
A Higher Level Abstraction for Mobile Computing Middleware

Paul Grace1, Gordon Blair1 and Sam Samuel2
1Computing Department, Lancaster University, Lancaster, LA1 4YR, UK.

{p.grace@lancaster.ac.uk, gordon@comp.lancs.ac.uk}
2 Bell Laboratories, Lucent Technologies, Westlea, Swindon, SN5 7DJ, UK.

{lsamuel@lucent.com}

Abstract

Mobile application developers now choose between many communication paradigms
e.g. Remote Method Invocation, publish-subscribe, data sharing, mobile agents and
tuple spaces. Each offers benefits to different application styles; however, their
heterogeneity means applications and services implemented using different paradigms
cannot interoperate. In this paper, we propose a higher-level abstraction based upon
the Web Services Description Language (WSDL) that allows mobile clients to be
developed independent of service implementations. To support this concept, a dynamic
architecture (ReMMoC) that can reconfigure between paradigm implementations is
required.

1. Introduction

New middleware technologies are emerging to explicitly support the field of mobile computing.
Mobile hosts need to interact with other hosts and services that they discover at their current location.
However, the mobile domain is characterised by the problems of wireless network performance,
limited end-system resources and changing environmental context. Therefore, research into mobile
computing middleware has produced a variety of solutions to overcome these issues and better support
the development of mobile computing applications. These encompass different paradigms e.g. remote
method invocation, publish-subscribe, tuple spaces and data sharing. However, developing a mobile
client utilising a single paradigm is not feasible, because it will encounter services implemented upon
alternative middleware as it moves from location to location. A similar argument applies to
complementary middleware support services, such as: location, naming and service discovery.
Therefore, there is a real need to provide an abstraction to enable mobile client application developers
to deal with the multitude of service implementations in an integrated manner.

We propose that Web Services [1] can have a significant role to play here because its properties are
well suited to middleware independence; it is already being utilised as the key technology in integrating
existing heterogeneous middleware platforms [2]. At the core of the architecture is the Web Services
Description Language (WSDL) [3]. This language separates abstract service definitions from concrete
middleware implementation. Hence, this offers an interesting higher-level abstraction; also this alone is
not enough. Support for context aware customisation of the underlying middleware is required to
dynamically adapt between heterogeneous middleware. We argue that the web service abstraction must
be complemented by the techniques of reflection, components and component frameworks to provide
this mechanism. This paper documents the ReMMoC (Reflective Middleware for Mobile Computing)
platform [4] that completes this implementation.

Recently related work on middleware integration has emerged. Bridges that map one middleware to
another e.g. SOAP to CORBA [5] are available. Uniframe [6] dynamically generates bridges between
discovered heterogeneous components. The Model Driven Architecture (MDA) [7] provides a 4GL
approach to develop distributed solutions, hiding the generation of mappings between middleware
components. Furthermore, the Web Service Architecture [1] has emerged as a key technology; its open
standards provide a middle ground for middleware mapping, removing the need for complex direct
integration [8, 9]. However, these technologies are designed for heterogeneity in the fixed network,
hence they are static in nature and do not co nsider the diversity of middleware paradigms.

The structure of this paper is as follows. Section 2 details background information about the
technologies of web services, reflection and components. Section 3 illustrates the ReMMoC
middleware platform, including the higher-level programming abstraction it offers. Section 4 describes

the important future work we intend to carry out and finally section 5 draws concluding remarks and
identifies important areas of future work.

2. Background

2.1 Web Service Architecture

The intended goal of Web Services [1] is to allow different service providers to implement centrally
defined service interfaces using their chosen concrete middleware binding. For example, a news service
may be implemented using SOAP by one vendor while another may use publish -subscribe. Client
applications can then be developed to interoperate with either service upon dynamic discovery. Hence,
the service interface must be defined abstractly from heterogeneous middleware paradigms. The Web
Services architecture consists of three key roles: a service provider, a service requestor and the
discovery agency, which the requestor uses to find the service description. WSDL [3] is an XML-based
language that describes the exchange of messages (containing typed data items) between the service
requestor and service provider. The fundamental property of WSDL is that it separates the abstract
description of service functionality from the concrete details of the service implementation i.e. the
abstract definition of a message exchange can be concretely implemented by different network
protocols, i.e. precisely the property we seek. Therefore, WSDL, through abstract service descriptions,
offers a higher-level communication paradigm. Developers do not have to overcome the different and
unknown communication paradigms offered by heterogeneous service implementations encountered by
users at run-time. Hence, mobile client applications can be created that interact within an environment
whose properties are unknown to the developer (for example, a tourist application that can operate in
locations around the globe). However, what is missing from Web Services is the capability to
dynamically reconfigure between concrete implementations and allow continued interoperation from
one implementation of the abstract service to another. We discuss an example reflective middleware,
which provides this capability in section 3.

2.2 Reflection, Components and Component Frameworks

There is now a growing community working on the area of reflective middleware [10]. The motivation
for this research is to overcome the “black-box” philosophy of many existing middleware platforms by
providing more openness; and to achieve this in a principled manner through a comprehensive
reflective architecture [11]. The key to the approach is to offer a meta-interface, or meta-object
protocol (MOP), supporting access to the engineering of the underlying platform. This MOP provides
operations to inspect the internal details of a platform (introspection), and by exp osing the underlying
implementation; it is also possible to insert behaviour. In addition, the MOP typically provides
operations to alter the underlying middleware (adaptation). More generally, middleware platforms
typically offer two (complementary) styles of reflection: Structural reflection is concerned with the
underlying structure of systems, and behavioural reflection is concerned with activity in the underlying
system.

In parallel with the above developments, there has been increasing interest in the role of components in
distributed systems. According to Szyperski [12], a component can be defined as “a unit of
composition with contractually specified interfaces and explicit dependencies only”. In addition, he
states “a software component can be deployed independently and is subject to composition by third
parties”. A key part of this definition is the emphasis on composition; component technologies rely
heavily on composition rather than inheritance for the construction of applications, thus avoiding the
fragile base class problem (and the subsequent difficulties in terms of system evolution) [12]. To
support third party composition, they also employ explicit contracts in terms of provided and required
interfaces. The overall aim is to reduce time to market for new services through an emphasis on
programming by assembly rather than software development (cf. manufacturing vs. engineering).

Component frameworks [12] are reusable architectures that embody domain-specific constraints and
strategies for composing components. The main contribution of component frameworks is that they
provide a means of enforcing desired architectural properties and invariants by constraining the
interactions among their plug-ins in a domain-relevant manner. As additional benefits, component
frameworks simplify component development through design reuse, enable lightweight components,
and increase the system's understandability and maintainability.

Reflection, component technologies and components frameworks are complementary technologies that
can be used to create reflective middleware [11]. Reflection provides the necessary level of openness to
access the underlying platform architecture, whereas components provide an appropriate structuring
mechanism. The compositional approach inherent in components also provides a clean basis on which
to re-configure the underlying architecture. Finally, component frameworks have the potential to
impose appropriate constraints on this adaptation process.

3. Reflective Middleware for Mobile C omputing (ReMMoC)

3.1 Overview

This section briefly describes the ReMMoC platform [4], a configurable and reconfigurable reflective
middleware. ReMMoC uses OpenCOM [12] as its underlying component technology and is built as a
set of component frameworks (CFs). OpenCOM is a lightweight, efficient and reflective component
model, built using a subset of Microsoft COM. ReMMoC is then implemented as a set of component
frameworks, where a component framework is defined as “a set of rules and contracts that govern the
interaction of a set of components” [11]. ReMMoC offers a higher -level abstraction that hides the
complexity of programming using a dynamically changing binding paradigm.

Figure 1 illustrates the architecture of ReMMoC, which consists of two key component frameworks:
(1) a binding framework for interoperation with services implemented upon different middleware
types, and (2) a service discovery framework for discovering services advertised by different service
discovery protocols. Our higher-level com munication abstraction is implemented by the ReMMoC
component, whose IReMMoC interface is documented in figure 2. This component also acts as a
management component to the underlying elements by reconfiguring the underlying frameworks.
Mapping components are dynamically plugged into the architecture (e.g. IIOP Map); these map from
our abstraction to the current middleware abstraction. Hence, new paradigms can be dynamically
introduced into the architecture. Section 3.3 describes these mappings further.

Figure 1. The ReMMoC Architecture

The primary function of the binding framework is to interoperate with heterogeneous services.
Therefore, over time it may be configured as an IIOP client configuration and make a number of IIOP
requests, or change to a subscribe configuration and wait to receive events of interest. Different
middleware paradigms, synchronous or asynchronous (e.g. tuple spaces, media streams, RPC, publish-
subscribe or messaging), can be plugged into the binding framework if they have been implemented
using OpenCOM components. The component framework structure manages the configuration and
dynamic reconfiguration of these bindings and ensures that a correct binding type is in place before

ReMMoC

IIOP, SOAP or
Subscribe Map

Accept
DiscoverDiscovery

Protocol

IReMMoC

IServiceCall

ILifeCycle

IConnections

IMetaInterface

IServiceLookup

ILifeCycle
IConnections
IMetaInterface

IIIOP
ICFMetaArchitecture

ILifeCycle
IConnections
IMetaInterface

Binding CF
Service

Discovery CF

ILifeCycle
IConnections
IMetaInterface

ILifeCycle
IConnections
IMetaInterface

ILifeCycle
IConnections
IMetaInterface

ICFMetaArchitecture

operation occurs. Each component framework in the platform implements a single meta-architecture
interface that provides operations to inspect and dynamically change its internal structure.

The Service Discovery framework allows services that have been advertised by different service
discovery protocols to be found. The component configuration is configured to the discovery
technology currently used in the environment. For example, if only SLP is currently in use, the
framework’s configuration will be an SLP Lookup personality. However, if SLP and Universal Plug
and Play (UPnP) are both being utilised at a location then the framework’s configuration will include
component implementations to discover both. The DiscoverDiscoveryProtocol component in figure 1
monitors the environment and controls this reconfiguration.

3.2 ReMMoC API

To program distributed client applications in ReMMoC, application developers must utilise the WSDL
service definitions in a similar manner to IDL programming. That is, service developers implement the
service to adhere to an abstract WSDL definition; therefore clients can invoke their abstract operations.
Figure 2 illustrates the set of operations that make up the API; these methods allow abstract services to
be discovered and their operations to be invoked. Furthermore, in order to override the different
computational models of the underlying concrete heterogeneous paradigms and maintain a consistent
information flow to the application, the programming model is event -based. Hence, when an abstract
service operation is carried out, its result is returned as an event. Therefore, if the lower-level paradigm
is RMI, publish-subscribe or tuple space its result is returned as an event to the application.

interface ReMMoC_ICF : IUnknown {
 HRESULT WSDLGet (WSDLService* ServiceDescription, char* XML);
 HRESULT FindandInvokeOperation (WSDLService ServiceDescription, char*

OperationName, int Iterations, ReMMoCOPHandler Handler);
 HRESULT InvokeOperation (WSDLService ServiceDescription, ServiceReturnEvent
 ReturnedLookupEvent, char* OperationName, int Iterations,

ReMMoCOPHandler Handler);
 HRESULT CreateOperation (WSDLService ServiceDescription, ServiceReturnEvent

 ReturnedLookupEvent, char* OperationName, int Iterations,
ReMMoCOPHandler Handler);

 HRESULT AddMessageValue(WSDLService *ServiceDescription, char*
OperationName, char* ElementName, ReMMoC_TYPE type, char* direction,
VARIANT value);

HRESULT GetMessageValue(WSDLService *ServiceDescription, char*
OperationName, char* ElementName, ReMMoC_TYPE type, char* direction,
VARIANT value);

}

Figure 2. The ReMMoC API

3.3 Mapping Abstract Services to Concrete Binding Types

This section illustrates how the abstract operations of WSDL are mapped to two contrasting binding
types (RMI and publish-subscribe). Four abstract operations can be defined in WSDL:

(1) Request-Response (input, output), a service receives a request of its functionality and responds
to it.

(2) Solicit-Response (output, input), a service provider acts as a service requestor.
(3) One-Way (input), a service receives a notification message.
(4) Notification (output) , a service outputs a notification message.

Figure 3 illustrates how input and output messages that make up WSDL operations map to the RMI and
publish-subscribe communication paradigms. We assume that the concrete paradigms use the same set
of types as the abstract definitions. For RMI, the input/output messages of Request -Response and
Solicit-Response operations can be mapped directly to the corresponding synchronous RMI messages.
The operation name maps to the method name, the input message to the input parameter list and the

output message to the output parameter list. Similarly, Notification and One-Way operations can be
mapped as one-way messages e.g. one-way IIOP, invocations and asynchronous SOAP messages.

Publish-Subscribe is an alternative communication paradigm whereby there is no direct message
exchange between service requestor and provider. The service provider publishes events and a service
requestor must filter to receive appropriate events. Therefore unlike RMI, the mapping of WSDL to
publish-subscribe is not a direct correlation. The request-response operation is a request of a service
based upon the input message. The operation name maps to the event subject, the content of the input
message is used to create a filter to receive the correct event, whose content maps to the output
message. Similarly, for Solicit -response the service filters to receive events from other services. For
One-way operations and Notificat ions, services subscribe and publish events based upon subject
filtering only, with the content of the concrete message mapping to the abstract message.

Figure 2. Mapping WSDL operations to different middleware paradigms

These mappings are implemented by the mapping components in figure 1. We hope to carry out further
work in this area to map WSDL to both tuple-space and data-sharing paradigms to demonstrate the
scope of this method.

4. Future Work

Our approach currently concentrates on developing distributed clients using a higher -level abstraction;
the services themselves are fixed and implemented using standard paradigms. Hence, reconfiguration
and mapping only takes place at the client side. We hope to identify scenarios where service side
reconfiguration would be beneficial and extend both the reflective architecture and higher-level
abstraction to include this. In this way, a server could manage requests from many heterogeneous client
implementations.

Ongoing work includes an evaluation of this method on larger, complex applications in the domains of
Grid computing, Ubiquitous computing, Smart Home Environments, and embedded real-time. To
better support these a wider range of middleware implementations e.g. tuple spaces, group
communication and data sharing will be implemented. By increasing the set of lower level
implementations we can further evaluate our higher-level abstraction.

Our current approach is based upon the core of the Web Services architecture i.e. WSDL. However,
new Web Service description formats are emerging (e.g. Web Service Endpoint Language) that extend
abstract service descriptions to include non-functional aspects (e.g. quality of service and security).

Request-Response Solicit-Response One -Way Notification

SR

SP SP
RMI

SP

Content
&
Subject
Filter

Content
&
Subject
Filter

SR

Publish-
Subscribe

SP Subject
Filter

SR

Subject
Filter

Input

Output

Output

Output

Output

Output

Output

Output Input

Input

Input

Input

Input

Concrete message
Abstract message

SR – Service Requestor
SP – Service Provider

SR SP

SR SP

SR

SR
SP

SR

SP

Furthermore, languages to describe more complex interaction patterns are also available e.g. Web
Services Flow Language. An investigation of the integration of these into ReMMoC is required.

5. Conclusions

Many middleware solutions are available to mobile application developers that provide heterogeneous
communication paradigms. Therefore, developing applications upon a single solution is insufficient.
Applications must be able to utilise a multitude of service implementations in an integrated manner.
We have proposed that a higher-level abstraction is required to hide this complexity from the
developer. The open standards (notably WSDL) offered by the Web Services architecture provide an
interesting abstraction. The mobile environment requires the dynamic reconfiguration of middleware
based upon the current environmental context; ther efore the abstraction must be complemented by an
adaptation mechanism to change between middleware. We propose that the combination of reflection,
components and component frameworks provides such an open implementation.

The ReMMoC middleware platform combines reconfiguration and a higher-level abstraction to allow
new mobile application types to be developed. At present, this middleware has been fully developed
and tested using simple applications in the domain of mobile computing, e.g. chat, news and stock
quote clients. In order to test and evaluate the ReMMoC platform, we have implemented IIOP client
and server, SOAP client and Publish-Subscribe personalities and two service discovery protocol
implementations: SLP and UPnP both with service lookup and registration capabilities. It is feasible for
new protocols to be integrated into the architecture, provided that they are implemented as OpenCOM
components. For a more detailed description of ReMMoC see [4].

6. References

[1] W3C. “Web Services Architecture”, W3C Working Draft, http://www.w3.org/TR/ws-arch/.
November, 2002.
[2] Vinoski, S. “Toward Integration Web Services Interaction Models”, IEEE Internet Computing
Online, 6(3), p89-91, May/June, 2002.
[3] W3C. “Web Services Description Language (WSDL) Version 1.2”, W3C Working Draft,
http://www.w3.org/TR/wsdl12/. March, 2003.
[4] Grace, P., Blair, G. and Samuel, S. “ReMMoC: A Reflective Middleware to Support Mobile Client
Interoperability”, International Symposium on Distributed Objects and Application, Cat ania, Italy,
November 2003 (to appear).
[5] SOAP2CORBA and CORBA2SOAP. http://soap2corba.sourceforge.net/
[6] Raje R., Bryant B., Auguston M., Olson A., Burt C. “A Unified Approach for Integration of
Distributed Heterogeneous Software Components”, In Proceedings of the 2001 Monterey Workshop
Engineering Automation for Software Intensive System Integration, pp. 109-119, 2001.
[7] Object Management Group. “Model Driven Architecture”, document number ormsc/2001-07-01,
July 2001.
[8] Vinoski, S. “It’s just a Mapping Problem”, IEEE Internet Computing Online, 7(3), p88-90,
May/June, 2003.
[9] Fremantle, P. “Applying the Web Services Invocation Framework – Calling Services Independent
of Protocols”, IBM DeveloperWorks, June 2002.
http://www.ibm.com/developerworks /webservices/library/ws-appwsif.html
 [10] Kon, F., Costa, F., Blair, G.S., Campbell, R., “The Case for Reflective Middleware: Building
Middleware that is Flexible, Reconfigurable, and yet simple to Use”, CACM, Vol. 45, No. 6, 2002.
[11] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,
Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and
Implementation of OpenORB v2”, IEEE DS Online, Special Issue on Reflective Middleware, Vol. 2,
No. 6, 2001.
[12] Szyperski, C. “Component Software: Beyond Object-Oriented Programming”. Addison Wesley,
1998.
[13] Clarke, M., Blair, G., Coulson, G. and Parlavantzas, N. “An Efficient Component Model for the
Construction of Adaptive Middleware”. In Proceedings of Middleware 2001 , Heidelberg, Germany.
November 2001.

