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Abstract. Next generation middleware must support applications in the face of 

increasing diversity in interaction paradigms, end system types and network styles. 

Therefore, to secure applications, flexible security policies must be configured and 

indeed reconfigured at runtime. In this paper, we propose an approach combining the 

openness of reflective middleware with the flexibility of programmable security to 

meet such demands. In particular, we build a security architecture based on the 

Gridkit reflective middleware platform and the Obol security protocol programming 

language. The paper then describes a case study that uses flexible policies in order to 

secure remote procedure calls and secure group communication. We also evaluate 

this approach in terms of its security properties, flexibility, ease of use and 

extensibility. 

1    Introduction 

Developing middleware that can support secure distributed applications is an increasingly di fficult task. 

Computing paradigms such as the Grid, and mobile/ ubiquitous computing all add to the increasing 

diversity in terms of interaction paradigms, end system types and underlying network styles; therefore, 

enforcing an appropriate security mechanism in these highly heterogeneous environmental conditions 

is becoming more challenging. We now analyse how this diversity impacts on security: 

− Varied interaction paradigms. The development of distributed systems can involve a wide range of 

interaction styles including: RPC, multicast-based group communication, publish/subscribe, media 

streaming, and many others. However, security mechanisms developed for the traditional client-

server model do not necessarily fi t the other interaction styles; experience has shown that there are 

distinct differences in both the communication models and the security requirements.  

− Different end systems. Devices can range from: workstations, PCs, laptops to resource-poor and 

low-speed PDAs and sensors. It is difficult for every device type to support all security policies; 

for example, the cost of encryption and the processing of some security protocols may exhaust 

resource-impoverished devices. 
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Hence, we believe that flexible security policies are necessary to dynamically adapt to the divergent 

application environment. Dealing with flexible security policies wil l be a fundamental challenge in the 

development of future middleware solutions. Unfortunately, traditional middleware platforms, e.g. EJB 

[Su91] and CORBA [OM02] typically only provide static, fixed security mechanisms. In this paper, we 

propose an approach to apply configurable and dynamically reconfigurable security mechanisms in 

middleware platforms. This involves the integration of two complementary technologies, namely 

reflective middleware, and programmable security. That is, we develop flexible security policies using 

Obol [My05], a security protocol programming language to implement security policies. Then we 

apply them within an existing reflective middleware, Gridkit [Gr05], using a meta-model supporting 

behavioural reflection (interception). To evaluate the effectiveness of our approach, we present a case 

study, characterised by diversity, which demonstrates how security policies can be dynamically 

configured at runtime.  

The remainder of the paper is structured as follows. Section 2 and section 3 discuss the two key 

underlying technologies. In particular, section 2 introduces the reflective middleware platform Gridkit, 

its component model (OpenCOM) and its interception meta-model. Section 3 then describes the 

programmable security capabili ty provided by Obol. Following this, section 4 describes the security 

requirements for diverse environmental conditions, highlights the role of Obol in expressing security 

policies, and details the approach to integrate flexible security mechanisms within Gridkit. Section 5 

describes the development of a case study involving an RPC application and multicast-based group 

communication using two different device types, i.e. PC and PDA. Following this, we evaluate the 

approach used to build the security architecture in section 6, and present our conclusions and future 

work in section 7.  

2    Reflective Middleware 

2.1    Gridkit 

Application domains including multimedia, mobile computing, autonomic computing, ubiquitous 

computing, and many others, are characterised by both diversity and change. Applications can operate 

on different devices, e.g. sensors, laptops, PDAs, workstations, and clusters; applications can uti lise 

different networks, e.g. fixed infrastructure, wireless and ad-hoc networks; and applications can have 

very different middleware requirements, e.g. client-server, publish-subscribe, streaming media, 

resource discovery, etc. Hence, fixed middleware solutions are inappropriate; rather middleware must 

be adaptable to suit the current application’ s requirements in the given context, and middleware must 

be able to dynamically change its behaviour at run-time to manage context changes. In this section, we 

describe a middleware solution called Gridkit that can be configured, and reconfigured to support a 

wide variety of application types in highly diverse settings.  

Gridkit fol lows the Lancaster design philosophy [Bl01] that promotes a marriage of component 

technologies, component frameworks and reflection. Components are the building blocks of 

middleware, where a component is “a unit of composition with contractually specified interfaces, 

which can be deployed independently and is subject to third party creation” [Sz98]. This technique 

promotes configurabil ity, re-configurabili ty and re-use at the middleware level. Component 

frameworks manage specific domains of middleware functionality (themselves being composed of 
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other components and frameworks), in particular controlling the configuration and reconfiguration of 

the elements within. Finally, reflection is then used to provide a principled mechanism to inspect and 

dynamically adapt the component structure.  

In prior work [Gr05], we have described the overall Gridkit approach, focusing on how different 

elements of middleware functionality can be configured on-demand to meet application requirements 

in different environmental conditions. Figure 1 i llustrates the tailorable Gridkit framework; this is 

essentially a component framework composed of a set of key component frameworks. At the base is 

the overlays framework (which is typically used by higher-level  middleware) into which per-host 

implementations of overlay networks are plugged, for example, an Application Level Multicast plug-in 

(ALM), an epidemic routing plug-in, or a Distributed Hash Table (DHT). Above the overlays 

framework is a set of vertical frameworks providing diverse middleware behaviour. The interaction 

framework supports the plug-in of multiple interaction types (e.g. RPC, Pub-Sub, Group 

communication, Streaming, etc.) The resource discovery framework accepts plug-in strategies to 

discover resources such as CPUs and storage (e.g. peer-to-peer search), and also discover software 

services; the resource management and resource monitoring frameworks are respectively responsible 

for managing and monitoring resources. 

 

Overlays framework 

Interaction Service 
discovery 

Resource  
discovery 

Resource 
mgmt 

Resource 
monitoring 

 

Figure 1: The Gridkit Architecture 

[Gr05] also describes how a declarative policy-based mechanism drives the configuration and 

reconfiguration of the architecture. Using context information (e.g. current device type, or network 

style), the correct policy is selected and applied across the framework, plugging the appropriate 

functionality into each of the core frameworks. In this paper, we are investigating the approach further 

by defining mechanisms to configure and reconfigure non-functional concerns (in this case security) 

within this framework, and in particular within the interaction framework.  

2.2    OpenCOMJ and the Interception Meta-model 

OpenCOMJ is a lightweight Java component model that implements the OpenCOM component 

runtime specification [Co04], and is used to implement every component and framework in the Gridkit 

architecture. Each component implements a set of custom interfaces and receptacles. An interface 

expresses a unit of service provision, whereas a receptacle describes a unit of service requirement. A 

connection is the binding between an interface and a receptacle of the same type. OpenCOMJ deploys a 

standard runtime substrate that manages the creation and deletion of components, acts upon requests to 

connect/disconnect components and provides service interfaces for reflective operations. The runtime 

substrate dynamically maintains a system graph of the components currently in use. This explicit 

maintenance of dynamic dependencies between components provides the support for introspection and 

reconfiguration of component architectures. OpenCOMJ also supports a component framework model 

[Gr03]. Here, a framework is a single OpenCOMJ component (seen in figure 2), which then contains 

its own internal structure (a graph of components). Each framework is extended by the 

ICFMetaArchitecture interface, which provides reflective operations to inspect and dynamically 



 4

reconfigure the framework’ s local component architecture. 

                

Figure 2: Components and Component Frameworks in OpenCOMJ 

Crucially, OpenCOMJ also provides an interception meta-model. This supports the inspection, 

insertion, and deletion of interceptors to individual interfaces. Interceptors can be either pre, or post, 

i.e. they are invoked before or after each operation call on that interface. In OpenCOMJ, interceptors 

are implemented as individual Java methods that follow a particular syntax, as seen in figure 3. The 

parameters contain the method name and the methods arguments. Hence, the interceptor can monitor 

and manipulate the behaviour of the interface. Each OpenCOMJ interface is delegated using Java 

dynamic proxies; essentially the interface call is trapped, the attached pre methods are executed in 

order, the original method is called dynamically, and finally the post methods are executed. As will be 

seen below, it is this mechanism that enables the dynamic insertion of security policies into Gridkit. 

 

Figure 3: Implementing Pre and Post Interceptors in OpenCOMJ 

3    Programmable Secur ity 

3.1    The Case for Programmable Security 

It is a very challenging problem to address security requirements in dynamic and changeable 

application domains. Firstly, security is usually treated as an add-on property and is rarely properly 

considered in the design and implementation of a system. This will  inevitably increase the complexity 

whilst decreasing the effectiveness of security implementation. Secondly, traditional tools used to build 

security solutions only work as expected in a very specific environment, where all assumptions are 

clearly defined and supported. However, because the real world is neither static nor globally controlled, 

change will occur and, gradually, the security solution will become more and more mismatched to the 

dynamic environment and its applications (the reason for this is often a very tight integration between 

application and a security solution). In addition, the security features in both low-level cryptography 

functions and high-level security mechanisms are very complex to understand and implement, 

especially in the dynamic environment. We propose programmable security as a solution to these 

problems [An03].  We have limited the scope of the security problems we address to the ones related to 

communication, that is, security protocols. We believe that the most interesting issues (security-wise) 

revolve around communication (e.g. both message passing and invocation), such as secrecy, integrity, 

authenticity, non-repudiation, and so on.  
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In order to maximize the flexibili ty of secure communication solutions, and at the same time separate a 

solution from the application, we have designed and implemented a language and runtime for 

expressing and running security protocols in a highly dynamic manner. This allows us to express 

security protocols at a very high level of abstraction, with clearly defined separation of concerns, 

boundaries, and interfaces to the application domain. 

3.2    Obol: a Security Protocol Language 

The security protocol language Obol is greatly influenced by the numerous logics used for analyzing 

security protocols, e.g. [Bu90] [Sy96]. These logics deal with security issues at a very high level of 

abstraction, leaving other matters to the system of deployment, i.e. the implementation. The Obol 

language mirrors this by keeping the level  of abstraction used to express a security protocol as high-

level as possible, while delegating low-level concerns, such as message representation and data 

transfer, to its runtime. This means that security protocols can be expressed by very short textual 

descriptions, called scripts, which only deal with the security problem at hand. Unlike the logics used 

for analysis, and other security protocol implementations, Obol is designed for protocol endpoints, and 

it is not required for Obol to be used by all protocol participants.  

For security protocols, the interesting concerns are: manipulating local state, what to encrypt and 

decrypt, what to digitally sign and verify, what data to send, and what's expected to be received during 

a correct protocol run.  Together with a syntactic notation, Obol provides eight fundamental operands 

that address these concerns: believe and generate, for manipulating local state; encrypt and decrypt, 

sign and verify, for the same-named cryptographic operations; and send and receive for expressing 

what messages to send and expect to receive.  There are other operands for manipulating Obol 

language objects, and interacting with the Obol runtime. 

In its current incarnation, the Obol language is interpreted in a runtime named “Lobo”  implemented in 

Java. The runtime deals with all matters not addressed by the Obol language, such as loading and 

controlling protocol scripts, message representation, sending and receiving messages, etc. These issues 

are modularized, and can be replaced or updated at need. Figure 4 shows an overview of the Lobo 

structure.  

                                                       

                                                                  Figure 4: Obol Runtime (Lobo) Overview 

Applications interact first with the runtime itself to load, select and start a particular script, and then the 

application interacts with the script instance through a script-handle during the protocol run. The 

script-handle allows the application to inspect the script instance, to provide or retrieve various 
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parameters and results, as well as interacting with the protocol run, to provide/retrieve intermediate 

data, error state and so on. Typical parameters provided by the application are long-term identity keys, 

names, peer-addresses, and payload data.  The result retrievable varies greatly depending on the 

protocol; some protocols yield a result simply by not fail ing [Go95]. This reflection is also available to 

the scripts themselves, allowing one script to use another. 

The language does not make any assumptions on how messages communicate; in particular, messages 

need not be transported over the same medium during a protocol session. The runtime keeps a pool of 

delivered messages, and a matching algorithm determines if a delivered message is to be received by a 

script instance. Also, no assumptions are made on how messages are represented nor how they are 

structured. The exact manner of message transport is handled by the Obol runtime and is modularized 

so that new ways of communication can be added. The manner of communication can be configured at 

runtime, either by the Obol scripts themselves, or through parameters passed from an application. This 

allows an application utilizing Obol as its security protocol machinery to adapt to changing situations, 

for example, an application can switch the actual protocol used, or just change some parameter of the 

protocol, such as the encryption algorithm being used, or the manner of communication. 

4    Flexible Security Policies in Gr idkit 

4.1    Security Requirements of Diverse Environmental Conditions 

To prevent attacks in the form of masquerading, tampering, eavesdropping and denial of service, it is 

necessary to guarantee key security properties such as entity authentication, data integrity, 

confidentiality, non-repudiation, authorization, validation, access control etc. There are many 

cryptography techniques provided to support message security. For example, shared-key or public-key 

based encryption/decryption for confidentiality, MAC and digital signatures for data integrity and non-

repudiation, access control technologies (e.g. ACL or ACM) for authorization. Moreover, a series of 

key establishment protocols are used in authentication, key transport and key agreement. Table 1 shows 

a selection of basic two-party protocols. Additionally, some protocols provide multi-party support such 

as n-Party Diffie-Hellman protocol [St96], secret sharing technique [Me96], conference protocol 

[Me96] etc. 

Type Protocol (properties) 
Key transport protocol based on 
symmetric encryption 

Point-to-point key update (no server) 
Shamir’ s no key protocol  (no server) 
Kerberos authentication protocol  (server based) 
Needham-Shroeder shared-key protocol (server based) 
Otway-Rees (server based) 

Key transport protocol based on 
asymmetric encryption 

Basic PK encryption (1-pass) (no enti ty authentication) 
X.509 (2-pass) -timestamps (mutual entity authentication) 
X.509 (3-pass) –random  (mutual entity authentication) 
Beller-Yacobi  (4-pass) (mutual entity authentication) 
Beller-Yacobi  (2-pass) (unilateral entity authentication) 

Key agreement protocol Diffie-Hel lman (entity authentication) 
ELGamal key agreement (key entity authentication) 
STS (mutual  entity authentication) 

                                                      Table 1: Selected Protocols [Me96] 

It is well known that the definition of security mechanisms is highly dependent on the requirements of 

the application you want to protect, i .e., the required security principles, the handling attack types, and 

so on. Therefore, security policies must match the environmental conditions. Heterogeneous interaction 
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paradigms demand flexible and dynamic security policies. Consider for example RPC, group 

communication and publish-subscribe interaction paradigms. In the client-server model, the system can 

employ approaches such as Kerberos [St88], the Needham-Schroeder shared-key protocol [Ne78] or 

public-key mutual authentication protocol [Gl00] for entity authentication. Moreover, MAC, digital 

signatures as well as encryption/decryption technology can be used to guarantee privacy and data 

integrity. Group communication is a significantly more complex interaction type compared to client-

server. Its characteristics are: i) potentially large scale groups; ii) dynamic joining and leaving of 

members resulting in the update of group security parameters (group key and group view) in order to 

prevent new joiners from eavesdropping previous messages, and leavers from looking at future 

messages; i ii) flexibili ty: the joiner is allowed to be a member when all other members agree with it. To 

ensure the validity of a group member as well as the privacy, integrity and freshness of messages 

delivered between group members, it is necessary to choose appropriate security mechanisms to cope 

with the generation, distribution and management of group keys. Secure authenticated key agreement 

protocols for dynamic peer groups [At00], key graph solution for scalable group security [Wo98], and 

the Burmester-Desmedt conference protocol [Me96] are some of the optional techniques to meet 

different system requirements e.g. in terms of being lightweight, scalable, etc. Finally, in the area of 

publish-subscribe, security protection focuses more on the cryptographical binding between type name 

and type definition, as well as the authenticity and integrity of messages [Ba05].   

In addition, developers need to consider the trade-offs involved in the security techniques. Public key 

encryption is slower than symmetric encryption algorithms due to the level of computation involved, so 

public key cryptography may be unusable for resource-poor devices; furthermore, according to [Di03], 

long-term key based encryption slows performance even using today’s high-power processors. 

Therefore, developers need to weigh the need for strong encryption versus system performance; 

moreover, even if we neglect the cost of encryption technology (e.g. RSA, DES, AES etc.), because 

encryption or any security-enabling technique will add overhead to communication, this also leads to 

increased memory and processing costs. In the final analysis, security mechanisms will vary depending 

on the end-system types they can execute on.  

4.2    Implementing Security Policies in Obol 

To support the different security requirements we adopt Obol to program flexible security policies 

according to its fundamental characteristics; namely it is “high-level” , i.e. easy to implement because 

the simple syntax is close to the standard description of the security protocol; and it is “programmable”, 

i.e. security policies can be configured and reconfigured at runtime.  

Security policies in our architecture are classified into several parts depending on which security 

properties it achieves, e.g. entity authentication, data integrity, message privacy as well as securing the 

private key and so on. The implementation of every security policy is an Obol program. Figure 5 

represents a simple Obol program to perform message encryption and transmission (using the believe  

                                                        

                                                         Figure 5: An Obol Program            
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primitive to bind names to values and the send primitive to actually send the encrypted message).                

As mentioned in section 3.2, Obol defines how to express a given security protocol. These Obol 

programs must be interpreted and executed in the runtime Lobo. Figure 6 shows how to initiate a Lobo 

instance and load an Obol program. 

                                        

                                        Figure 6: Load and Execute an Obol Program 

Due to the clean decoupling between protocol implementation and protocol execution, security 

protocols can be programmed before or after an application is designed and implemented. Moreover, 

the loading of Obol programs occurs at runtime so the fluctuation of security policies wil l not affect 

other parts of the system. This simplifies the update of security policies and also achieves dynamic 

configuration and runtime reconfiguration of security policies.  

4.3    Integration of Flexible Security Mechanisms into Gridkit 

Section 2.2 described the interception meta-model of OpenCOM; this forms the basis of our reflective 

security architecture. An Obol program (the implementation of the security protocol) must be loaded in 

the Lobo runtime before it can execute; the reflective mechanism of Gridkit is well-suited to this task, 

i.e. the interceptor provides an environment to install the runtime Lobo and execute a given security 

protocol at a particular point in the “middleware path”. In this way, the update and replacement of the 

security protocol used is separated from the logic of the core middleware functionality.  

In detail, we designed our security architecture based on the principle of a clear “separation of 

concerns” between the application logic and the security service. We employ interceptors to execute all 

security related operations so that end-users can focus on the application development rather than 

security implementation. As a result, in a given application, interceptors are responsible for 

intercepting the application logic chain and triggering the appropriate security mechanisms. In addition, 

we adopt interaction/role based configuration in order to adapt the security mechanism to the current 

requirements and environmental conditions. In other words, “ interaction/role” is viewed as a path to the 

security architecture configuration, e.g. RMI/Client, RMI/Server, Group/SL or Pub-Sub/Publisher and 

so on. Here, the “ interaction/role” decides the interception points while the “ role” (potentially together 

with some other context information at runtime) decides the pre- and post- method-call and the loaded 

Obol program. The API SecurityConfigurator:InterceptorConfigure() used to configure security 

architecture is presented in figure 7.  

 

 

 Figure 7: API for Configuring Security Architecture 

The steps involved in the process of configuration are as followed:  

public class SecurityConfigurator{  

    public SecurityConfigurator(OpenCOM runtime, IOpenCOM pIOCM, String configureInfoPath){ }  

    public void InterceptorConfigure(){ }  

}  
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1. Read the configuration file (see the example in section 5) according to the “ interaction”  type and 

the “ role”  

2. Lookup the required components from the system graph of components; this is supported by 

architecture meta-model of OpenCOM [Bl01] 

3. Attach the interceptors to the interfaces according to the “ role” , or execute other security related 

operations, such as initiating the authentication server.   

The configuration aims to dynamically set the interception points at runtime. After this, the original call 

invocation will  be intercepted, and the pre- and post- methods will  be triggered before and after the 

call. The runtime Lobo will be installed and the appropriate security mechanism (an Obol program) 

matching the current context information will  be loaded dynamically. In summary, the security 

architecture applied to Gridkit is configurable, orthogonal and crosscuts core middleware functionality 

to guarantee a series of security objectives including authentication, data integrity, privacy, non-

repudiation and others.  

5    Case Study 

In this section, we present one scenario (shown in figure 8) featuring both RPC and multicast-based 

group communication. In the scenario, node A, node B and the server are located in different domains. 

Client A and client B invoke services from the server located in domain1. A only supports a shared-key 

system, while B supports both shared-key and public-key based systems but no support for the 

Needham-Schroeder shared-key protocol. Additionally, B joins a chat group and talks to other group 

members. We configure the security architecture for the two different interaction paradigms on two 

types of devices (PC and PDA); this demonstrates how programmable security is integrated into our 

reflective middleware platform, and shows how flexible security policies can be dynamically 

configured to adapt to the heterogeneous environmental conditions. We adopt the approach mentioned 

in section 4.3 to build secure distributed applications and i llustrate the concrete details behind each 

step.  

 

                           Figure 8: Application Scenario Featuring Client–Server and Group Communication 
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The configuration of the security architecture is based on the API method: 

SecurityConfigerator:ConfigureInteceptor(). The operations it performs are to discover which points in 

the middleware need to be intercepted, and then attach the correct interceptors at this point, i.e. adding 

pre- and post- methods to the call chain. The configuration information based on two different 

interaction types (RMI and group communication) is tabulated in Table 2. 

 

Table 2: Configuration Information in Heterogeneous Interaction Types 

The configuration information is defined in a plain text file (in the future, we will define it using 

XML). At the application start-up, the SecurityConfigurator is initiated and obtains the contextInfoPath 

(see API in figure 7). Following the data from Table 2 for RPC, the SecurityConfigurator associated 

with client A and client B will  realize the context information “RMI/Client” , will check the 

configuration file, look up the component called “JavaRMI”, attach the “rmi_c_interceptor”  to the 

interface called “ IClientRemoteProcedureCall”  and then add the pre0, pre1, pre2 and post0 methods 

written in the rmi_c_interceptor to the invocation chain. However, if A joins a chat group, the 

SecurityConfigurator associated with it will  realize it as “Group/Joiner”, look up the component called 

“GroupManagement”, attach the “ join_interceptors” to the interface named as “ IGroupManagement”  

and add m_pre0 and m_post0 methods written in the join_interceptor.  

The interception meta-model allows programmers to define security behaviours (pre-/post- methods) in 

advance. The pre-defined actions are triggered at runtime when the invocation happens. In order to 

make the security mechanisms modular, we separate every security policy into different pre- or post- 

method calls. We then adopt a “context-based selection” mechanism to dynamically select which pre-

/post- methods will be performed. Figure 9 il lustrates that pre methods can be executed in order as 

shown in path 1, or selectively executed as in path 2 (which uses context information to select a path 

through the interceptors). The dynamic composition of pre-defined actions not only increases the 

flexibility of interception behaviours, it also facil itates dynamic configuration and more general 

extensibili ty of security mechanisms at runtime.   

 

          Figure 9: Interception Behaviours in the ‘context-based selection’  Mechanism 

More details follow in terms of the concrete description of how RPC and group security are deployed. 
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5.1    RPC Security 

The first example focuses on the provision of a security architecture for Gridkit’ s RPC interaction type. 

Figure 10 depicts the workflow of this architecture in detail. In this example, the server provides a 

simple patient record service allowing doctors to read a patient’s medical record. If the client is 

authorized, it will  be returned the corresponding record to the passed parameter (patientID). In this 

scenario, there are two clients: A (a PDA client being used by a doctor in a hospital) and B (a PC client 

being used by a general practitioner) supporting different security mechanisms; hence, it is essential to 

negotiate the security mechanism they wil l use for message exchange. In detail, at the beginning of the 

application, the server configures the appropriate Gridkit interaction type [Gr05] and hosts the patient 

record service, it also invokes the SecurityConfigurator:ConfigureInterceptor(). After this is done, an 

authentication server is generated and pre- and post- methods are attached. The client configures itself 

in the same way and invokes the record service with the contextInfo (“PDA” or “PC” in this case) and 

value (patientID) as the parameter called InputParameters.  

     

Figure 10: Workflow Overview in RMI Application 

As shown in figure 10, pre0 in the client side is triggered first when the client invokes the service. It 

contacts the authentication server and negotiates the authentication protocol to be used. The 

authentication server then creates a new thread for every incoming client for authentication. The pre- 

and post- method, as well as the authentication server will install Lobo and allow the runtime to load 

and execute an associated Obol program according to the context information.  

Needham-Schroeder (N-S) Public-key Mutual Authentication Group Communication Protocol 
1 A->B: A 
2 B->A: { RB} KB 
3 A->KDC: RA, A, B, { RB} KB 
4 KDC->A: { KAB, RA, B, { A, RB,   
KAB} KB} KA 
5 A->B: { R1} KAB, { A, RB,                 
KAB} KB 
6 B->A: { R1-1, R2} KAB 
7 A->B: { R2-1} KAB 

1 A->CA: A, KA
+*  

2 CA->A: A, KA
+, CA, { H(A, KA

+, CA)}  KCA
- 

3 B->CA: B, KB
+ 

4 CA->B: B, KB
+, CA, { H(B, KB

+, CA)}  KCA
- 

5 A->B: A, KA
+, CA, { H(A, KA

+, CA)}  KCA
- 

6 B->A: RB 
7 A->B: { H(RB)}  KA

- 
8 B->A: B, KB

+, CA, { H(B, KB
+, CA)}  KCA

- 
9 A->B: RA 
10 B->A: { H(RA)}  KB

-  
 
 
 
[* : A public/ private key pair (KA

+ , KA
-)] 

Join protocol: 
1 Joiner->SL: A, RA 
2 SL->KDC: SL, A, RSL 
3 KDC->SL: [ �

SL,A = { A} KSL XOR      
{ SL} KA] ,{ RSL} KSL 
4 SL->Joiner: SL, { RA, g, { g, 
A} SKg} � SL,A*  
5 Joiner->group: A, { g, A} SKg 
6 SL->group: g, (A,{ g+1, SKg+1} � SL,A), 
(B,{ g+1, SKg+1} � SL,B)... 
 
Leave protoocl:  
SL->group: g, (A,{ g+1, SKg+1} � SL,A), 
(B,{ g+1, SKg+1} � SL,B)... 
[* : � SL,A = { SL} KA] 

Table 3: Protocol Description [NB: the number like “1” stands for Message1] 
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In our scenario, the authentication between A and the server is based on the Needham-Schroeder 

protocol, while a public key based mutual authentication protocol is used between B and the server 

(please refer to Table 3 which lists the protocol description and Table 4 which presents the Obol 

programs for each participant in the protocol). Once the authentication finishes successfully, A wil l get 

a shared key with the server while B will obtain the certificate of the server. At the same time, both A 

and B get the connection_ID for accessing the service. The server also writes messages into the 

database (DB), including connection_ID as well as security mechanisms related to this connection_ID. 

After authentication, pre1 or pre2 performs the message encryption operation presented in figure 11, 

and also attaches the connection_ID to the encrypted messages. The server at the other side 

authenticates the connection_ID and queries security mechanisms related to this call. It tells Lobo 

which Obol program is loaded for decrypting the message. The record will be delivered in the same 

way from server to client.  

Protocol Implementation 
Client side [A] Server side [B] K ey Distribution Cer ter N-S 
[sel f “ localhost:6000” ] 
(bel ieve B “ localhost:7000” host) 
(bel ieve KDC “ localhost:8000”  host) 
(bel ieve KA (load “c:/KA.key” ) shared-
key  ((alg AES)(size 128))) 
1 (send B “ A” ) 
2 (receive B *1) 
3 (generate RA nonce 16) 
  (send KDC RA “ A”  “ B”  *1) 
4 (receive KDC (decrypt KA *KAB RA 
“ B”  *2)) 
 (believe KAB *KAB shared-key ((alg 
AES)(size 128))) 
5 (generate R1 nonce 16) 
  (send B (encrypt KAB R1) *2) 
6 (believe *R R1 ((type number))) 
  (generate *R1_1 eval l isp “ (- *R 1)” *R) 
  (bel ieve R1_1 *R1_1 ((type binary))) 
  (receive B (decrypt KAB R1_1 *R2)) 
7 (believe *R *R2 ((type number))) 
  (generate *R2_1 eval lisp “ (- *R 1)”  *R) 
  (send B (encrypt KAB *R2_1)) 

[sel f "localhost:7000"]  
(bel ieve KB (load "c:/KB.key") shared-
key ((alg AES)(size 128))) 
  
1 (receive *a *A_ID)   
2 (generate RB nonce 16) 
 (send *a (encrypt KB RB)) 
5 (receive *a *1 *2) 
 (decrypt (KB *2) *A_ID RB *KAB) 
 (believe KAB *KAB shared-key ((alg 
AES) (size 128))) 
 (believe f "c:/kab_b.key" file.out) 
 (send f KAB) 
 (decrypt (KAB *1) *R1) 
6 (believe R1 *R1 ((type number))) 
 (generate *R1-1 eval lisp “ (- *R1 1)”  *R1) 
 (believe R1-1 *R1-1 ((type binary))) 
 (generate R2 nonce 16) 
 (send *a (encrypt KAB R1-1 R2)) 
7 (believe *R2 R2 ((type number))) 
 (believe *R2_1 eval lisp “ (- *R2 1)”  *R2) 
  (receive *a (decrypt KAB R2_1)) 

[sel f "localhost:8000"] 
(bel ieve KA (load 
"c:/KA.key") shared-key 
((alg AES) (size 128))) 
(bel ieve KB (load 
"c:/KB.key") shared-key 
((alg AES)(size 128))) 
   
3 (receive *a *RA *A_ID 
*B_ID *1) 
 (decrypt (KB *1) *RB) 
 
4 (generate KAB shared-
key AES 128) 
 (believe *2 (encrypt KB 
*A_ID *RB KAB)) 
 (send *a (encrypt KA KAB 
*RA *B_ID *2)) 

Client side [A] Server side [B] Certificate Authority PK 
Mutual 
Authen-
tication 

[input A_ID string] 
[sel f "localhost:6700"] 
(bel ieve B “ localhost:7000” host) 
(bel ieve CA "localhost:6111" host) 
(bel ieve KA

-  (load “ c:/A_ Kprivate.key“ ) 
private-key) 
(bel ieve KA

+  (load "c:/A_Kpublic.key") 
public-key) 
(bel ieve KCA

+  (load "c:/CA_Kpublic.key") 
public-key) 
1 (send CA A_ID KA

+) 
2 (receive CA A_ID KA

+  *CA_ID *s_a) 
5 (send B A_ID KA

+  *CA_ID *s_a) 
6 (receive B *RB) 
7 (send B (sign KA

-  *RB)) 
8 (receive B *B_ID *KB

+  *CA_ID 
(veri fy KCA

+  *B_ID *KB
+  *CA_ID) 

9 (generate RA nonce 128) 
 (send B RA) 
10 (receive B (veri fy KB

+  RA)) 
 

[input B_ID string] 
[sel f "localhost:7000"] 
(bel ieve CA "localhost:6111" host) 
(bel ieve KB

-  (load "c:/B_Kprivate.key") 
private-key) 
(bel ieve KB

+ 
 (load "c:/B_Kpublic.key") 

public-key) 
(bel ieve KCA

+ 
 (load "c:/CA_Kpublic.key") 

public-key) 
3 (send CA B_ID KB

+) 
4 (receive CA B_ID KB

+ 
*CA_ID *s_b) 

5 (receive *a *A_ID *KA
+ *CA_ID *s_a) 

 (verify (KCA
+ *s_a) *A_ID *KA

+ 

*CA_ID) 
6 (generate RB nonce 128) 
 (send *a RB) 
7 (receive *a (verify *KA

+ RB) 
8 (send *a B_ID KB

+ *CA_ID *s_b) 
9 (receive *a *RA) 
10 (send *a (sign KB

-
 *RA)) 

[sel f "localhost:6111"] 
(bel ieve KCA

-
 (load 

"c:/CA_Kprivate.key") 
private-key) 
 
1 (receive *a *A_ID 
*KA

+)  
2 (believe *s_a (sign  KCA

- 

*A_ID *KA
+ "CA")) 

 (send *a *A_ID *KA
+ 

"CA" *s_a)  
 
3 (receive *b *B_ID 
*KB

+)  
4 (believe *s_b (sign  KCA

- 

*B_ID *KB
+ "CA")) 

 (send *b *B_ID *KB
+ 

"CA" *s_b)  
 

Table 4: Protocol Implementation in Obol [NB: the number like “1”  means the implementation for Message1] 
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                    Figure 11: Message Encryption  

5.2    Multicast-based Group Communication Security 

In this example, to secure group communication, we utilise a lightweight authentication protocol based 

on Leithton-Micali key distribution algorithm [Mc98] (as described in Table 3). The founder of the 

group, or the earl iest joiner based on the current group view (if the founder left) is viewed as the 

session leader (hereafter SL). Every joiner must contact the SL before joining. We use the same 

approach described in section 5.1 to configure the pre- and post- methods according to Table 2. The 

JoinGroup() call wil l trigger the authentication protocol executed in the m_pre0 method. After the 

authentication is done, the SL generates a new group key for the new group view and multicasts it to all 

members in the group. Member joins and leaves lead to the fluctuation of the group key, so we install a 

runtime Lobo in the post method join_interceptor:m_post() of JoinGroup() call to listen to the new 

group key (as presented in figure 12). Moreover, the SendMessage() call will  trigger the message 

encryption before it is transported. The message exchanged among group members is encrypted with 

the fresh group key, so people outside the group will not understand it. In addition, when one of the 

members leaves the group, the post method of LeaveGroup() call will trigger the generation and 

distribution of a new group key. Especially when the SL leaves the group, the earliest joiner in the 

current group view will  receive a notification and reconfigure itself as a SL, including generating an 

authentication server (the part distinct from usual membership, seen in figure 12) and loading the 

authentication protocol. The interceptors that implement this security mechanism are applied in the 

same manner as for RPC; however, due to space limitations, more details of this implementation are 

not given here. 

                   

                 Figure 12: Member 4 Joins a Chat Group  
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6    Evaluation 

In this section, we analyze our approach to building security architectures in Gridkit. We focus on four 

core aspects as follows: 

�
) Security. We adopted Obol to define security mechanisms. Currently, we have implemented a rich 

set of security policies, including authentication protocols, secret key based encryption/decryption, 

public-key based encryption/decryption, MAC, digital signatures, and private key management. These 

security mechanisms protect a given application by enforcing properties such as authentication, 

integrity, privacy and non-repudiation. 

���
) Flexibili ty. The interception meta-model in our reflective middleware platform provides the 

possibili ty to modi fy the behaviour defined by the business logic of a given application. The 

combination of this reflective feature within the Gridkit middleware platform and programmable 

security supported in Obol makes it possible to dynamically configure and re-configure flexible 

security mechanisms at runtime to meet application requirements in the environmental context.   

�����
) Ease of use. Firstly, Obol allows the security developer to escape the distractions of low-level 

implementation efforts. For example, issues such as message representation, cryptographic 

transformation, etc. are handled in Lobo, so the security developer can focus on designing effective 

security mechanisms without consideration of low-level cryptographic functions. Additionally, the use 

of Obol also avoids errors introduced by the implementation of security protocols. Finally, Obol is easy 

to use because the syntax is similar to the traditional notation of the protocol. In our experience, new 

protocols can be introduced into the framework with considerable ease; once the overall framework 

was established, we were able to introduce new security mechanisms by programming security policies 

in Obol, then updating the interceptors and configuration fi les (for example, the time to develop a 

public key mutual protocol was approximately six hours). 

���
) Extensibility. We adopted the interception meta-model of the Gridkit reflective middleware 

platform to construct interceptor based security. This allowed us for example to implement a security 

architecture to support existing RPC and group communication interaction types; we can now follow 

this approach to freely extend other available interaction styles such as publish-subscribe, media 

streaming etc, based on the well-defined interface and the programmable features of the security 

mechanisms. To some extent, we believe there is the potential to extend other traditional middleware 

platforms (e.g. CORBA and EJB, which support similar interception capabilities) with our flexible 

security policies.  

7    Conclusions and Future Work  

In this paper, we have discussed an approach to integrate our programmable security architecture into 

the Gridkit middleware platform to support flexible security policies that adapt to heterogeneous 

environmental conditions. We adopt two complementary technologies: the interception meta-model of 

the OpenCOM component model and the programmable security capabilities of Obol to build a 

security architecture in the Gridkit reflective middleware platform. This combination is capable of 

supporting configurable, reconfigurable, and flexible security policies.  



 15

To date, we have designed and implemented a set of security mechanisms to support the RPC and 

multicast-based group interaction models. Currently we have a mature implementation of the prototype 

to support dynamic configuration of flexible security policies to adapt to varied device types in the 

RPC model and we are now extending the security architecture for the group communication model for 

robustness, and to include a wider range of selectable security services.  

Although we have made considerable progress in achieving configuration and reconfiguration of 

security policies in a reflective middleware platform, this is just a start and a lot remains to be 

investigated. We have focused on security policies to support secure RPC and group communication 

addressing security properties such as authentication, integrity, privacy and non-repudiation. Future 

work is planned to complement these security mechanisms to guarantee more security principles such 

as authorization and access control. We also aim to investigate security in alternative paradigms like 

publish/subscribe, tuple-space and media streaming. Additionally, we have addressed dynamic 

configuration of two interaction paradigms upon two types of devices. More ambitious explorations in 

the future will focus on implementing runtime reconfiguration of flexible security policies (cf. self-

organising security policies). Furthermore, Gridkit is characterized by the two layered component 

framework [Gr05] featuring an interaction framework layer supported by an overlay framework. It is 

also interesting to investigate security policies at the overlay level of Gridkit and how these might 

relate to more end-to-end policies as studied in this paper.  

The interception meta-model in the reflective middleware is a cornerstone of our approach to achieve 

configuration and reconfiguration of flexible security policies. Future work is planned to explore and 

extend the current interception meta-model to support more flexible interception behaviours. However, 

the reflection feature also hides some dangers such as arbitrari ly loading and deleting interceptors or 

freely interposing the interceptors without authorization.  Therefore, securing interception is also 

crucial for our approach. We are examining special components called ‘security mediators’  to control 

access to the component runtime to protect ‘dangerous’  APIs such as interception. In the future, the 

TCB (Trusted Computing Base) concept will be the base of our security mechanism, authorizing 

operations on the potentially open interception mechanism.  

In addition, a separate project at Lancaster is addressing how to apply aspect-oriented programming 

(AOP) techniques to the component-oriented approach as used in OpenCOM to enhance how 

developers deal with crosscutting concerns. There is considerable potential in considering the role of 

aspect-oriented techniques to identify aspects and join points and investigate how this would be 

supported through interception (effectively providing a higher level view of statement of cross-cutting 

concerns such as security). Moreover, future work is also planed to investigate the possibility to apply 

Model Driven Development (MDD) to our programmable security architecture. 

References 

[An03] Andersen, A., Blair, G.S., Myrvang, P.H., Stabell-Kulo, T., “Security and Middleware”, WORDS 2003, 

Guadalajara, Mexico, January 2003. 

[At00] Ateniese, G., Steiner, M., Tsudik, G., “New Multi-party Authentication Services and Key Agreement 

Protocols”, IEEE Journal of Selected Areas in Communication, vol. 18, March 2000. 



 16

[Ba05]  J. Bacon, D. M. Eyers, K. Moody, and L. I. Pesonen, “Securing publish/subscribe for multi-domain 

systems” , In Proc. of the 6th International Middleware Conference (MW'05), Grenoble, France, Nov. 2005. 

[Bl01] Blair, G. et al.; The design and implementation of Open ORB 2” , IEEE Distributed Systems Online, 2(6), 

Sept 2001. 

[Bu90] Burrows, M. and Abadi, M., and Needham R., “A logic of Authentication” , ACM Transactions on 

Computer Systems, Vol. 8, No 1, 1990. 

[Co04] Coulson, G. et al.; OpenCOM v2: A Component Model for Building Systems Software. In Proc. of 

IASTED Software Engineering and Applications (SEA'04), Cambridge, MA, ESA, Nov 2004 

[Di03] Diana, A., “Benchmarking Encryption Technology” , part of the 

http://www.macnewsworld.com/story/31311.html 

[Gl00] “Overview of the Globus Security Infrastructure”, http://www.globus.org/security/overview.html 

[Go95] Gong, L., Syverson, P., “Fail-Stop Protocols: An Approach to Designing Secure Protocols”, in 

Proceedings of the 5th IFIP Working Conference on Dependable Computing for Critical Applications, Urbana-

Champaign, Illinois, USA, 1995. 

[Gr03]  Grace, P.; Blair, G.; Samuel, S.; ReMMoC: A Reflective Middleware to Solve Mobile Client 

Interoperability, In Proc. International Symposium of Distributed Objects and Applications (DOA’03), Catania, 

Sicily, November 2003. 

[Gr05] Grace, P., Coulson, G., Blair, G., Porter, B., “Deep Middleware for the Divergent Grid”, Proceedings of 

the 6th IFIP/ACM/USENIX International Middleware Conference 2005, Grenoble, France, November 2005. 

[M c98] McDaniel, P., Honeyman, P., Prakash, A., “Lightweight Security Group Communication” , CITI Technical 

Report 98. 

[M e96] Menezes, A., Oorschot, P., Vanstone, S., “Handbook of Applied Cryptography”, CRC Press, ISBN: 0-

8493-8523-7, October 1996. 

[M y05] Myrvang, P.H., Skogan, T.S., “The Obol Protocol Language” , Department of Computer Science, 

University of Tromso, 2005  

[Ne78]  Needham, R., Schroeder, M., “Using encryption for authentication in large networks of computers”, 

Communications of ACM, 21(12): 993-999, December 1978. 

[OM02] Object Management Group, “Security service specif ication” , technical report, Object Management 

Group, Mar. 2002.  

[Su91] Sun Microsystems, “Simplif ied guide to the Java 2 platform, enterprise edition” , technical report, Sun 

Microsystems, Inc., 1991. 

[St88] Steiner, J., Neuman, C., and Schiller, J., “Keberos: an authentication service for open network systems”, in 

proceeding Usenix Winter Conference, Berkeley: Calif., 1988. 

[St96] Steiner, M., Tsudik, G., Waidner, M., “Diffie-Hellman Key Distribution Extended to Group 

Communication” , in Proc. 3rd ACM Conference on Computer and Communications System (CCS’  96). 

[Sy96] Syverson, P. and van Oorschot, P. C., “A unified cryptographic protocol logic”, Naval Research 

Laboratory, CHACS Report 5540-227, Washington, USA, 1996. 

[Sz98]  Szyperski, C., Component Software, Beyond Object-Oriented Programming. ACM Press/Addison-Wesley, 

1998. 

[Wo98] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,”  in Proc. ACM 

SIGCOMM’98, Vancouver, B.C., 1998, pp. 68–79. 

 

 


