for overlay 
implementations, and adopting an associated message 
handling regime that is inspired by the Ensemble 
communications framework [vanRenesse,98]. In brief, the 
forwarding elements of overlays are organised such that when 
an incoming message is not recognised, it is passed to the 
forwarding component of the overlay above. Given this 
arrangement, one can place a ‘dummy’ overlay at the top of 
the overlay stack that responds to deployment request 
messages.  
 
Apart from its use in deployment, the general notion of 
stacking overlays is a powerful one, and there are numerous 
cases in which one overlay can usefully be employed as a 
substrate for another. For example, one could layer a keyword 
search overlay such as Gnutella over a DHT-based network 
such as Chord (as DHT networks do not support keyword 
search). Or, one could layer a content dissemination overlay 
such as TBCP [Mathy,01] over a resilient overlay such as 
RON [Andersen,01] to enhance dependability. All such 
scenarios can be achieved very easily using the overlay 
framework’s stacking structure. 
 
As well as stacking whole overlays, the overlay framework 
also supports partial stacking in which the control and 
forwarding elements can be separately stacked. For example, 
we have designed a variant of Gnutella that builds a more 
structured network than the completely unstructured topology 
constructed by standard Gnutella. This variant can be 
deployed simply as a control element, and an existing 
standard Gnutella forwarding component in the layer below 
can be used directly. Another example of partial stacking 
could be the stacking of a multicast overlay over a DHT-based 
overlay. Here, the multicast overlay would only need to 
provide a forwarding component, as the control element of the 
underlying DHT overlay could be used directly. Partial 
stacking not only saves developer effort—it also potentially 
conserves resources, as functionality common to a set of 
stacked overlays can be reused, thus saving end-system 
resources and potentially reducing network traffic.  
 
As well as stacking, the overlay framework also promotes 
horizontal composition between different overlays. For 
example, a gossip-based overlay can be used to gossip about 
crashed nodes in a different overlay, and thus be used to 
provide a general failure detection service for other overlays. 

Similarly, an overlay that provides a dependability service for 
the nodes of other overlays could exploit a third overlay to 
search for suitable hosts on which overlay nodes could be 
redundantly checkpointed. As a third example, separate 
infrastructure-based and ad-hoc-based multicast overlays 
could cooperate side-by-side to underpin a publish-subscribe 
session that must simultaneously operate in both network 
environments. 
 
An example of an overlay framework configuration is shown 
in Figure 3. This also illustrates that the framework can 
simultaneously support multiple overlays, some of which are 
related and others of which are not. 
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Figure 3. An example overlay configuration  

 
Finally, in terms of the management of deployed overlays, the 
overlay framework employs plug-in ‘component 
configurators’ [Kon,00] that builds on a native reflective 
capability of OpenCOM (i.e. the ‘architecture’ meta-model 
[Coulson,04]). But in addition, some management functions 
can be carried out by overlays themselves. Within a single 
overlay, it is the responsibility of the control part of the 
implementation to manage, maintain, and repair the overlay 
topology. But it is also possible to use specialised overlays to 
manage other overlays. Examples of this relating to failure 
detection and dependability have already been given above. 

5. The interaction framework 

As argued in section 1, Grid middleware that offers only a 
single interaction paradigm (e.g. RPC) cannot cope with the 
diversity of application requirements needed by next-
generation Grid applications. To address this issue, Gridkit’s 
interaction framework provides a common environment for an 
extensible set of so-called plug-in interaction paradigms, or 
PIPs. The overall architecture and context of the interaction 
framework is illustrated in Figure 4. 

 

Figure 4: The interaction framework 

Architecturally separating the interaction framework from the 
overlay framework has the effect of promoting the reuse of 
overlays and thus conserving resources—i.e. different 
interactions may re-use overlay configurations that are already 
in place (for example, a topic-based publish-subscribe PIP and 



a reliable multicast PIP might both share a multicast tree 
overlay).  

Because of the variety of interaction paradigms and the need 
to support future extensibility, it is unrealistic to define 
universal, fixed, interfaces to PIPs. Instead, we adopt an 
approach to API provision that relies on the definition of an 
(extensible) set of generic APIs. The expectation is that each 
generic API will be exported by a potentially large family of 
underlying PIPs. For example, a generic publish-subscribe 
API can give access to a wide range of plug-ins that 
implement variations on the publish-subscribe theme (e.g. 
channel-based, content based etc.). In cases where a PIP 
requires a modification of the generic API closest to its needs, 
the framework recommends that interface inheritance is used 
wherever possible to avoid a proliferation of top-level generic 
APIs. Avoiding a proliferation of top-level APIs is crucial in 
giving applications some level of stability and consistency.  

The other API-oriented feature that we provide is a 
lightweight means of “trading” for PIP instances. Details of 
the “trading” scheme are provided in [Grace,05]. In brief, 
when a user of the interaction framework wants to create and 
bind to a PIP, it provides to the IConnect API a receptacle for 
the type of generic API it is looking for. Attached to this 
receptacle is a predicate which is matched by the framework 
to a suitable PIP on the basis of a match between the predicate 
and corresponding name-value pairs that are attached to 
plugged in PIPs. In addition, predicates may range over 
additional name-value pairs that are exported by a context 
engine. This enables PIP selection and configuration to be 
informed by context. For example, if the context engine 
reported network_type: ad_hoc, the framework could 
instantiate a requested publish-subscribe PIP over an ad-hoc 
multi-hop routing overlay rather than a tree-based multicast 
overlay which might be used if the context engine reported 
network_type: infrastructure. 

Additionally, the interaction framework (optionally) supports 
dynamic monitoring of predicates and name-value pairs so 
that an exception is raised if any of these change such that the 
match is no longer valid. In this case either the user or the 
framework itself can attempt to reconfigure to meet the new 
circumstances. As an example, the context engine might 
change a name-value pair to reflect the fact that a live 
Ethernet MAC layer no longer exists, and the framework 
might on that basis change an underlying overlay from IP-
based flooding to an ad-hoc network based flooding. Again, 
see section 4 for examples and more detail. 

6. Related work 

In terms of the basic component-based middleware 
architecture, there is a substantial body of literature on 
reconfigurable middleware for pervasive and ‘minimal’ 
systems. For example, Gravity [Cervantes,04] is a component 
model built on top of a Java framework for consumer devices; 
and DPRS [Roman,04] and PCOM [Becker,04] are other 
component-based designs for dynamically configurable and 
reconfigurable pervasive systems. THINK [Fassino,02] is a 
component-based component model that is tailored 
specifically at building operating system kernels. And finally, 
one.world [Grimm,00] is a system for pervasive applications 
that supports dynamic service composition, migration of 
applications and discovery of context. Our approach is related 

to all of these. However, by being language-independent and 
by separating the basic component model from the 
frameworks that are built in terms of it, our approach attempts 
to be more generic than the above systems (e.g. the above 
systems could themselves be built using OpenCOM). 
 
In terms of overlay networks, there is, of course, considerable 
research in this field; but our work is largely orthogonal to 
this: we are primarily interesting in wrapping and composing 
overlays rather than in developing new ones. Researchers in 
Toronto have developed a generic platform called iOverlays 
[Li,04] that supports the implementation of overlays. 
However, it can support only one overlay at a time. The JXTA 
project [JXTA,05] from Sun is addressing interoperability 
across different peer-to-peer systems but not the dynamic 
composition of overlays in a general sense. It is also focused 
on one particular type of overlay: unstructured peer-to-peer 
overlays. In a more mainstream Grid context, researchers at 
Indiana [Pallickara,03] have developed a peer-to-peer 
messaging service for the Grid that incorporates both JXTA 
and the Java Messaging Service, but unlike our work this does 
not address  the provision of a lightweight framework for 
overlay types that can transparently mediate between the 
range of interaction paradigms needed by applications and the 
range of network types that are increasingly being used. 

7. Status and future work 

To date we have implemented the overlay and interaction 
frameworks and have populated them with a substantial set of 
plug-ins. In the interaction framework, we have implemented 
publish-subscribe and group PIPs in C++ and Java 
respectively (this multi-language integration is straightforward 
thanks to OpenCOM). We have also implemented IIOP and 
SOAP-based RPC PIPs (in C++), and a streaming PIP (in 
Java). In terms of overlay plug-ins, Chord, Scribe and 
Application Level Multicast (i.e. TBCP [Mathy,01]) have 
been implemented in Java, and Gossip and Probabilistic 
Multicast have been implemented in C++. The two 
frameworks themselves, plus the context engine, are 
implemented in Java. Mostly, we have used the multi-
language integration feature for practical reasons to 
accommodate more easily into the frameworks software 
already written. 
 
We already have all the above software running on both PCs 
and PDAs, and we have just started work on porting 
OpenCOM to the microcontrollers that are used by Berkeley 
sensor motes. This builds on the Contiki mote operating 
system from SICS [Dunkels,04]. This work will be an 
interesting evaluation of our claim the OpenCOM is 
sufficiently lightweight to run on the full range of devices in 
the pervasive Grid. 
 
We have also designed, on top of Gridkit, a collaborative 
workspace application (see Figure 5) which enables graphical 
communication in our fire fighting scenario between fire 
fighters and controllers. In more detail, we have designed an 
architecture involving multiple disjoint groups (e.g. all fire 
fighters; fire fighters in a given locality; fire fighters to 
controllers etc.), each of which is underpinned by a distinct 
PIP/overlay stack. Graphical communication is used to 
present map information which is overlaid with visualizations 
of sensor information (including positions of the relevant 
human actors). Controllers and field workers can sketch on 
the drawing surface, for example to give an estimate of the 



local fire boundary, or to highlight particular features. The 
application is implemented using web technologies, and 
Scalable Vector Graphics (SVG) is used for graphical 
presentation. Information displayed on each display surface is 
considered to be an annotation of the surface which is 
represented using the Resource Description Framework 
(RDF).  

 

Figure 5: The collaborative workspace application 

Although we have made considerable progress, a lot remains 
to be done. For example, there is a lot more territory to 
explore in the area of distributed reconfiguration of both 
overlays and PIPs. In particular, there are interesting issues in 
cross-layer distributed reconfiguration that involves 
intelligent cross-coordinated reconfiguration of both 
frameworks. For example, a publish-subscribe PIP might be 
adequately underpinned by an TBCP overlay while most or all 
of its users are situated in the fixed network; but if the 
situation evolves so that at some point a significant number of 
users are situated in ad-hoc network environments, then the 
optimal underpinning of the PIP needs to be reconsidered and 
could perhaps be better supported by a coordinated federation 
of horizontally-composed overlays. 
 
Additional areas of challenge that we are addressing are the 
use of Model Driven Architecture concepts to configure our 
frameworks and also to provide formally-specified constraints 
on their reconfiguration; and the use of autonomic techniques 
so that the frameworks can not only adapt to changing 
environmental conditions but can also learn from prior 
adaptations and make better decisions on that basis. 
 
Finally, we are looking at extending our applications work 
beyond the fire fighting scenario to a more general focus on 
managing the “e-Environment”. To this end, we are forming a 
collaboration of leading Environmental Scientists from the 
Lancaster Environment Centre (LEC), the Centre for Ecology 
and Hydrology, and the Proudman Oceanographic Laboratory, 
along with leading technology providers from InfoLab21 
(Lancaster University), the University of Manchester, and 
CCLRC Daresbury, to study the use of pervasive Grid 
technology in the specific area of water management. This 
particularly features the linkage of sensor networks and large 
scale environmental modelling components to provide 
comprehensive support for concerns such as flood forecasting 
and water quality control. 
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