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ABSTRACT 
OpenCOM v2 is our experimental language-independent 
component-based systems-building technology. 
OpenCOM offers more than merely a component-based 
programming model. First, it is a runtime component 
model and supports dynamic runtime reconfiguration of 
systems (i.e. one can load, unload, bind, and rebind 
components at runtime). Second, it explicitly supports the 
deployment of the model in a wide range of ‘deployment 
environments’ (e.g. operating systems, PDAs, embedded 
devices, network processors). Third, it allows the 
particularities of different deployment environments to be 
selectively hidden from/ made visible to the OpenCOM 
programmer without inherent performance overhead.  
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1. Introduction 
The notion of constructing application-level software 
from components [1] is well established. For example, 
there is a substantial component-based software 
engineering community [2], and numerous component 
technologies for application development (both 
standalone and distributed) are available. Examples are: 
browser plug-ins [3], JavaBeans/ Enterprise JavaBeans 
[4], and the CORBA Component Model [5]. The general 
benefits of these technologies are: i) they promote a high 
level of abstraction in software design, implementation, 
deployment and management, ii) they facilitate flexible 
configuration (and, potentially, run-time reconfiguration), 
and iii) they foster third-party software reuse.  
 
Less established is the notion of using components to 
build systems-level software, like embedded systems, 
operating systems, communications systems, 
programmable networking environments, or middleware 
platforms. Nevertheless, the above-mentioned benefits of 
componentisation appear just as compelling in this area, 
and this fact has been recognised by a number of 
researchers in recent years. For example, k-Components 
[6], and various JavaBeans-based approaches (e.g. [7]) 
have been proposed as component models for the 
construction of middleware platforms; Knit [8], THINK 
[9], MMLITE [10], and DEIMOS [11] have been 
proposed for the construction of operating systems (OSs); 

and Click [12] and Netbind [13] have been proposed for 
programmable networking environments.  
 
However, these efforts have all been narrowly-targeted, 
both in terms of their intended application domains, and 
their intended hardware/ OS deployment environments. In 
particular, most of them have only been deployed on 
conventional desktop machines as opposed to more 
‘exotic’ environments such as embedded hardware, 
PDAs, or network processors. In the present work, we 
propose a general-purpose component-based systems 
building technology. In more detail, our technology 
addresses the following requirements:  
 
o Wide applicability. It should be applicable in a wide 

range of deployment environments from standard 
PC/Windows or PC/Unix environments, to resource-
poor PDAs, to embedded systems with no operating 
system, to high speed network processor hardware. 
This implies small memory footprint, language 
independence, and policy independence. 

o Policy independence. It should offer generic 
mechanisms; it should not prescribe policies, 
constraints, services or facilities that are specific to 
particular application domains (e.g. real-time; packet-
processing; multimedia; 24x7 availability), or 
deployment environments (e.g. above-mentioned). 

o Support for runtime reconfiguration. It should 
support mechanism-level runtime reconfiguration as 
required when implementing inherently dynamic 
target systems such as operating systems, reflective 
middleware, active networking nodes etc. [14]. 
Again, though, the policy that controls and manages 
such reconfiguration should be separable. 

o Selective transparency of deployment-environment-
specific features. Because of the requirement for 
wide applicability, it must operate in heterogeneous 
deployment environments with non-standard 
features—e.g. multiple processing elements, packet 
processing assists, and specific hardware message 
channels and memory hierarchies, etc. It should be 
possible to render such features invisible as far as 
possible but visible where required (whether for 
performance or functionality reasons). Where such 
features are made visible they should be presented in 
terms of the generic component-based programming 
model. 

o Separation of concerns. It should encourage a 
separation of concerns in what is potentially a very 



complex environment. For example, as well as the 
above-mentioned separation of mechanism and 
policy, the technology should separate the concerns 
of i) programming the base functionality of the target 
system versus the managing its runtime 
reconfiguration, and ii) providing selective 
transparency of deployment environment specifics 
versus writing target systems in terms of the generic 
component based programming model. 

o High performance. It must not incur an inherent 
performance cost. This implies that the ‘in-band’ 
execution path of systems [15] must not be dependent 
on the execution of the component model runtime. In 
addition, when presenting non-standard features (as 
above) in terms of the generic programming model, 
this should incur as small a performance penalty as 
possible. 

 
Our architectural approach to meeting these requirements 
is to define a generic run-time component model (see 
section 2) as a foundation, and then to augment this with 
the notions of component frameworks and reflective meta-
models.  
 
Component Frameworks (hereafter CFs) [14] are 
composite components, built in terms of the underlying 
component model, that accept ‘plug-in’ components that 
add to or modify the behaviour of the composite. They 
serve as architectural place-holders for application-
specific or deployment-environment-specific policies, 
constraints, services or facilities. The idea is that each CF 
addresses a particular functional domain (e.g. protocol 
stacking, thread scheduling, packet forwarding, memory 
management, user interaction, etc.), and embodies 
policies, constraints etc. that make sense in that domain. 
For example a CF for protocol stacking would take 
protocol components as its plug-ins, and could constrain 
the plug-ins to be composed into linear stacks. Note that 
the design and implementation of CFs does not require 
anything beyond the generic services provided by the 
foundational component model—essentially, CFs are 
architectural patterns rather than distinct mechanisms.  
 
Reflective meta-models [14] are causally-connected 
representations of selected aspects of a target system. 
Their function is to enable inspection and adaptation of 
the represented aspect. For example, we employ a so-
called architecture meta-model that represents the 
topology of a set of composed components as an 
architecture graph that can be inspected to discover the 
topology, and adapted to change the topology (e.g. adding 
a node to the graph results in the deployment of a new 
component; removing an arc results in the breaking of an 
inter-component binding, etc.). The purpose of reflective 
meta-models is to maintain a clean architectural 
separation of concerns between system building (often 
called base-level programming) and system management/ 
configuration/ adaptation (which involves the use of 
‘meta-interfaces’ provided by the meta-models, and is 

often referred to as meta-programming). Reflective meta-
models are themselves implemented as CFs—again, their 
implementation does not require anything beyond the 
generic services provided by the foundational component 
model. 
 
Note that the OpenCOM v2 component model builds on 
and generalises our earlier work on OpenCOM v1 which 
was used to build middleware platforms [14] in standard 
OS environments only. 
 
In the remainder of the paper, section 2 overviews the 
design of the OpenCOM v2 component-based 
programming model. Then section 3 identifies a set of 
orthogonal programmer roles that help separate concerns 
in developing an OpenCOM-based system on a new 
hardware platform. Finally, section 4 discusses related 
work, and section 5 offers conclusions. 
 
2. The OpenCOM Programming Model  
2.1 Overview  
The OpenCOM programming model essentially consists 
of primitives to load components into units of scope and 
management called capsules; and to ‘bind’ component 
interfaces and receptacles. Components may support any 
number of interfaces (described using an extended OMG 
IDL) and receptacles (these are ‘anti-interfaces’ that 
express a dependency on an interface provided by some 
other component) and they may also be composite (i.e. 
composed of internal sub-components). Importantly, 
interface-to-receptacle binding is a third-party operation: 
i.e. code that binds a receptacle on one component to an 
interface on another can reside in any component within 
the capsule. Components, interfaces and receptacles all 
support the attachment of arbitrary meta-data in the form 
of <name, value> pairs. However, this meta-data is 
intended solely for the use of higher level CFs which 
embody policy. It is not interpreted or understood by the 
component model itself. 
 
The programming model further supports the notions of 
caplets, loaders and binders as first class entities. Caplets 
are nested ‘sub-scopes’ within capsules; loaders provide 
various ways of loading components into various types of 
caplets; and binders provide various ways of binding 
interfaces and receptacles, both within and across 
different caplet types and instances. Caplets, loaders and 
binders are themselves implemented as components that 
are ‘plugged-in’ to hosting CFs. Plug-in caplets, loaders 
and binders play a crucial role in i) facilitating the 
deployment of OpenCOM in a wide range of deployment 
environments in an uniform yet highly-performant 
manner, and ii) selectively masking the peculiarities of 
underlying deployment environments from OpenCOM 
programmers without compromising performance. 
 
Figure 1 visualises the concepts of capsule, component, 
interface, receptacle, caplet, loader and binder. It shows a 
capsule containing three caplets as dotted boxes (the 



distinction between root and slave caplets is discussed in 
section 2.2). Also shown are two loaders: L1 is associated 
with the left-hand caplet, and L2 can be associated with 
either of the other two; and two binders: B1 knows how to 
bind components in the left hand caplet, and B2 knows 
how to bind across the two slave caplets. Components are 
shown as rounded rectangles. Component interfaces are 
shown as circles, and receptacles as cups. 
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Fig. 1. The OpenCOM Programming Model 

 
2.2 The Caplet CF  
Plug-in caplets are hosted by a CF called the Caplet CF. 
Here are some examples of caplet plug-ins that might 
usefully be provided: 
 
o in a standard OS environment, caplets might be 

implemented as separate OS processes that isolate 
trusted and untrusted components;  

o a Java virtual machine might be wrapped as a caplet 
so that Java-implemented OpenCOM components 
can co-exist in the same capsule as, say, C++-
implemented components;  

o in a car area network or similar embedded networked 
environment, CPUs on the network can be 
represented as individual caplets, with the whole 
system being represented as a single capsule;  

o in an network processor environment, one caplet 
might map to a UNIX process on a control processor 
or host PC, while other caplets map to specialised 
processor/ memory environments.  

 
The degree of physical distribution across caplets within a 
capsule is implementation dependent. An extreme 
position, for example, would be to provide a widely-
distributed capsule containing caplets that run on separate 
machines. The general intention, however, is that the 
caplets within a capsule should be relatively ‘tightly-
coupled’ so that centralised, per-capsule, state can be 
held, and bindings between components in different 
caplets can be assumed to be relatively ‘reliable’, 
‘deterministic’ and ‘fast’ (according to application area-
specific definitions of these terms).  
 
The Caplet CF’s API is as follows: 
 
loaded_caplet caplet_cf.load(caplet_type);  
status caplet_cf.unload(loaded_caplet);  
caplet_instance 
caplet_cf.instantiate(loaded_caplet,  
          list of <name, value>);  

status caplet_cf.destroy(caplet_instance); 
 
Caplets are packaged as standard OpenCOM components 
and can be loaded and instantiated via the above API. 
Despite this uniform packaging, it must be emphasised 
that different caplets may be implemented very 
differently. In some cases, for example, the caplet 
component being loaded may be merely a bootstrapper for 
an arbitrarily complex and deployment-environment-
specific caplet creation process.  
 
Each caplet is either a root or a slave. There is only ever 
one root caplet in a capsule: this is the ‘original’ capsule 
environment that existed before the Caplet CF was 
loaded. This root caplet is also distinguished in being the 
only caplet to directly support the OpenCOM runtime’s 
kernel API (which is not discussed in this paper). 
Typically, the ‘core’ CFs (i.e., the Caplet, and the Loader 
and Binder CFs) reside in the root caplet because there 
they have direct access to the kernel. All other caplets (i.e. 
those created using the above API) are slaves. By default, 
slaves allow their hosted components to bind to the core 
CFs, and to the kernel API, so that these components can 
create further caplets, and load and bind components in 
arbitrary caplets. However, the core CFs and the kernel 
API can be selectively hidden from individual slave 
caplets—e.g. for security reasons. For example, 
components in a low-privileged slave caplet may be 
denied access to the Caplet CF to disallow them from 
creating further caplets. 
 
2.3 The Loader and Binder CFs  
Like caplets, plug-in loaders and binders can also 
encompass a wide range of functionality. For example, 
consider the following: 
 
o loaders that know about non-standard component 

repositories and different component packaging 
conventions; 

o a loader that performs (recursive) dependency-
satisfaction: when a component is loaded, any 
dependencies it has (as denoted by its receptacles) 
that are not already available in the capsule are 
automatically pre-loaded; 

o a loader that transparently load-balances across a set 
of caplets it manages; 

o binders that exploit alternative ‘connectivity’ 
technologies such as interrupts, call-gates, buses, 
shared memory or message passing services; 

o binders that represent different cost/ performance 
trade-offs; 

o binders whose bindings support an interception meta-
model [14]; 

 
The API for managing plug-in loaders and binders 
follows the general pattern of the Caplet CF’s API shown 
above. In brief, there are operations to load a new loader 
or binder plug-in, and to unload a plug-in, etc. The main 



API calls for using loader and binder plug-ins are as 
follows: 
 
loaded_component loader_cf.load(component_type); 
loaded_component loader_cf.load(caplet,  

component_type); 
loaded_component loader_cf.load(loader_name,  

component_type); 
loaded_component loader_cf.load(caplet,  

loader_name,  
                      component_type); 
 
binding binder_cf.bind(interface_instance,  

receptacle_instance); 
binding binder_cf.bind(binder_name,  

interface_instance,  
receptacle_instance); 

 
The four load() signatures offer ‘selective transparency’ 
in the choice of a loader, and a caplet into which to load. 
More specifically, one can opt for any of the following: 
 
o full transparency (i.e. neither the loader and the target 

caplet are explicitly named), or 
o partial transparency (i.e. the target caplet is specified 

but the loader is unspecified, or vice versa), or  
o no transparency (i.e. both the loader and the target 

caplet are explicitly named).  
 
(An analogous choice of whether or not to explicitly name 
a binder is available via the two bind() signatures.) In all 
cases involving transparency, the policy for the choice of 
loader, binder and target caplet is embedded in a ‘policy’ 
plug-in that selects and dispatches to a ‘real’ loader/ 
binder/ caplet. Usually, the policy is informed by <name, 
value> meta-data that are attached to the various involved 
entities. For example, when transparently loading a 
component with an attached meta-data attribute 
<CAPLET_TYPE, PRIVILEGED>, a loader policy might 
dispatch to a loader that shared this attribute name and 
value. 
 
2.4 Using Loaders and Binders  
As a simple example of the (transparent) use of the 
Loader and Binder CF APIs, consider the following code 
which loads and binds components C1 and C2 in figure 1: 
 
component_instance c1, c2; 
loaded_component loaded_c1, loaded_c2;  
interface_type1 i; 
recept_type1 r; 
loaded_c1 = loader_cf.load(component_type1);  
loaded_c2 = loader_cf.load(component_type2);  
<c1, i> = loader_cf.instantiate(loaded_c1,  

interface_type1, <>); 
<c2, r> = loader_cf.instantiate(loaded_c2,  

recept_type1, <>); 
binder_cf.bind(i, r);  
 
This uses the least-specific, most transparent, load() 
signature to load the two components, which results in the 
loader policy dispatching to appropriate per-caplet loaders 
(L1 and L2 respectively). Having instantiated the 
components in their respective host caplets, the least-

specific bind() signature is then used to bind the two 
components. As in the loading case, the binder policy 
selects a ‘real’ competent binder—i.e. B2—on the basis of 
meta-data attached to the to-be-bound interface and 
receptacle (here, the meta-data presumably relates to their 
hosting caplet types).  
 
The abstraction power of third-party loading and binding 
is clearly seen in this example. It employs a very simple 
‘create and connect’ pattern that abstracts over the 
presence of multiple heterogeneous caplets, and multiple 
loading and binding mechanisms. The above code could 
be executed unchanged with identical semantics from 
within any component running in any caplet in the 
capsule—including components running in very primitive 
caplet environments in embedded systems.  
 
3. Deploying OpenCOM-based Systems 
As mentioned, OpenCOM offers more than merely a 
runtime programming model for building systems in 
terms of components. It also explicitly addresses the 
deployment of this model in a diverse and heterogeneous 
range of deployment environments and the runtime 
reconfiguration of target systems.  
 
This is facilitated by introducing a separation of concerns 
between the roles of: deployment programmers, systems 
programmers, and meta-systems programmers. These are 
illustrated in figure 2.  
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Fig. 2. OpenCOM Programmer Roles 

 
Deployment programmers create a viable OpenCOM 
programming model in the target deployment 
environment (lower quadrants of figure 2). They bridge 
the “implementation gap” between the concrete 
deployment environment (hardware or software) and the 
abstract component-based programming model. They do 
this by working with a small set of low-level abstractions 
that serve to structure and organise the task of deploying 
OpenCOM. These are (primarily) implementations of the 
above-mentioned caplet, loader and binder plug-ins, 
which form a suitably canonical set of abstractions over 
the key services offered by heterogeneous deployment 
environments; but these are augmented with a number of 
additional lower-level abstractions (not discussed in this 
paper) that are not visible to systems or meta-systems 
programmers.  
 



Systems programmers then use the standard OpenCOM 
programming model to develop a target system or 
application (upper left quadrant in figure 2)—they are 
(selectively) isolated from the particularities of different 
deployment environments. Systems programming can be 
loosely divided into two sub-roles: the development of 
more-or-less generic CFs that are targeted at specific 
areas of functionality within the target application 
domain; and the development of high-level code that 
builds on or uses these CFs. This is not a hard 
differentiation, however. The essence of systems 
programming is that it employs ‘pure’ OpenCOM 
programming: all deployment-environment-specific 
issues are assumed to have been addressed by the 
deployment programmer role.  
 
Finally, meta-systems programmers operate in the upper-
right quadrant of figure 2. They employ appropriate 
reflective meta-models to structure the task of 
reconfiguring the target system at runtime. Some meta-
models could be generic and independent of any 
particular deployment environment and can be produced 
by the systems programmer role; but others might rely on 
deployment-environment specific mechanisms that must 
be implemented by deployment programmers. An 
example of the latter is an operation invocation 
interception meta-model that relies on detailed knowledge 
of CPU and language-dependent calling conventions [15].  
 
4. Related Work  
OpenCOM v2 can usefully be positioned against two 
separate categories component model: application-level 
models; and specifically systems-oriented models. 
Regarding the former, OpenCOM differs from designs 
such as EJB [4], and the CORBA Component Model [5] 
in being considerably more lightweight. OpenCOM’s 
capsule concept is superficially related to the ‘container’ 
concept espoused by these models; but OpenCOM 
capsules are policy free and only contain minimal, low-
level, functionality (e.g., loading and binding related). 
OpenCOM shares with these models an emphasis on 
third-party deployability of components; but for 
OpenCOM, third-party deployability is important not only 
for reasons of software re-use, but also to facilitate system 
(re)configurability, and to enable primitive slave caplets 
(e.g. representing a microcontroller) to function as first-
class players in the programming model. OpenCOM also 
differs from EJB and ICENI in being language 
independent. Being a systems-building technology, it is 
an aspiration for OpenCOM to serve as a basis for the 
implementation of application-level components models: 
our approach here would be to implement containers and 
policies etc. in terms of CFs. 
 
Regarding specifically systems-oriented component 
models, the following are some major players: Knit [8], 
Koala [16], MMLite [10] and THINK [9]. Of these, Knit 
and Koala are build-time component models: i.e. 
components are not visible at runtime, so there is no 

systematic support for dynamic component loading, still 
less managed reconfiguration. Knit has been targeted 
primarily at operating systems, but has additionally been 
used build software routers (e.g. a router called ‘Clack’), 
although again only on PCs. Koala is a proprietary system 
from Philips and is representative of several similar 
efforts from the embedded systems community. Like 
OpenCOM, Koala components support both ‘provided’ 
and ‘required interfaces’ (cf. interfaces and receptacles); 
also, the model is inherently programming language 
independent. MMLite and THINK, on the other hand, 
have in common with OpenCOM the property of being 
run-time component models. MMLITE was an attempt to 
adapt and apply Microsoft’s COM as a vehicle for 
building operating systems. This early work demonstrated 
the feasibility and flexibility of the component approach 
(including primitive support for reconfiguration), but was 
confined to building operating systems in conventional 
PC environments. THINK is much closer to OpenCOM in 
its goals and approach. Like OpenCOM, it addresses 
dynamic reconfiguration and supports multiple 
implementations of binding (although not loading and 
scoping). It also demonstrates the possibility and benefits 
of abstracting hardware (e.g. I/O devices, paging 
hardware) as components. However, its programming 
model is at a lower level of abstraction than OpenCOM’s 
and it has no equivalent of OpenCOM’s meta models to 
manage reconfiguration. In addition, it has so far only 
been used in conventional, PC-based, deployment 
environments.  
 
5. Conclusions  
To conclude, we briefly sum up the benefits of OpenCOM 
by revisiting the requirements set out in section 1 and 
showing how these are realised. Wide applicability is 
achieved through the horizontal extensibility offered by 
the caplet, loader and binder plug-in capability (plus the 
small and easy-to-port microkernel runtime). Policy 
independence is achieved by providing a clear separation 
between the foundational component model (mechanism 
only) and higher-level CFs that embody policy in specific 
areas of concern. Support for runtime reconfiguration is 
achieved at the mechanism level by means of 
OpenCOM’s ability to load, bind and rebind components 
at runtime; and at the management level by means of 
reflective meta-models which an provide inspection and 
adaptation capability, and CFs which provide constraint 
on reconfiguration. Selective transparency of deployment-
environment-specific features is achieved by wrapping 
non-standard deployment environment specific features in 
terms of plug-in caplets, loaders and binders and then 
offering the OpenCOM programmer selective 
transparency in the selection of these plug-ins. Separation 
of concerns is achieved i) through the separation of 
mechanism and policy referred to above, and ii) through 
the differentiated programming roles discussed in section 
3. Finally, high performance is achieved by having the 
runtime focus on loading and binding, both of which are 
‘out-of-band’ with respect to the execution of the 



application. In addition, performance-enhancing 
mechanisms available in the deployment environment 
(e.g. code morphing, or the availability of special 
hardware message channels) can be used directly as a 
side-effect of instantiating a corresponding programming-
model-level binding. Additionally, the (apparent) 
overhead of IDL-specified interfaces and receptacles can 
be nullified in primitive environments: loaders and/ or 
CFs associated with the primitive environment can 
arbitrarily constrain the number and form of interfaces 
(e.g. to allow operations to take only integer arguments) 
and can forgo the use of stubs and skeletons where these 
are not required. 
 
To date we have primarily validated the use of OpenCOM 
v2 in a programmable networking based systems 
environment using the Intel IXP1200 network processor 
[17]. Network processor hardware is a particularly 
interesting deployment environment because it is both 
heterogeneous (e.g. it employs a number of processor 
types including processors that are specialised for packet 
forwarding), resource poor (e.g. packet forwarding 
processors are typically very primitive and have only a 
small amount of memory), and performance constrained 
(i.e. packets must be forwarded at line speeds). Our work 
in this area is reported in [18] and [19]. 
 
 In our ongoing research we are looking at further 
validating our systems-building approach by deploying 
OpenCOM v2 in a range of application areas/ deployment 
environments. In particular, we are investigating the use 
of OpenCOM in mobile Grid computing environments 
[20], and in building a generic OS/ communications layer 
for miniaturised devices in wireless sensor network 
environments.  
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