

A COMPONENT MODEL FOR BUILDING SYSTEMS SOFTWARE

Geoff Coulson, Gordon Blair, Paul Grace, Ackbar Joolia, Kevin Lee, Jo Ueyama
Computing Department, Lancaster University, UK

[geoff,gordon,p.grace,joolia,leek,ueyama]@comp.lancs.ac.uk

ABSTRACT
OpenCOM v2 is our experimental language-independent
component-based systems-building technology.
OpenCOM offers more than merely a component-based
programming model. First, it is a runtime component
model and supports dynamic runtime reconfiguration of
systems (i.e. one can load, unload, bind, and rebind
components at runtime). Second, it explicitly supports the
deployment of the model in a wide range of ‘deployment
environments’ (e.g. operating systems, PDAs, embedded
devices, network processors). Third, it allows the
particularities of different deployment environments to be
selectively hidden from/ made visible to the OpenCOM
programmer without inherent performance overhead.

KEY WORDS
Ccomponent-based development; reflection; systems
programming; embedded systems

1. Introduction
The notion of constructing application-level software
from components [1] is well established. For example,
there is a substantial component-based software
engineering community [2], and numerous component
technologies for application development (both
standalone and distributed) are available. Examples are:
browser plug-ins [3], JavaBeans/ Enterprise JavaBeans
[4], and the CORBA Component Model [5]. The general
benefits of these technologies are: i) they promote a high
level of abstraction in software design, implementation,
deployment and management, ii) they facilitate flexible
configuration (and, potentially, run-time reconfiguration),
and iii) they foster third-party software reuse.

Less established is the notion of using components to
build systems-level software, like embedded systems,
operating systems, communications systems,
programmable networking environments, or middleware
platforms. Nevertheless, the above-mentioned benefits of
componentisation appear just as compelling in this area,
and this fact has been recognised by a number of
researchers in recent years. For example, k-Components
[6], and various JavaBeans-based approaches (e.g. [7])
have been proposed as component models for the
construction of middleware platforms; Knit [8], THINK
[9], MMLITE [10], and DEIMOS [11] have been
proposed for the construction of operating systems (OSs);

and Click [12] and Netbind [13] have been proposed for
programmable networking environments.

However, these efforts have all been narrowly-targeted,
both in terms of their intended application domains, and
their intended hardware/ OS deployment environments. In
particular, most of them have only been deployed on
conventional desktop machines as opposed to more
‘exotic’ environments such as embedded hardware,
PDAs, or network processors. In the present work, we
propose a general-purpose component-based systems
building technology. In more detail, our technology
addresses the following requirements:

o Wide applicability. It should be applicable in a wide

range of deployment environments from standard
PC/Windows or PC/Unix environments, to resource-
poor PDAs, to embedded systems with no operating
system, to high speed network processor hardware.
This implies small memory footprint, language
independence, and policy independence.

o Policy independence. It should offer generic
mechanisms; it should not prescribe policies,
constraints, services or facilities that are specific to
particular application domains (e.g. real-time; packet-
processing; multimedia; 24x7 availability), or
deployment environments (e.g. above-mentioned).

o Support for runtime reconfiguration. It should
support mechanism-level runtime reconfiguration as
required when implementing inherently dynamic
target systems such as operating systems, reflective
middleware, active networking nodes etc. [14].
Again, though, the policy that controls and manages
such reconfiguration should be separable.

o Selective transparency of deployment-environment-
specific features. Because of the requirement for
wide applicability, it must operate in heterogeneous
deployment environments with non-standard
features—e.g. multiple processing elements, packet
processing assists, and specific hardware message
channels and memory hierarchies, etc. It should be
possible to render such features invisible as far as
possible but visible where required (whether for
performance or functionality reasons). Where such
features are made visible they should be presented in
terms of the generic component-based programming
model.

o Separation of concerns. It should encourage a
separation of concerns in what is potentially a very

complex environment. For example, as well as the
above-mentioned separation of mechanism and
policy, the technology should separate the concerns
of i) programming the base functionality of the target
system versus the managing its runtime
reconfiguration, and ii) providing selective
transparency of deployment environment specifics
versus writing target systems in terms of the generic
component based programming model.

o High performance. It must not incur an inherent
performance cost. This implies that the ‘in-band’
execution path of systems [15] must not be dependent
on the execution of the component model runtime. In
addition, when presenting non-standard features (as
above) in terms of the generic programming model,
this should incur as small a performance penalty as
possible.

Our architectural approach to meeting these requirements
is to define a generic run-time component model (see
section 2) as a foundation, and then to augment this with
the notions of component frameworks and reflective meta-
models.

Component Frameworks (hereafter CFs) [14] are
composite components, built in terms of the underlying
component model, that accept ‘plug-in’ components that
add to or modify the behaviour of the composite. They
serve as architectural place-holders for application-
specific or deployment-environment-specific policies,
constraints, services or facilities. The idea is that each CF
addresses a particular functional domain (e.g. protocol
stacking, thread scheduling, packet forwarding, memory
management, user interaction, etc.), and embodies
policies, constraints etc. that make sense in that domain.
For example a CF for protocol stacking would take
protocol components as its plug-ins, and could constrain
the plug-ins to be composed into linear stacks. Note that
the design and implementation of CFs does not require
anything beyond the generic services provided by the
foundational component model—essentially, CFs are
architectural patterns rather than distinct mechanisms.

Reflective meta-models [14] are causally-connected
representations of selected aspects of a target system.
Their function is to enable inspection and adaptation of
the represented aspect. For example, we employ a so-
called architecture meta-model that represents the
topology of a set of composed components as an
architecture graph that can be inspected to discover the
topology, and adapted to change the topology (e.g. adding
a node to the graph results in the deployment of a new
component; removing an arc results in the breaking of an
inter-component binding, etc.). The purpose of reflective
meta-models is to maintain a clean architectural
separation of concerns between system building (often
called base-level programming) and system management/
configuration/ adaptation (which involves the use of
‘meta-interfaces’ provided by the meta-models, and is

often referred to as meta-programming). Reflective meta-
models are themselves implemented as CFs—again, their
implementation does not require anything beyond the
generic services provided by the foundational component
model.

Note that the OpenCOM v2 component model builds on
and generalises our earlier work on OpenCOM v1 which
was used to build middleware platforms [14] in standard
OS environments only.

In the remainder of the paper, section 2 overviews the
design of the OpenCOM v2 component-based
programming model. Then section 3 identifies a set of
orthogonal programmer roles that help separate concerns
in developing an OpenCOM-based system on a new
hardware platform. Finally, section 4 discusses related
work, and section 5 offers conclusions.

2. The OpenCOM Programming Model
2.1 Overview
The OpenCOM programming model essentially consists
of primitives to load components into units of scope and
management called capsules; and to ‘bind’ component
interfaces and receptacles. Components may support any
number of interfaces (described using an extended OMG
IDL) and receptacles (these are ‘anti-interfaces’ that
express a dependency on an interface provided by some
other component) and they may also be composite (i.e.
composed of internal sub-components). Importantly,
interface-to-receptacle binding is a third-party operation:
i.e. code that binds a receptacle on one component to an
interface on another can reside in any component within
the capsule. Components, interfaces and receptacles all
support the attachment of arbitrary meta-data in the form
of <name, value> pairs. However, this meta-data is
intended solely for the use of higher level CFs which
embody policy. It is not interpreted or understood by the
component model itself.

The programming model further supports the notions of
caplets, loaders and binders as first class entities. Caplets
are nested ‘sub-scopes’ within capsules; loaders provide
various ways of loading components into various types of
caplets; and binders provide various ways of binding
interfaces and receptacles, both within and across
different caplet types and instances. Caplets, loaders and
binders are themselves implemented as components that
are ‘plugged-in’ to hosting CFs. Plug-in caplets, loaders
and binders play a crucial role in i) facilitating the
deployment of OpenCOM in a wide range of deployment
environments in an uniform yet highly-performant
manner, and ii) selectively masking the peculiarities of
underlying deployment environments from OpenCOM
programmers without compromising performance.

Figure 1 visualises the concepts of capsule, component,
interface, receptacle, caplet, loader and binder. It shows a
capsule containing three caplets as dotted boxes (the

distinction between root and slave caplets is discussed in
section 2.2). Also shown are two loaders: L1 is associated
with the left-hand caplet, and L2 can be associated with
either of the other two; and two binders: B1 knows how to
bind components in the left hand caplet, and B2 knows
how to bind across the two slave caplets. Components are
shown as rounded rectangles. Component interfaces are
shown as circles, and receptacles as cups.

B2

...

...

C1

L1 L2

C2

B1

slave caplet slave caplet

root caplet

kernel API

Fig. 1. The OpenCOM Programming Model

2.2 The Caplet CF
Plug-in caplets are hosted by a CF called the Caplet CF.
Here are some examples of caplet plug-ins that might
usefully be provided:

o in a standard OS environment, caplets might be

implemented as separate OS processes that isolate
trusted and untrusted components;

o a Java virtual machine might be wrapped as a caplet
so that Java-implemented OpenCOM components
can co-exist in the same capsule as, say, C++-
implemented components;

o in a car area network or similar embedded networked
environment, CPUs on the network can be
represented as individual caplets, with the whole
system being represented as a single capsule;

o in an network processor environment, one caplet
might map to a UNIX process on a control processor
or host PC, while other caplets map to specialised
processor/ memory environments.

The degree of physical distribution across caplets within a
capsule is implementation dependent. An extreme
position, for example, would be to provide a widely-
distributed capsule containing caplets that run on separate
machines. The general intention, however, is that the
caplets within a capsule should be relatively ‘tightly-
coupled’ so that centralised, per-capsule, state can be
held, and bindings between components in different
caplets can be assumed to be relatively ‘reliable’,
‘deterministic’ and ‘fast’ (according to application area-
specific definitions of these terms).

The Caplet CF’s API is as follows:

loaded_caplet caplet_cf.load(caplet_type);
status caplet_cf.unload(loaded_caplet);
caplet_instance
caplet_cf.instantiate(loaded_caplet,
 list of <name, value>);

status caplet_cf.destroy(caplet_instance);

Caplets are packaged as standard OpenCOM components
and can be loaded and instantiated via the above API.
Despite this uniform packaging, it must be emphasised
that different caplets may be implemented very
differently. In some cases, for example, the caplet
component being loaded may be merely a bootstrapper for
an arbitrarily complex and deployment-environment-
specific caplet creation process.

Each caplet is either a root or a slave. There is only ever
one root caplet in a capsule: this is the ‘original’ capsule
environment that existed before the Caplet CF was
loaded. This root caplet is also distinguished in being the
only caplet to directly support the OpenCOM runtime’s
kernel API (which is not discussed in this paper).
Typically, the ‘core’ CFs (i.e., the Caplet, and the Loader
and Binder CFs) reside in the root caplet because there
they have direct access to the kernel. All other caplets (i.e.
those created using the above API) are slaves. By default,
slaves allow their hosted components to bind to the core
CFs, and to the kernel API, so that these components can
create further caplets, and load and bind components in
arbitrary caplets. However, the core CFs and the kernel
API can be selectively hidden from individual slave
caplets—e.g. for security reasons. For example,
components in a low-privileged slave caplet may be
denied access to the Caplet CF to disallow them from
creating further caplets.

2.3 The Loader and Binder CFs
Like caplets, plug-in loaders and binders can also
encompass a wide range of functionality. For example,
consider the following:

o loaders that know about non-standard component

repositories and different component packaging
conventions;

o a loader that performs (recursive) dependency-
satisfaction: when a component is loaded, any
dependencies it has (as denoted by its receptacles)
that are not already available in the capsule are
automatically pre-loaded;

o a loader that transparently load-balances across a set
of caplets it manages;

o binders that exploit alternative ‘connectivity’
technologies such as interrupts, call-gates, buses,
shared memory or message passing services;

o binders that represent different cost/ performance
trade-offs;

o binders whose bindings support an interception meta-
model [14];

The API for managing plug-in loaders and binders
follows the general pattern of the Caplet CF’s API shown
above. In brief, there are operations to load a new loader
or binder plug-in, and to unload a plug-in, etc. The main

API calls for using loader and binder plug-ins are as
follows:

loaded_component loader_cf.load(component_type);
loaded_component loader_cf.load(caplet,

component_type);
loaded_component loader_cf.load(loader_name,

component_type);
loaded_component loader_cf.load(caplet,

loader_name,
 component_type);

binding binder_cf.bind(interface_instance,

receptacle_instance);
binding binder_cf.bind(binder_name,

interface_instance,
receptacle_instance);

The four load() signatures offer ‘selective transparency’
in the choice of a loader, and a caplet into which to load.
More specifically, one can opt for any of the following:

o full transparency (i.e. neither the loader and the target

caplet are explicitly named), or
o partial transparency (i.e. the target caplet is specified

but the loader is unspecified, or vice versa), or
o no transparency (i.e. both the loader and the target

caplet are explicitly named).

(An analogous choice of whether or not to explicitly name
a binder is available via the two bind() signatures.) In all
cases involving transparency, the policy for the choice of
loader, binder and target caplet is embedded in a ‘policy’
plug-in that selects and dispatches to a ‘real’ loader/
binder/ caplet. Usually, the policy is informed by <name,
value> meta-data that are attached to the various involved
entities. For example, when transparently loading a
component with an attached meta-data attribute
<CAPLET_TYPE, PRIVILEGED>, a loader policy might
dispatch to a loader that shared this attribute name and
value.

2.4 Using Loaders and Binders
As a simple example of the (transparent) use of the
Loader and Binder CF APIs, consider the following code
which loads and binds components C1 and C2 in figure 1:

component_instance c1, c2;
loaded_component loaded_c1, loaded_c2;
interface_type1 i;
recept_type1 r;
loaded_c1 = loader_cf.load(component_type1);
loaded_c2 = loader_cf.load(component_type2);
<c1, i> = loader_cf.instantiate(loaded_c1,

interface_type1, <>);
<c2, r> = loader_cf.instantiate(loaded_c2,

recept_type1, <>);
binder_cf.bind(i, r);

This uses the least-specific, most transparent, load()
signature to load the two components, which results in the
loader policy dispatching to appropriate per-caplet loaders
(L1 and L2 respectively). Having instantiated the
components in their respective host caplets, the least-

specific bind() signature is then used to bind the two
components. As in the loading case, the binder policy
selects a ‘real’ competent binder—i.e. B2—on the basis of
meta-data attached to the to-be-bound interface and
receptacle (here, the meta-data presumably relates to their
hosting caplet types).

The abstraction power of third-party loading and binding
is clearly seen in this example. It employs a very simple
‘create and connect’ pattern that abstracts over the
presence of multiple heterogeneous caplets, and multiple
loading and binding mechanisms. The above code could
be executed unchanged with identical semantics from
within any component running in any caplet in the
capsule—including components running in very primitive
caplet environments in embedded systems.

3. Deploying OpenCOM-based Systems
As mentioned, OpenCOM offers more than merely a
runtime programming model for building systems in
terms of components. It also explicitly addresses the
deployment of this model in a diverse and heterogeneous
range of deployment environments and the runtime
reconfiguration of target systems.

This is facilitated by introducing a separation of concerns
between the roles of: deployment programmers, systems
programmers, and meta-systems programmers. These are
illustrated in figure 2.

systems programmer role
(base level OpenCOM
programming)

meta-systems programmer role
(meta-level OpenCOM programming)

deployment programmer role
(programming in the native deployment environment)

components
and CFs

architecture
interception

interface
resources

architecture
interception

interface
resources

reflective
meta-models

caplet, loader, binder plug-ins per-deployment env.
meta-level plug-ins

...
OpenCOM user

OpenCOM deployer

ba
se

-le
ve

l

m
et

a-
le

ve
l

Fig. 2. OpenCOM Programmer Roles

Deployment programmers create a viable OpenCOM
programming model in the target deployment
environment (lower quadrants of figure 2). They bridge
the “implementation gap” between the concrete
deployment environment (hardware or software) and the
abstract component-based programming model. They do
this by working with a small set of low-level abstractions
that serve to structure and organise the task of deploying
OpenCOM. These are (primarily) implementations of the
above-mentioned caplet, loader and binder plug-ins,
which form a suitably canonical set of abstractions over
the key services offered by heterogeneous deployment
environments; but these are augmented with a number of
additional lower-level abstractions (not discussed in this
paper) that are not visible to systems or meta-systems
programmers.

Systems programmers then use the standard OpenCOM
programming model to develop a target system or
application (upper left quadrant in figure 2)—they are
(selectively) isolated from the particularities of different
deployment environments. Systems programming can be
loosely divided into two sub-roles: the development of
more-or-less generic CFs that are targeted at specific
areas of functionality within the target application
domain; and the development of high-level code that
builds on or uses these CFs. This is not a hard
differentiation, however. The essence of systems
programming is that it employs ‘pure’ OpenCOM
programming: all deployment-environment-specific
issues are assumed to have been addressed by the
deployment programmer role.

Finally, meta-systems programmers operate in the upper-
right quadrant of figure 2. They employ appropriate
reflective meta-models to structure the task of
reconfiguring the target system at runtime. Some meta-
models could be generic and independent of any
particular deployment environment and can be produced
by the systems programmer role; but others might rely on
deployment-environment specific mechanisms that must
be implemented by deployment programmers. An
example of the latter is an operation invocation
interception meta-model that relies on detailed knowledge
of CPU and language-dependent calling conventions [15].

4. Related Work
OpenCOM v2 can usefully be positioned against two
separate categories component model: application-level
models; and specifically systems-oriented models.
Regarding the former, OpenCOM differs from designs
such as EJB [4], and the CORBA Component Model [5]
in being considerably more lightweight. OpenCOM’s
capsule concept is superficially related to the ‘container’
concept espoused by these models; but OpenCOM
capsules are policy free and only contain minimal, low-
level, functionality (e.g., loading and binding related).
OpenCOM shares with these models an emphasis on
third-party deployability of components; but for
OpenCOM, third-party deployability is important not only
for reasons of software re-use, but also to facilitate system
(re)configurability, and to enable primitive slave caplets
(e.g. representing a microcontroller) to function as first-
class players in the programming model. OpenCOM also
differs from EJB and ICENI in being language
independent. Being a systems-building technology, it is
an aspiration for OpenCOM to serve as a basis for the
implementation of application-level components models:
our approach here would be to implement containers and
policies etc. in terms of CFs.

Regarding specifically systems-oriented component
models, the following are some major players: Knit [8],
Koala [16], MMLite [10] and THINK [9]. Of these, Knit
and Koala are build-time component models: i.e.
components are not visible at runtime, so there is no

systematic support for dynamic component loading, still
less managed reconfiguration. Knit has been targeted
primarily at operating systems, but has additionally been
used build software routers (e.g. a router called ‘Clack’),
although again only on PCs. Koala is a proprietary system
from Philips and is representative of several similar
efforts from the embedded systems community. Like
OpenCOM, Koala components support both ‘provided’
and ‘required interfaces’ (cf. interfaces and receptacles);
also, the model is inherently programming language
independent. MMLite and THINK, on the other hand,
have in common with OpenCOM the property of being
run-time component models. MMLITE was an attempt to
adapt and apply Microsoft’s COM as a vehicle for
building operating systems. This early work demonstrated
the feasibility and flexibility of the component approach
(including primitive support for reconfiguration), but was
confined to building operating systems in conventional
PC environments. THINK is much closer to OpenCOM in
its goals and approach. Like OpenCOM, it addresses
dynamic reconfiguration and supports multiple
implementations of binding (although not loading and
scoping). It also demonstrates the possibility and benefits
of abstracting hardware (e.g. I/O devices, paging
hardware) as components. However, its programming
model is at a lower level of abstraction than OpenCOM’s
and it has no equivalent of OpenCOM’s meta models to
manage reconfiguration. In addition, it has so far only
been used in conventional, PC-based, deployment
environments.

5. Conclusions
To conclude, we briefly sum up the benefits of OpenCOM
by revisiting the requirements set out in section 1 and
showing how these are realised. Wide applicability is
achieved through the horizontal extensibility offered by
the caplet, loader and binder plug-in capability (plus the
small and easy-to-port microkernel runtime). Policy
independence is achieved by providing a clear separation
between the foundational component model (mechanism
only) and higher-level CFs that embody policy in specific
areas of concern. Support for runtime reconfiguration is
achieved at the mechanism level by means of
OpenCOM’s ability to load, bind and rebind components
at runtime; and at the management level by means of
reflective meta-models which an provide inspection and
adaptation capability, and CFs which provide constraint
on reconfiguration. Selective transparency of deployment-
environment-specific features is achieved by wrapping
non-standard deployment environment specific features in
terms of plug-in caplets, loaders and binders and then
offering the OpenCOM programmer selective
transparency in the selection of these plug-ins. Separation
of concerns is achieved i) through the separation of
mechanism and policy referred to above, and ii) through
the differentiated programming roles discussed in section
3. Finally, high performance is achieved by having the
runtime focus on loading and binding, both of which are
‘out-of-band’ with respect to the execution of the

application. In addition, performance-enhancing
mechanisms available in the deployment environment
(e.g. code morphing, or the availability of special
hardware message channels) can be used directly as a
side-effect of instantiating a corresponding programming-
model-level binding. Additionally, the (apparent)
overhead of IDL-specified interfaces and receptacles can
be nullified in primitive environments: loaders and/ or
CFs associated with the primitive environment can
arbitrarily constrain the number and form of interfaces
(e.g. to allow operations to take only integer arguments)
and can forgo the use of stubs and skeletons where these
are not required.

To date we have primarily validated the use of OpenCOM
v2 in a programmable networking based systems
environment using the Intel IXP1200 network processor
[17]. Network processor hardware is a particularly
interesting deployment environment because it is both
heterogeneous (e.g. it employs a number of processor
types including processors that are specialised for packet
forwarding), resource poor (e.g. packet forwarding
processors are typically very primitive and have only a
small amount of memory), and performance constrained
(i.e. packets must be forwarded at line speeds). Our work
in this area is reported in [18] and [19].

 In our ongoing research we are looking at further
validating our systems-building approach by deploying
OpenCOM v2 in a range of application areas/ deployment
environments. In particular, we are investigating the use
of OpenCOM in mobile Grid computing environments
[20], and in building a generic OS/ communications layer
for miniaturised devices in wireless sensor network
environments.

References
[1] Szyperski, C., “Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley, 1998.
[2] Wolfgang Emmerich, W., “Distributed Component
Technologies and their Software Engineering
Implications”, Proc. of the 24th Intl Conf on Software
Engineering, Orlando, Florida, pp. 537-546, 2002.
[3] Mozilla Organization, XPCOM project, 2001,
http://www.mozilla.org/projects/xpcom.
[4] Sun Microsystems, Enterprise JavaBeans
Specification Version 1.1,
http://java.sun.com/products/ejb/index.html.
[5] Object Management Group, CORBA Components
Final Submission, OMG Document orbos/99-02-05.
[6] Dowling, J., Cahill, V., “The K-Component
Architecture Meta-Model for Self-Adaptive Software”,
Proc. Reflection 2001, LNCS 2192, 2001.
[7] Bruneton, E., Riveill, M., “JavaPod: an Adaptable and
Extensible Component Platform”, Proc. Reflective
Middleware 2000, New York, 2000.
[8] Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.,
“Knit: Component Composition for Systems Software”,
Proc. OSDI 2000, pp 347-360, Oct 2000.

[9] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.,
“THINK: A Software Framework for Component-based
Operating System Kernels”, Usenix Annual Technical
Conf., Monterey (USA), June 10th-15th, 2002.
[10] Helander, J., Forin, A., “MMLite: A Highly
Componentized System Architecture”, 8th ACM SIGOPS
E Workshop, pp 96-103, Sintra, Portugal, Sept 1998.
[11] Clarke, M., Coulson, G., “An Architecture for
Dynamically Extensible Operating Systems”. Proc. 4th
Intl. Conf. on Configurable Distributed Systems
(ICCDS'98), Annapolis MD, USA, May 1998.
[12] Kohler, E., Morris, R., Chen, B., Jannotti, J.,
Kaashoek, M.F., “The Click Modular Router”, Proc.
ACM SOSP 1999, pp 217-231, Dec 1999.
[13] Campbell, A.T., Chou, S., Kounavis, M.E., Stachtos,
V.D., and Vicente, J.B., “NetBind: A Binding Tool for
Constructing Data Paths in Network Processor-based
Routers”, 5th IEEE Intl. Conf. on Open Architectures and
Network Programming (OPENARCH' 02), June 2002.
[14] Coulson, G., Blair, G.S., Clarke, M., Parlavantzas,
N., “The Design of a Highly Configurable and
Reconfigurable Middleware Platform”, ACM Distributed
Computing Journal, Vol 15, No 2, pp 109-126, Apr. 2002.
[15] Coulson, G., Blair, G.S., Grace, P., “On the
Performance of Reflective Systems Software”, Proc. Intl.
Workshop on Middleware Performance (MP2004),
Phoenix, Arizona; Satellite workshop of the IEEE Intl.
Performance, Computing and Communications Conf.
(IPCCC 2004), Apr, 2004.
[16] Fioukov, A.V., Eskenazi, E.M., Hammer, D.K.,
Chaudron, M.R.V., “Evaluation of static properties for
component-based architectures”, Proc. 28th Euromicro
Conf., Dortmund, Germany, pp 33–39, IEEE Computer
Society Press, Sept. 2002.
[17] Intel IXP1200; http://www.intel.com/IXA.
[18] Coulson, G., Blair, G.S., , A.T., Joolia, A., Lee, K.,
Ueyama, J., Ye, Y., “NETKIT: A Software Component-
Based Approach to Programmable Networking”, ACM
SIGCOMM Computer Communications Review (CCR),
Vol 33, No 5, October 2003.
[19] Ueyama, J., Schmid, S., Coulson, G., Blair, G.S.,
Gomes, A.T., Joolia A., Lee, K, “A Globally-Applied
Component Model for Programmable Networking”, Proc.
International Workshop on Active Networks (IWAN
2003), Kyoto Japan, 10-12 Dec 2003.
[20] Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung,
W.K., Cai, W, Duce, D., Cooper, C., “GRIDKIT:
Pluggable Overlay Networks for Grid Computing”, to
appear in Proc. Distributed Objects and Applications
(DOA’04), Cyprus, Oct 2004.

