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AAbbssttrraacctt  
  
Dynamic protocol stacks have been identified as a method of improving the performance of 
process communication by constructing the protocol that meets it requirements with a 
minimum overhead. However, the design of these stacks is a complex process for human 
designers who must identify the correct elements and ordering. Genetic programming is a 
machine learning technique method for generating computer programs automatically. It has 
been applied to many areas including electronic circuit design, image classification and 
machine code creation. However, it has never been utilised in the area of communication 
protocols.  The main aim of the project is to identify if genetic programming techniques can 
be applied to protocol construction using the JavaGroups toolkit and generate protocols 
automatically.  
 
This report describes the theory and application of genetic programming principles and also 
the technology behind and creation of dynamic protocols. There is also a description of the 
design and implementation of a genetic program that will create JavaGroups protocols to 
meet a set of requirements.   
 
The results from the experimentation of the implemented system identify that GP can 
automatically generate the correct protocol stack for a required communication type (e.g. 
reliable point-to-point). The uses of this method to generate any stack depending on the 
user�s requirement or within a changing real-time network situation are identified as future 
areas of work.   
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CChhaapptteerr  11  IInnttrroodduuccttiioonn  
  
1.1 Scenario and Areas of Interest 
  
[Coulouris et al, 1994] define a protocol as a set of rules and formats to be used for 
communication between processes in order to perform a given task.  A protocol is 
implemented by a pair of software modules located in the sending and receiving computers 
i.e. the protocol of the sending machine transforms the message into a format suitable for 
transmission over the network, while the receiving protocol module performs the inverse 
transformations on the message to regenerate it. Protocol modules are normally made up of a 
number of layers; each layer carries out some protocol functionality by applying 
transformations to encapsulate the data before passing the message to the layer above or 
below, depending on whether it is sending or receiving. A complete set of protocol layers is 
referred to as a protocol stack. The choice of stack for use in a communication system is an 
important design decision. 
  
  
When a set of processes communicate with each other the functional requirements of this 
communication may change over time depending on the needs of the users; these could take 
the form of reliability (all messages sent must be received by every receiver), ordering (the 
messages must be seen by every receiver in the order they were sent) or security 
(unauthorised viewing of the communication must be prevented). There may also be Quality 
of Service requirements when dealing with distributed multimedia applications, such as video 
and audio conferencing. Quality of Service refers to the abstract specification of the non-
functional requirements of a service. For example, timeliness can be specified by the end-to-
end latency of frames or permitted jitter on frames in a stream interaction. Also, volume can 
be specified as the perceived throughput in bytes per second of a discrete interaction.  
 
 
A possible solution is to maintain a single protocol stack to handle the requirements of every 
perceivable communication type. However, this would make it become complex and perform 
poorly. One way of preventing this is in the use of dynamic protocol stacks. Dynamic 
protocol stacks consist of individual building blocks that define a single protocol task, which 
are then layered together. These building blocks are fine-grained components called micro-
protocols. The appropriate stack is constructed for each connection, which allows it to be 
minimal in size and provide the best performance. For example, the JavaGroups toolkit that is 
being used as part of the project is a group communication system that allows the 
implementation of group-based applications and is one of a number of systems that utilises 
configurable protocols. 
 
 
A human designer who needs to create protocols for use in the JavaGroups toolkit [Cornell, 
1999] or indeed any� must first identify the micro-protocol building blocks required, and 
then design the order of the layering and finally, must write the code to implement the 
protocol. This is a time consuming process, especially if a number of protocols are being 
implemented. The motivation behind this project is to investigate if this task can be 
automated (by applying genetic programming principles), so the JavaGroups protocol stacks 
can be generated without human intervention.  
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Genetic programming (GP) is a machine learning method that automatically generates the 
computer program for a specified problem. [Koza, 1992a] defines genetic programming to be 
a domain independent method that genetically breeds populations of computer programs to 
solve problems. Genetic programming starts with a set of randomly generated computer 
programs constructed of the available programmatic elements and then applies the principles 
of Darwinian evolution to breed a new generation of programs. The iterative process of 
applying evolution to each new generation is repeated until the optimum solution to the 
problem is obtained. 
 
 
Therefore, the key to the technique lies in the evolution from one generation of programs to 
the evolved generation. Like the �survival of the fittest� theory, genetic programs select only 
the fittest or most suitable programs for evolution. This means that an evaluation metric 
called a fitness function (this measures how well the program solves the problem) is applied 
to each member and assigns it a fitness value. Genetic operators are then applied to the fittest 
programs to create the next generation.  
 
 
[Koza, 1992a] states there are three genetic operators. Reproduction copies the selected 
program to the next generation. Crossover creates new offspring programs for the next 
generation by recombining randomly chosen parts from the two selected programs. Finally, 
mutation creates one new offspring program by randomly mutating a randomly chosen part of 
the selected program. 
 
 
1.2 Aims of the Project 
 
Genetic programming is a new technique in the domain of machine learning and has never 
been applied to the area of protocol construction. Therefore, this project examines the 
benefits genetic programming can bring to dynamic protocol configuration and identify if this 
new field of application is feasible. 
 
Therefore, the main aims are: 

�� To identify what it means to apply GP to the domain of protocols. What is the fitness 
of a protocol stack? How can the fitness be measured? How do the genetic operators 
affect a protocol stack?  

�� To assess how reliable a method GP is in the automatic creation of protocols. Can it 
always produce the correct protocol? Is it better that human performance in the 
design of the protocol for a communication? 

�� To investigate how expensive the technique is. What is the time taken to produce a 
stack automatically? How much resources are needed to perform the task? 

 
 
In order to complete these aims the following sub goals needed to be achieved: 

�� Evaluate the available genetic programming toolkits and choose the most suitable for 
the implementation of the solution. 

�� Design the fitness function and selection method, which will be used to measure how 
well the generated protocols meet their functional and non-functional requirements 
and decides if the genetic program will evolve it further. 



     8 
 

�� Design the GP algorithm i.e. how natural selection is performed. This is achieved by 
designing how the GP represents the protocol structure and how the evolution 
operators are applied to these structures. 

�� Implement and test a genetic program that automatically generates the protocol stack 
for reliable point-to-point communication. This will be evolved from a smaller subset 
of available layers that are needed to provide the required functionality. 

�� Extend the previous goal's genetic program to automatically generate protocol stacks 
for a larger domain of the protocol layer, to produce a protocol stack that provides 
reliable, ordered multicast communication. 

 
 
1.3 Structure of the report 
 
Chapter 2 of this report describes the area of genetic programming in detail. The theory and 
areas of its application are discussed. Currently available toolkits for implementing genetic 
programming solutions are evaluated and a choice is made of an appropriate toolkit. Finally, 
two simple genetic programs are stepped through to show the process in action. 
 
 
Chapter 3 examines the area of dynamically configurable protocols. It inspects the properties 
and design of eight systems that use lightweight protocol modules or allow the protocol to 
dynamically adapt to its environment. This section also describes the reasons behind the 
choice of the JavaGroups toolkit as part of the implementation. 
 
 
Chapter 4 details the basic design of the genetic programming system that is used to generate 
the protocol stacks for the two types of communication. It illustrates how genetic 
programming is applied to the domain of configurable protocol in terms of representing the 
stack and testing each member of the population and designating it a fitness value.  
 
 
Chapter 5 describes the design of the experiment to automatically generate a protocol that 
provides reliable point-to-point communication. It includes the testing of the experiment and 
analyses the results that were obtained.  
 
 
Chapter 6 describes the design of a set of experiments to automatically generate a family of 
protocols that provides reliable, ordered multicast communication. The testing and results 
obtained from these experiments are demonstrated. 
 
 
Chapter 7 draws conclusions from the work done, evaluating how successful the application 
of genetic programming to the domain of protocol configuration has been. Possible future 
work in this area is identified. 
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Chapter 2  Genetic Programming 
 
2.1 Motivation 
 
[Banzhaf et al. 1997] state that the automatic programming of computers without the need for 
a human programmer will be one of the most important areas of computer research over the 
next twenty years. This is due to the exponential leap forward of hardware capability and 
speed, while the software lags behind. Advances in software development, such as object-
oriented programming, object libraries and rapid prototyping still leave the development of 
code in the hands of the programmer. The time taken to code complex systems by a human 
means that the software is often obsolete before it is released i.e. it does not allow for the 
advances in hardware that have since taken place. 
 
 
The main goal of genetic programming is to be able to tell the computer what task we wish it 
to perform and to have it learn how to perform that task. [Koza et al, 1996b] summarise this 
as, an automatic programming technique in which what you want is what you get 
(WYWIWYG). Therefore, genetic programming aspires to allow the computer to program 
itself or other computers. However, it is not capable of this feat just yet. This remainder of 
this chapter describes the current operation of genetic programs, how they are implemented 
and the problem areas they have been applied to. 
 
 
2.2 Genetic Programming Theory 
 
Like other artificial intelligence techniques, the theory of genetic programming is based on 
models of the natural world. In nature, the evolutionary process occurs if an entity can: 
reproduce, has the ability to survive in its current environment and there is variety in the set 
of reproducing entities. Individuals that are better able to perform tasks in their environment 
(i.e. the fittest individuals) survive and reproduce at a higher rate; less fit entities might not 
survive and if they do, reproduce at a lower rate. This is the concept of �survival of the 
fittest� and �natural selection� [Darwin, 1859]. It is this model that the theory of genetic 
programming is based upon. A population of computer programs are evolved using 
techniques similar to their natural equivalent to produce the fittest computer programs for 
solving a problem. 
 
 
[Banzhaf et al, 1997] recognise three fundamental features of all genetic programming 
systems that are described in further detail in the remainder of this section: 
 
• Program structures. Every genetic program assembles variable length program 

structures from basic units called functions and terminals.  
 
• Genetic operators. The initial programs in the population are transformed using genetic 

operators. 
 
• Simulated evolution of a population by means of fitness based selection. The 

simulated evolution is driven in some form of fitness-based selection. Fitness based 
selection determines which programs are selected for further improvements.  
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2.2.1 Representing the program 
 
The first step of any genetic program is to generate an initial population of computer 
programs from which the fittest can be selected and evolved. The functions and terminals are 
the primitives with which a program in genetic programming is built. Terminals provide a 
value to the system, while functions process a value already in the system.  
 
 
Every genetic program is made up of a terminal set and a function set. �The terminal set is 
comprised of the inputs to the genetic program, the constants supplied to the genetic program 
and the zero argument functions. The function set is composed of the statements, operators 
and functions available to the GP system� [Banzhaf et al, 1997]. For example, given the 
mathematical problem in equation 2.1: 
 

)(2)()( xCosxxSinxF ++=   (Equation 2.1) 
 
A possible function set may be {sin, cos, +, √} and the terminal set could be {x, -10 to 10}. 
The genetic program then uses these two sets to create an initial population of programs by 
randomly generating a set of structures made up of elements from these two sets.  
 
 
[Banzhaf et al, 1997] identify that the choice of elements for the terminal and function set is 
an important design decision. The sets should at least hold the appropriate elements to solve a 
problem. For example, a GP system for solving mathematical problems with only an add 
operator in the function set, would only solve trivial problems, while a larger set of arithmetic 
functions could solve more diverse problems. However, the function set must not be too 
large, because the search space is increased and the search for a solution is therefore harder. 
 
 
[Koza, 1992a] initially represented each program as a tree structure corresponding to the 
parse tree of the program. A node in the tree represents each function call and its descendant 
nodes give the arguments to the function. An example program tree is shown in figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Even 2-parity function depicted as a rooted, point labelled tree. [Koza, 1992a] 
 
 
However, [Banzhaf et al, 1997] state it is already clear from the GP literature that programs 
or programming language structures may be represented in ways other than trees. Therefore, 
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we do not limit our definition of GP to include only systems that use expression trees to 
represent programs. Other possible representations are linear and graph structures. 
 
 
A linear structure is simply a set of instructions that execute from top to bottom. The function 
set and terminal set are combined to create these individual instructions rather than be placed 
as separate elements within a tree. Figure 2.2 shows the linear representation of a simple 
machine code program. 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Linear representation of the function x= (x+12)-42 
 
 
PADO [Teller and Veloso, 1995] is the name of a graph based GP system. Graphs are 
capable of representing very complex program structures. A graph structure is simply a set of 
nodes connected by edges, where an edge is a pointer between two connected nodes 
indicating the direction of flow of program control.  
 
 
2.2.2 Initialising a Genetic Program 
 
The first stage of a GP run is to create a set of program structures that can be evolved into 
future generations of programs. This first set is called the initial population. The process of 
initialisation is different for the tree and linear representations. 
 
 
[Koza, 1992a] defines two methods for initialising tree structures called full and grow. The 
grow method produces trees of an irregular shape, because nodes are randomly selected from 
both the function set and the terminal set throughout the tree (except the root, which is 
obviously a function). Once a branch contains a terminal node, that branch has ended. 
However, instead of selecting nodes randomly from the function and terminal set the full 
method chooses only functions until the node is at the designated maximum tree depth. Then 
it chooses only terminals. The result is that every branch goes to full depth.  
 
 
[Banzhaf et al, 1997] note that diversity is valuable in GP populations and that these methods 
could result in uniform sets of structures, because the routine is the same for all individuals. 
Therefore, the ramped half-and-half method [Koza, 1992b] was devised. It simply uses a set 
of maximum possible depths e.g. if maximum 6 is set then trees with depths 2, 3, 4, 5, 6 are 
initialised and for each of these groups half of the trees are created with the full method and 
the remainder with the grow method. 
 

PUSH 12

ADD X

SUB 42

POP X
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Initialisation of linear structures [Banzhaf et al, 1997] takes the form of randomly generating 
a set of instructions taking values from the function set and the terminal set and creating one 
individual command. The maximum length for an instruction sequence is given and a random 
number between this and 2 is generated. An individual structure, therefore, holds this number 
of the randomly generated instructions. It is identified that equivalent methods to full and 
grow may be applied in this area. 
 
 
2.2.3 Genetic operators 
 
This section describes the three primary operators used to modify the structures undergoing 
adaptation in genetic programming; they will be described in their operation on both tree and 
linear structures. They have also been adapted to cover graph structures [Teller, 1996] but 
this is not discussed here. The three most commonly used genetic operators are: 
 

• Crossover 
• Reproduction 
• Mutation 

 
 
[Koza, 1992a] states that tree crossover creates variation in the population by producing new 
offspring that consist of parts taken from each parent. Two parents are chosen because of 
their fitness. In each parent a random sub-tree is chosen. The sub-trees are then swapped. The 
resulting two trees are the individuals that are passed to the next generation. This is shown in 
figure 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 3 Crossover operation applied to two parent trees (top). Crossover nodes (shown in bold) are chosen 
at random. The sub-trees rooted at these crossover points are then exchanged to create children trees. [Mitchell, 
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Linear crossover [Banzhaf et al, 1997] swaps linear segments of code between two parents 
instead of sub-trees. A random sequence of instructions is taken from each parent and 
swapped leaving two new individual children. This is shown in figure 2.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Linear crossover within two machine code programs 
 
[Koza 1992a] describes the tree reproduction operator as the basic engine of natural selection. 
The operator is asexual in that it operates on only one tree and produces only one tree when it 
is performed. The operation consists of two steps; first a single tree is selected from the 
population on the basis of its fitness and then it is copied without alteration into the new 
population (i.e. new generation). The operation is identical for linear based structures. 
 
 
Mutation operates on a single individual in the population. In the case of tree mutation 
described by [Koza 1992a] this introduces random changes to tree structures within the 
population. The operation begins by selecting a point at random within the tree and then 
removing whatever is currently at and below that point and replacing it with a randomly 
generated sub tree. 
 
 
Linear GP mutation differs from the method for tree structures [Banzhaf et al, 1997]. When 
an individual is chosen for mutation, the mutation operator first selects one instruction from 
that individual for mutation. It then, makes one or more changes within that instruction. The 
changes may take the form of different operators, variables or constants being used, or a 
completely new instruction being inserted.  
 
 
2.2.4 Fitness and Selection 
 
Genetic programming must choose which members of a population will be subject to the 
genetic operators described previously. The evaluation metric used is called the fitness 
function. This is defined by [Banzhaf et al, 1997] as the measure used during simulated 
evolution of how well a program has learned to predict the outputs from the inputs. The aim 
of a fitness function is to give feedback to the evolutionary algorithm concerning which 
members should be given a higher probability of reproducing and which are more likely to be 
removed. The function should, therefore, be designed to give graded (rather than Boolean) 
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feedback about how a program performs. In standardized fitness [Koza, 1992a] the fittest 
individual is assigned a fitness value of zero. 
 
 
Having given each member of the population a fitness rating the next step is to select those to 
be used for future generations. There are a number of selection algorithms to perform such a 
task. Fitness proportional selection [Holland, 1975] specifies probabilities for individuals to 
reproduce offspring based on its fitness value, using the function in equation 2.2: 
 

�
=

i
i

i
i f

fp  (Equation 2.2) 

 
Ranking selection [Grefenstette and Baker, 1989] is based on the fitness order into which the 
individuals can be sorted. The ranking of an individual in terms of its peers determines 
whether it is then selected. Tournament selection is based on the competition between subsets 
of the population. The winners of these mini competitions are then selected for future 
evaluation. This has become a popular method because it does not require a centralised 
fitness comparison of all individuals. Therefore, saving computation time and allowing for 
the selection to be run in parallel.  
 
 
2.2.5 The Basic Genetic Programming algorithm  
 
Having described all the individual elements that make up a genetic programming system. 
The complete algorithm for a GP run can now be described. The preliminary steps that must 
be carried out to create a GP are as follows [Banzhaf et al, 1997]: 
 

�� Define the terminal set for the problem domain. 
�� Define the function set for the problem domain. 
�� Define the fitness function. 
�� Define parameters such as the initial population size, the probability of crossover, the 

maximum size of an individual, a selection method and the termination criterion 
(maximum number of generations or a fitness value). 

 
 
Once these steps have been completed the GP algorithm defined by [Koza, 1992a] can 
commence. This algorithm is based on generating new evolutions of programs, which are 
well defined and distinct. The newer population is created from and then replaces the older 
population. This cycle follows these steps: 
 

1. Initialise the population 
2. Evaluate the individual programs in the existing population. Assign a numerical rating 

or fitness to each individual. 
3. Until the new population is fully populated, repeat the following steps 

a. Select an individual in the population using the selection algorithm 
b. Perform genetic operations on the selected individual. 
c. Insert the result of the genetic operation into the new population 

4. If the termination criterion is fulfilled, then continue. Otherwise replace existing with 
a new population using steps 2-3. 
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5. Present the best individual in the population as the output from the algorithm 
 
 
2.3 Applications of Genetic Programming 
 
Genetic programming has been applied to many problem areas covering a range of science, 
computer science and engineering domains. This section looks in detail at some of the 
applications that are relevant to the project domain. That is, they attempt to generate linear 
structures or they utilise building blocks as the primitives given to the genetic program. These 
applications are Electronic Circuit Design, machine language programming and Image 
classification. 
 
 
2.3.1 Electronic Circuit Design 
 
[Koza et al, 1996a] summarize the use of a genetic program in the significantly complex 
problem of designing electronic filter circuits. The primitive functions used by the GP to 
construct its programs are functions that edit the circuit by inserting or deleting circuit 
components and wiring connections. The fitness of each program is calculated by simulating 
the circuit�s outputs (using the SPICE circuit simulator) to determine how closely this circuit 
meets the design specifications for the desired filter. The fitness score is the sum of the 
magnitudes of errors between the desired and actual circuit output at 101 different 
frequencies. The results of running the GP showed that a high percentage of the initial 
simulatable population were unable to be simulated, but at each generation this percentage 
dropped. After 137 generations the best circuit produced behaviour similar to that desired. 
 
 
The use of genetic programming in a domain as complex as electronic circuit devices shows 
that GP can be applied to other problem areas not just to computer program and mathematical 
function generation. It also illustrates that it is possible to incorporate abstract building 
blocks, as long as the input and outputs from them can be simulated in an appropriate fitness 
test. 
 
 
2.3.2 Image classification 
 
[Teller and Veloso, 1996] implemented the PADO system for classification of images. As 
described previously it is a graph based genetic program. Classifying images means dealing 
with large sets of data and fuzzy relationships. The problem domain of creating image-
processing algorithms is a complex one and time consuming for a human creator; therefore, it 
is suitable for machine learning techniques.  
 
 
The generated program for classifying an image is tested on one image at a time, extending 
the solution to recognise more objects on each GP run. Results from testing the system using 
100 training images showed that classification was between 70% and 90% correct. 
 
 
Like electronic circuit design this is a complex problem to solve, and involves the use of 
abstract building blocks within the solution to create a program. The terminal set contains 
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domain specific functions: PIXEL, VARIANCE, and DIFFERENCE. These provide the 
methods that help classify images that are passed as inputs to the generated program.    
 
 
2.3.3 Machine language 
 
Machine code is considered hard to learn, program and master when compared to higher level 
programming languages. Therefore, it is desirable for it to be generated automatically using 
genetic programming. The GEMS system [Crepeau, 1995] provides an interpreter for the Z80 
microprocessor. GEMS implements 660 of the 691 possible instructions and has been used to 
evolve a program for generating the string �hello world� made up of 58 instructions. Each 
instruction is viewed as atomic and individual and therefore, the population members are 
made up of linear strings of these instructions. 
 
 
Another linear genetic programming system used to generate machine code is the AIMGP 
(Automatic Induction of Machine Code with Genetic Programming) system [Banzhaf et al, 
1997], which includes the notion of memory registers for supplying the input values and 
output stores for the machine code instructions. 
 
 
The application of genetic programming to this domain using the technique of linear 
structures, rather than the original tree concepts show that GP is a flexible method. That is, it 
can be modified to suit the problem area, rather than shaping the problem to work with the 
original tree-structured concepts. 
 
 
2.4 Genetic Programming Toolkits 
 
Given the genetic programming algorithm in section 2.2.5 it is possible to implement your 
own code for generating an evolutionary program. However, there are a number of toolkits 
available to overcome this complex and time-consuming task. This section describes some of 
the available systems and then reasons why one was selected to perform the project. 
 
 
2.4.1 GPsys 
 
GPsys [Quereshi, 1998] is a Java based genetic programming system developed by Adil 
Quereshi. Programs must be represented as tree structures developed by simply defining the 
function and terminal set. Java classes are available to set genetic programming parameters 
such as population size, number of generations, grow method and crossover probability. The 
selection algorithm used is the tournament method; therefore, the system is memory efficient. 
 
 
However, the main features of this toolkit are that it supports generic functions and terminals. 
The user must simply write a Java class exhibiting the behaviour of the function or primitive 
and it is then easily fitted into the system. The fitness definition also allows the user to write 
an algorithm for generating the value that can then be passed to the toolkits evolutionary 
algorithm. 
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2.4.2 Lil-GP 
 
Lil-GP [Punch & Zongker, 1998] is a C programming language, tree-based genetic 
programming toolkit. It provides a graphical user interface for creating the GP and viewing 
the generational results. Its features are that it is difficult to change fitness and program 
elements, because creating new DLLs for each does this. It is also difficult to incorporate 
information from outside programs. 
 
 
2.4.3 GPC++ 
 
GPC++ [Fraser, 1994] provides a library of C++ functions for creating a Genetic program in 
a similar vein to the GPsys system. Standard functions are available for initialising tree 
structures and the GP run. Methods can be defined for the fitness function and the function 
and terminal sets.  
 
 
2.4.4 Choice of Toolkit 
 
The GPsys toolkit was chosen as the implementation tool for the project because it is Java 
based and, therefore, will allow easier co-ordination between itself and the JavaGroups 
communication toolkit. The use of the Java programming language was also important 
because the project implementer was more experienced using this language than the other 
two languages. The other important features of the system were its flexibility in defining the 
elements of the structure and the fitness function, without any constraints on what can be 
achieved. 
 
 
None of the available systems provide diversity in the type of program representation i.e. 
linear or graph based as opposed to the standard tree.  Therefore, the flexibility in defining 
the tree structure must be an important factor. 
 
 
2.5 Example GP runs 
 
This section demonstrates how the process of creating a genetic program to solve a problem 
is carried out using the chosen toolkit for its implementation. Two simple mathematical 
functions (y=x2/2 and y=x+x2+x3+x4) are solved. 
 
 
2.5.1 Genetic Program for y=x2/2 
 
The following describes the steps in creating a program for automating the function: 

2
)(

2xxfy ==   (Equation 2.3) 

 
Ten fitness cases were used for the testing of the functions, taken in the interval [0,1] and 
shown in table 2.1. 
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 Input Output 
Fitness case 1 0.0 0.000 
Fitness case 2 0.1 0.005 
Fitness case 3 0.2 0.020 
Fitness case 4 0.3 0.045 
Fitness case 5 0.4 0.080 
Fitness case 6 0.5 0.125 
Fitness case 7 0.6 0.180 
Fitness case 8 0.7 0.245 
Fitness case 9 0.8 0.320 
Fitness case 10 0.9 0.405 

 
Table 2.1 Fitness cases (input and output values) in the training set 

 
By following the steps described in section 2.2 a genetic program can be generated. For this 
problem these are: 
 

1. Select a terminal set: Variable x, integer constants between �5 and +5. {x, -5, �,5} 
2. Select a function set: Arithmetic functions +, -, *, /. {+, -, *, /} 
3. Fitness function: If yi is the output of the ith training set member and xi is the input 

value of the ith training set member. Eval(progi , xi) returns the output of the current 
individual given input x. Then the fitness test can be described by: 

),()(
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4. Initial population size = 600, crossover probability= 90%, mutation probability = 5%, 
Number of generations = 5, tournament size = 7. 

 
These steps are implemented in the GPSYS toolkit by creating the following java programs: 
 

• Example1Parameters.java defines the terminal set and function set 
• Example1GPParameters.java defines the parameters of the GP run 
• Example1Fitness.java defines the fitness function as described above 
• Example1.java controls the overall definition and execution of the GP 

 
 
When fully implemented the GP was run and the following results were obtained. On three 
separate runs the following individuals were returned: 
 

• (mul (div xfloat 2) xfloat) 
• (div (mul xfloat xfloat) 2) 
• (mul (add xfloat xfloat) (div xfloat 4)) 

 
All three are equivalent to x2/2 and therefore the genetic program has returned a number of 
functions that will provide the correct code for solving the problem. The differences between 
the results lie in the complexity of the functions. The last result is the most complex; it uses 
the most functions and therefore will perform the worst. The next experiment examines how 
the number of generations and population size affects the result. 
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2.5.2 Genetic Program for y=x+x2+x3+x4 
 
A second more complex task is to implement a genetic program to automatically generate the 
solution for: 
 

432)( xxxxxfy +++==   (Equation 2.4) 
 
The same process used in 2.5.1 was performed using 10 fitness cases, the same fitness test, 
and terminal set. However, the function set was extended to {+, -, *, /, sin, cos, log}. 
 
 
The results from running the GP 5 times with a different population size and number of 
generations each time are shown in table 2.2. 
 
 
Population Number of 

Generations 
Result 

500 10 (+ (+ (+ (* x x) x) (* x (* x x))) (* (* x x) (* x x))) 
750 10 (+ (* ( * x x ) ( * x x)) ( + ( + x (* x x)) (* (* x x) x))) 

200 20 No correct result 
1000 10 (+ ( * ( * x x) (* x x)) ( + x ( * ( + ( * x x) x ) x) ) ) 
450 30 (+ (+ (+ (* x x) x) (* x (* x x))) (* (* x x) (* x x))) 

 
Table 2.2 Results of GP for x=x+x2+x3+x4 

 
The results show that a range of functions that are equivalent to the required one are 
produced. The tests also identify that the number of generations and population size affect the 
result; if either of the two is too small a result may not be obtained.  
 
 
2.6 Conclusions 
 
[Koza et al, 1996b] detail four situations in which genetic programming has out performed 
human performance. That is, the genetic program has come up with a solution that is better 
than a human designer. This is because genetic programming can interpret and generate 
diverse solutions for the problem that a human would not consider. 
 
 
[Banzhaf et al, 1997] identifies GP as an effective method for performing a solution search. 
For suitably complex domains, exhaustive search strategies of every possible solution cannot 
be completed within a reasonable time frame. Therefore, GP is a better alternative. Also, it 
states that genetic programming competes favourably with beam searches, hill climbing and 
simulated annealing; [O� Reilly and Oppacher, 1994] provide a comparison with these 
methods. 
 
 
The ultimate goal of automatic programming is to tell the computer what we want and then 
get the solution generated automatically. Genetic programming does not provide this yet, 
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because GPs are designed to solve individual problems with a specific fitness test and run. 
For example, a GP that only generates an electronic filter circuit rather than a system that 
could build any circuit depending on the user�s requirements. 
 
 
[Banzhaf et al, 1997] states that GP may not be able to be used in many real-world situations 
because the fitness measure cannot be defined; this is simply because the circumstances are 
too difficult to describe in terms of genetic programming for a human programmer. 
 
 
One of the main problems of genetic programming is that it is computationally expensive. It 
takes time to test and produce fitness values for each population member and then breed them 
over a number of generations. The GP also consumes a large amount of memory to store all 
of the complex structures of the population individuals. 
  
 
Another problem of Genetic programming is that it is unreliable and not guaranteed to find 
the solution to a problem, even if one exists. However, it provides the closest result possible 
in terms of fitness. If there is no exact solution possible then this is invaluable. 
 
 
The positive and negative issues of genetic programming identified here are returned to at the 
end of the dissertation. 
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Chapter 3 Dynamically Configurable Protocols 
 
3.1 Motivation 
 
Over a period of time a set of communicating processes may have a range of both functional 
and non-functional communication requirements. For example, initially packets must be sent 
reliably and in order; however, later the processes must send packets securely because private 
information is being sent. The non-functional quality of service requirements may also 
change. For example, high throughput is needed initially and later there is a demand for low 
jitter. 
 
 
The creation of an end-to-end protocol to deal with all these differing communication 
requirements would introduce redundancy and complexity. Therefore, the performance of the 
protocol is liable to be poor, because there is the overhead of protocol processing that is not 
needed. [Plagemann, 1996] describes the approach of configurable protocols as an enhanced 
solution. The main principles of which are decomposition and configuration.  Complex 
protocols are decomposed into fine granular building blocks each defining a single protocol 
task. The goal of configuration is to then combine these building blocks in such a manner that 
the resulting protocol configuration is as light as possible and meets the requirements of the 
application.  
 
 
Dynamic adaptability in distributed systems has become an important issue to consider, due 
to the emergence of new types of applications and end systems. For example, a 
teleconferencing system may be able to run at very high video-frame rates and little 
compression over a high-speed local area network. However, when the load on the network 
increases it may need to reduce the video-frame rate or apply other methods to deal with the 
change in the network environment. Furthermore, one of the hosts in such an application may 
also be mobile and may move between connections providing varying levels of service. 
Therefore, lightweight protocols should be able to re-configure themselves during runtime in 
order to adapt to these changes, providing a method to solve this problem. 
 
 
A number of frameworks have been developed allowing the configuration and dynamic re-
configuration of protocols using lightweight elements. These are described in the following 
section: studying the early systems that drove the area of research, the systems that provide 
protocols for group communication and the implementations that allow the creation of 
protocols that meet the Quality of Service requirements of distributed multimedia 
applications. 
 
 
3.2 Frameworks for Protocol Configuration 
 
3.2.1 Early Systems 
 
There were two initial systems that concentrated on the use of fine-grained protocol 
components to ensure that end-system protocols contained no redundancy or unnecessary 
complexity, therefore, increasing protocol performance. These were the STREAMs and X-
Kernel systems. 
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STREAMS [Ritchie, 1984] was designed to allow greater flexibility in the design of UNIX 
device drivers and to replace the traditional rigid connections between processes and 
terminals. A stream is a full duplex connection between a user process and a device. It 
consists of several linearly connected processing modules. Modules communicate by passing 
messages to their neighbours through a uniform interface. Each of these modules 
encapsulates some part of protocol processing. A diagrammatic representation of a stream is 
shown in figure 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 The STREAM architecture 
 
The processing modules in a stream are thought of as a stack whose top is next to the user 
program. Thus to install a processing module after opening a device, an I/O push is executed 
on the relevant stream with the desired new processing module. By the same technique 
modules can be removed at run-time. It is this feature that allows the dynamic behaviour of 
protocols at run-time and the ability to adapt to the changing requirements of an application. 
 
 
The STREAMS architecture is completely open-ended and was designed for much more than 
protocol implementations. Any programs that read from stdin and write to stdout can be 
inserted as a module into a stream, because the PIPE mechanism is implemented as a stream. 
The ideas brought about by this seminal paper paved the way for the dynamic protocols 
systems that can choose the appropriate processing parts that are needed and adapt at run-
time. 
 
 
The X-kernel system [O�Malley & Peterson, 1992][Hutchison, 1991] is an Operating System 
kernel that provides an explicit architecture for constructing network protocol stacks using a 
library of C functions. The protocols are implemented in terms of layers and sessions, where 
a layer provides some protocol functionality and a session holds the state needed for use of 
the layer. The layers and sessions provide a uniform interface through which messages are 
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delivered. This method allows the layers to be composed into directed graphs to represent the 
structure of the network software. 
 
 
[O�Malley & Peterson, 1992] state that previous network software graphs had three important 
properties: the graph is simple, the nodes encapsulate complex protocol functionality and the 
graph is static. The X-kernel is defined as a new way of organising the protocol software as 
opposed to the previous method. It is designed to be a complex graph structure with nodes 
that encapsulate simple lightweight protocol functionality (usually an individual algorithm).   
 
 
[Hiltu, 1998] added the concept of the �micro-protocol�, which is a component of a layer that 
deals with some individual functionality of the layer. In the X-kernel a micro-protocol is not 
composed into an explicit structure, but is plugged into a layer and communicates by 
modifying the data structures within the layer. The properties of a layer, therefore, depend on 
the individual properties of each micro-protocol that has been inserted into it.  
 
 
Protocol graphs are defined statically; therefore, they cannot be dynamically altered during 
run time. The reason for this is that the designers believed that the network architecture (not 
the protocol) should be dynamic to deal with any changing requirements. 
 
 
3.2.2 Group communication systems at Cornell University 
 
[Hayden, 1998] states that group communication is an approach to overcoming the problems 
encountered when distributed processes co-ordinate on tasks that require consistent actions to 
be taken by different components of the system. The protocols that are usually employed to 
achieve such goals are extremely complex and error prone. The task is complicated by the 
additional need to survive faults in different parts of the system, adapt to changes in the 
environment and meet the performance requirements. A central feature of group 
communication systems is the process of group abstraction, which provides operations for 
processes to join and leave groups and to communicate within a group. 
 
 
Work at Cornell University has provided a number of group communication systems. The 
three described in this section use a framework of configurable protocol layers within their 
implementation. Horus, Ensemble and JavaGroups are the three systems. 
 
 
Horus [Van Rennesse et al, 1996] provides a framework for the development of distributed 
applications based on group communications. The overall Horus framework provides a large 
collection of system and application protocols that have been developed to allow the 
application designer to construct a communication module that exactly meets the application 
requirements at minimal cost. These are composed as a stack of layers through which threads 
carry messages. The types of properties provided by these layers are reliability, stability and 
ordering.  
 
The Horus project was originally launched as an effort to redesign the Isis group 
communication system [Birman et al, 1994], but evolved into a general purpose 
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communication architecture with advanced support for the development of robust distributed 
systems in settings for which Isis was unsuitable, such as applications that have special 
security or real-time requirements.  
 
  
Ensemble [Hayden, 1998] is a group communication toolkit, based on the previous Horus 
development. It was created using the ML functional programming language to provide a 
more efficient solution that improved the performance of the protocol layers. The use of ML 
did this by reducing the size of the protocol layers and allowing for layers to be decomposed 
into finer elements. 
 
 
Ensemble provides techniques to create protocols for both end-to-end communication and 
multi-party communication. In order to create the protocol, Ensemble provides a number of 
building blocks called micro-protocols (c.f. X-kernel). Each of these building blocks adds 
some individual protocol functionality. The micro-protocol modules can be stacked and re-
stacked in a variety of ways to meet the communication demands of its applications. Table 
3.1 shows an example protocol stack in Ensemble, with the functionality added by each layer 
described. This configuration would give the possibility of sending larger messages than is 
supported by the underlying transport, and will also give reliable FIFO transmission and 
window-based flow control.  
 

Protocol Description 
Top Top-most protocol layer 
Frag Fragmentation and reassembly 

Pt2ptw Point-to-point window flow 
control 

Pt2pt Reliable FIFO point-to-point 
Bottom Bottom-most protocol layer 

 
Table 3.1: Example protocol stack 

 
Adaptation in Ensemble is done transparently from the application. The lowest layers of the 
stack attempt to adapt first. If they cannot respond to an environment change then they pass 
the notification to the layer above (The application may eventually be notified). A 
reconfiguration is performed by the Protocol Switch Protocol (PSP). PSP is a protocol that 
installs the newly generated stack across all the participants. 
 
 
JavaGroups [Ban, 1999] is an alternative toolkit for reliable group communication, 
implemented in the Java programming language. Therefore, it benefits from the portability 
that this language provides. Clients can join a group, send messages to all members or single 
members and receive messages from members in the group. Each group is identified by its 
name. The system tracks the current members in a group and notifies the members of joins, 
leaves or crashes. To join a group a process has to create a channel and connect to it using the 
group name; all channels with the same name construct a group. While connected, a client 
can send to and receive messages from all other members in the group. Channels are similar 
to BSD sockets; messages are stored in a channel until a client actively removes the next one. 
If no message is available, the client blocks until the next message is received. 
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JavaGroups provides three channel implementations: an Ensemble based channel, an iBus 
based channel and its own channel based on a Java protocol stack, called the JChannel. The 
JChannel is a protocol stack containing a number of protocol layers in a bi-directional list. All 
messages sent and received from the channel have to pass through the protocol stack. Each 
layer may modify, re-order, pass or drop a message and/or add a header to the message. An 
example is the fragmentation layer that breaks up a message into several smaller messages, 
adding a header with an ID to each message and reassembles the fragments on the receiving 
side.  
 
  
3.2.3 Quality of Service frameworks 
 
The growing need for multimedia applications has meant that distributed systems need to 
deal with the changing network circumstances to ensure that the required Quality of Service 
is provided to the end-system application. Two protocol configuration frameworks were 
designed as methods to provide the required Quality of Service to applications: Da Capo and 
iBus.   
 
 
Da Capo [Plagemann, 1999] is a framework for dynamic protocol configuration with the goal 
of creating a run-time protocol for each connection. It was created as an alternative to 
traditional end system protocols, which were not able to support the quality of service 
requirements of current and emerging multimedia applications. Da Capo was designed to 
allow protocol configuration that combines fine granular software and hardware building 
blocks at run-time. Its aim is to provide an optimised protocol between application and 
network services automatically at run-time and at the same time be as light as possible. 
 
 
Da Capo uses one process per protocol and is split into three different layers: A, C & T. 
Layer T is the transport layer i.e. it represents the existing and connected communications 
infrastructure. Layer C adds functionality to the Transport layer and layer A corresponds to 
the distributed applications that access the services of the underlying communication layers. 
The A-C layers specify which type of services are needed and quantify the Quality of Service 
required by the application. Application requirements are specified in the form of tuples on 
single attributes types such as delay, jitter, packet loss etc. This model of this framework is 
shown in figure 3.2 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2 The Da Capo framework 
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Layer C selects a protocol configuration that fulfils the requirements during the establishment 
of the connection. Layer C services are decomposed into a set of protocol functions. Each 
protocol function encapsulates a typical protocol task e.g. error control, flow control, 
encryption etc.  The configuration is lightweight in that layer C uses fine granular building 
called light modules to implement the protocol layers. 
 
 
Applications specify their QoS requirements in the form of an objective function. This 
specification is forwarded to the Configuration and Resource Allocation (CoRA) 
[Plagemann, 1994] component. CoRA selects the most appropriate modules from a functional 
and resource use point of view and ensures that sufficient resources are available.   
 
 
The iBus [Softwired, 1999] system from Softwired AG is a commercially available Java 
Messaging Middleware system based on the publish/subscribe communication paradigm. 
IBus resides between the operating system and the application software. It allows the efficient 
asynchronous transfer of messages or Java objects between communicating parties.  
 
 
The bus system is unlike an Object Request Broker used in classic client-server applications. 
In most cases ORBs work with synchronous request-reply patterns and provide an 
�Information pull model�. IBus operates through an �information push� between producers 
and consumers of information. [Kruthoff, 1999] identifies the three main components of the 
iBus system as:  
 

�� Producer: a component that feeds information (Java objects) into a channel. A 
producer first registers with a channel before publishing its information 

�� Consumer: a component that receives information from a channel: A consumer 
subscribes to a channel to receive from one or more producers. 

�� Channel: a component that moves information between the producer and consumer 
components. 

 
An iBus channelURL specifies the channel. It is made up of a QoS String and a destination 
address. The QoS String defines a Quality of Service for the channel. It is possible to use 
reliable or unreliable IP multicast, TCP, HTTP or wireless protocols. Depending on the data 
being transmitted the QoS can be adjusted by the developer e.g. if low jitter is required in the 
case of video data, a less complex QoS would be defined. 
 
A stack of �Protocol Objects� represents the QoS. Each Protocol object describes one part of 
the iBus protocol stack. The stack for reliable IP multicast looks like this:  
 

�� DISPATCH : PULL : FRAG : NAK : REACH : IPMCAST 
 
If a programmer wants to add further QoS requirements such as compression, he would have 
to define and implement a compression Protocol Object first. There is a Java class offered to 
simplify this process. 
 
Protocol stacks are dynamically created depending of the information provided in the 
ChannelURL. There is no concept of insertion and deletion of individual protocol objects 
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during run time. The system only deals with adaptation by selecting the appropriate linear 
chain of objects depending on the required QoS of the channel. 
 
 
3.2.4 An alternative approach 
 
The FlexiNet platform [Hayton et al, 1999] is a Java middleware platform that provides a 
component-based approach to distributed application development. It places strong emphasis 
on the use of reflection within the protocol stacks. There are four key elements of the 
FlexiNet architecture: software components, transparent component binding, policy 
definition, and automated deployment. The architecture and methods of this system provide a 
different way of looking at the problem the previously described systems are attempting to 
solve.  
 
 
In order to program with components, there must be a model of binding between components, 
so that a programmer may locate one from another. Components may pass references to other 
components between each other in a transparent way. In these circumstances FlexiNet 
associates the implicit binding request with the relevant policies and ensures that the 
constructed binding respects the policies. A reflective protocol stack is related to the binding 
to carry out the call process. FlexiNet provides a layered protocol stack, in which the layers 
can be viewed as reflective meta-objects that manipulate an invocation using Java Core 
Reflection [Sun, 1999].  
 
 
The use of reflexive layers is an alternate method from the previously described systems. 
Reflection allows the component to have an open implementation. Depending on what is 
required, the component can adapt itself by adding or removing sub-components that provide 
a degree of functionality. This means that rather than altering a stack of micro-protocols, the 
more complex layers of the FlexiNet architecture adapt themselves to changes in the 
environment. 
 
   
3.3 Choice of Toolkit 
 
The following features were identified as the most important in the choice of a 
communication toolkit. 
 

�� Interoperability� the ability of the genetic programming toolkit to communicate and 
work with the communication applications. 

�� Protocol layers � the availability of a wide range of building blocks that will provide 
interesting protocols. 

�� Implementation language � How easy it is for the programmer of the system to use 
and implement applications that feature the toolkit. 

 
 
The early systems of STREAMS and X-kernel are discounted because they do not provide an 
interesting set of building blocks, rather a model for implementing user modules. The iBus 
and FlexiNet, also suffer in that they do not have a set of purpose built protocol layers that 
can be used by the Genetic Program. This makes them ineffectual to the genetic program, 
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which cannot work without the individual elements. The implementation of a set of modules 
is not feasible in the time available. 
 
 
The group communication systems from Cornell, however, all have a set of layers that are 
used that can be put together to create group protocols. Their interoperability with the GP and 
the implementation language determine the decision between the three. Ensemble suffers 
from the ML language implementation, which as a functional language makes it difficult to 
create applications in. Also, the communication between a Java genetic program and an ML 
group communication application is difficult to implement. 
 
 
The JavaGroups toolkits meets all three requirements and therefore, was chosen to be used 
for protocol configuration within the genetic program. It has a set of twenty protocol modules 
that can be used to create group communication protocols. It is implemented in Java, a 
programming language that the implementer is experienced with, making application 
development an easier process. The use of Java also makes the communication between GP 
and protocol application simple through the technique of RMI (all of the GP can be 
implemented using Java). 
 
 
3.4 JavaGroups Architecture and Implementation details 
 
This section examines in detail the architecture of the JavaGroups system and what is 
required to implement a group based application using its features. 
 
In order to create the simple JavaGroups applications that will be used in the genetic program 
the following steps must be carried out.  
 

�� Each member must create a JChannel using the JChannel() constructer, providing the 
protocol stack as an argument (described later).  

�� The member must then connect the channel to the group it wishes to participate in 
using the Connect() method, providing the group name as an argument. 

�� Once connected the process can send and receive messages to/from the channel using 
the Send() and Receive() methods. A message can be unicast to an individual if its 
address is provided; otherwise it is multicast to the entire group. The receive 
command detects messages and view changes. A view change indicates that a 
member has joined, left or crashed. 

�� When a member wishes to leave a group, the Disconnect() method removes the 
channel from the group and the Close() method destroys the created channel. 

 
These techniques show that it is possible to quickly create applications for group 
communication using the JavaGroups toolkits. However, the complexity in application design 
lies in the choice of the protocol stack that is passed as an argument in the creation of a 
channel. There are a number of layers available and the stack must be selected from these and 
then placed in the correct order. The available layers are listed in table 3.2.  
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Using the layers in table 3.2 a protocol in constructed as a stack of these modules on top of 
one another. The following are some example protocol stacks that can be used for group 
communication applications: 
 

�� Reliable, ordered group multicast communication: 
UDP: PING: FD: STABLE: NAKACK: UNICAST: FRAG: FLUSH: GMS: 
VIEWENFORCER: TOTAL 

�� Reliable Multicast: 
UDP: NAKACK: UNICAST: FLUSH: GMS 

 
 
Protocol Name Description 
DELAY Delays incoming and outgoing messages by a number of milliseconds. 
DISCARD Drops a random percentage of incoming or outgoing messages. 
FD Failure detection based on a simple heartbeat protocol. It regularly polls 

group members for liveness. 
FD_RAND Failure detection by testing random group members for liveness. 
FLUSH Flush all pending messages out of the system. 
FRAG Fragments messages larger than a given size into smaller packets. 
GMS Group membership protocol. Handles joins, leaves and crashes and 

emits new views accordingly. 
MERGE Simple merge protocol. Periodically multicasts a hello message with 

group address. When received by member of same group but not in 
group the merge is performed. 

NAKACK Negative acknowledgements paired with positive ACKS. 
PIGGYBACK Combine multiple messages into a single large one. 
PING Responsible for finding the initial membership of a group, 
QUEUE Layer that queues messages. 
STABLE Computes the broadcast messages that have been received by all 

members 
TOTAL Sequencer based total ordering protocol layer. 
TUNNEL Uses TCP connection to route messages. An alternative to UDP as 

bottom layer. 
UDP Bottom-most layer of stack that transmits packets using the User 

Datagram Protocol. 
UNICAST Reliable unicast layer 
UNIFORM A message is delivered by all members if it is delivered by at least one 

member. Dynamically uniform failure atomic group multicast. 
VIEWENFORCER Discards all messages until client becomes member of a group 
 

Table 3.2 Description of the available protocol modules in the JavaGroups toolkit. 
 
 
To illustrate clearly how applications are created using the properties of the JavaGroups 
toolkit previously, described figure 3.3 contains the code for a simple send and receive to a 
group. 
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Figure 3.3 The code to implement a simple sending a receiving group member using the JavaGroups toolkit 

 
 
3.5 Conclusions 
 
The use of lightweight components for the creation of a protocol is a possible method to 
provide improved performance over the use of complex protocol modules that deal with a 
range of protocol functions. This is because the protocol stack can be geared to perform only 
the protocol functions that are needed for the particular communication. There is no 
redundant functionality that leads to an increased overhead in the protocol processing. The 
method of structuring protocols from fine-grained elements, therefore, leads to an improved 
performance in the protocol.  
 
 
The second advantage of configurable protocols is the flexibility they provide. A number of 
the systems described in this section have the ability to adapt the protocol stack during run 
time and, therefore, during the length of a communication. It is possible to change the 
protocol to meet new requirements of the application or respond to changes in the network 
environment ensuring that the required service is still provided. This is done using the 
�lightest� protocol stack possible, guaranteeing that the best communication performance is 
provided. 
 
 

import java.util.*;
import JavaGroups.*;

//Simple connect, send 50 messages to group then wait for a different 50 to receive

public class ChannelTest {
private Channel channel=null;

String props="UDP:PING:FD:STABLE:NAKACK:FLUSH:GMS:TOTAL";

public Start() throws Exception {

channel=new JChannel(props);
channel.Connect("ExampleGroup");

for(int i=0; i < 50; i++) {
System.out.println("Casting msg #" + i);
channel.Send(new Message(null, null, new String("Msg #" +

i).getBytes()));
}

while(m<50) {
try {

obj=channel.Receive(0); // no timeout
if(obj instanceof View)

System.out.println("--> NEW VIEW: " + obj);
else if(obj instanceof Message) {

msg=(Message)obj;
m++;

System.out.println("Received " + new String(msg.GetBuffer()));
}

}
catch(ChannelNotConnected conn) {

break;
}

}

channel.Disconnect();
channel.Close();

} 
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The use of protocol configuration is especially suited to the provision of quality of service 
requirements of distributed multimedia applications. [Plagemann, 1996] states this is because 
it is the most flexible method and is able to support the range of realistic QoS requirements. It 
also allows new quality of service requirements to be met by integrating new modules into 
the system. 
 
 
[Hayden, 1998] cites one possible problem of configurable protocol stacks is that the drive 
for flexibility may not meet the needs for high performance protocols. Increasing flexibility 
increases the modularity of the system and this in turn prevents low-level optimisations being 
made to the protocol. Therefore, the protocols are not providing the maximum possible 
performance. 
 
 
The examination of how to construct applications using the JavaGroups toolkit has shown 
that this is a non-trivial task. The user must be experienced in protocols to understand the 
features that are provided by each of the separate layers. They must then design the 
appropriate layout of the stack that will meet the requirements of the communication. 
Without experience this is a very difficult task and therefore, is suitable to the application of 
automatic programming. Without the need for expertise in use of the toolkit it should be 
possible to state the protocol requirements you need and have the correct stack layout 
returned to you.  
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Chapter 4 Application of Genetic Programming to Protocol Configuration 
 
4.1 Introduction 
 
This section examines the design of the framework of the system that will automatically 
generate the JavaGroups protocol stack that meets the requirements for a given 
communication type. The design of this system involves applying the techniques and theory 
of genetic programming to the domain of configurable protocols. This can be split into three 
distinct problems to overcome: 
 

�� The representation of stacks within a genetic program.  
�� The evolution and creation of new stacks. 
�� The testing of a stack to provide it with a fitness measure and then in turn the 

selection of fitter stacks for further evolution. 
 
The following section examines how the principles are applied to the domain to solve these 
three problems and how they were implemented using a combination of the GPsys and 
JavaGroups toolkits to create the basic genetic programming system that is extended later in 
future experiments.  
 
4.2 Key Design choices 
 
4.2.1 Representing a stack within the Genetic Program 
 
For communication to take place using the JavaGroups toolkit, each sending and receiving 
member of a group must subscribe to a channel called the JChannel. When creating a 
JChannel, the properties of the underlying protocol stack can be specified as an argument. For 
example, the property specification may state a reliable UDP based channel and another may 
detail a virtually synchronous, total order channel.  
 
 
The argument passed to the channel to define its properties is called the property string and it 
has the following format: 
 

�� �<prop1>(arg1=val1):<prop2>(arg1=val1;arg2=val2):<prop3>:<prop n>� 
 
 It consists of a number of properties separated by colons. Each property relates directly to 
one of the protocol layers available from the toolkit. The first property becomes the bottom-
most layer, the second is placed on top of the first etc; the stack is created from the bottom to 
the top as the string is parsed from left to right. Each layer may have 0 or more arguments 
passed as name/value pairs to set any properties required by the layer. 
 
 
Therefore, if the genetic program is to generate the protocol configuration for a channel to 
meet a set of requirements then it must generate the correct property string, before passing it 
to a JavaGroups application so that a JChannel can be created for communication. 
 
 
The property string is a linear structure; it consists of a chain of independent building blocks. 
Chapter 2 discussed linear and tree representations of members of genetic programming 
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populations. Both of these are possible methods for representing the property string. The 
linear method is the most natural technique; replacing the linear chain of program instructions 
by a linear chain of protocol modules performs this. The alternative is to create a tree 
structure that represents each stack, simulating the linear nature that is required. In order to 
implement the linear method, a complete GP algorithm would need to be designed and 
implemented to deal with the variances of linear evolution and selection. The constraints of 
time mean that it is not feasible to implement a specialised genetic programming solution of 
this type. All currently available toolkits are based on tree-based solutions; therefore, the 
choice taken was to simulate the linear nature of the property stack using a tree.  
 
 
The next step of the GP structure design is to identify the functions and terminals that will be 
used to build the tree for each population member. The terminal set consists of the names of 
the protocol layers; this is because, like program terminals, they are the basic elements of the 
string. There is only one function needed in the representation of strings. It is a simple 
function that takes two arguments and appends them together (named (:) to help picture the 
string). It is this introduced function that will simulate the linear nature in the genetic 
program. The diagram in figure 4.1 shows an example of a stack in a tree structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Tree representation of UDP: NAKACK: UNICAST: FLUSH: GMS 
 
 
The only problem with this method is that different members of a population may represent 
identical stacks. This is because differently shaped trees can hold the same protocol layers 
(e.g. UDP: FLUSH: GMS can appear more than once, because two trees can create it). This is 
not a critical flaw, because in a small size population the probability of repeated structures is 
small. Also, Genetic Programming deals with evolving strong members of the population, 
therefore, similar strong stacks may be evolved differently or if unfit both removed.  
 
There are three steps in the toolkit implementation of this method: 
 

�� Create a terminal class for each of the protocol layer. That is for each module 
implement a java class that will provide the name (and properties) for the 
terminals of the tree. For example UDP.java and FLUSH.java 

�� Create a function class for the append operation, which takes two terminals and 
appends them together. Implemented in STACK.java 

:

: :

:UDP NAKACK UNICAST

FLUSH GMS 
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�� Set the function set to hold the one STACK function and set the terminal set to 
hold the set of protocol modules needed to build the required protocol. 

�� Set the GP parameters: Population size, Number of generations, grow method, 
crossover probability, mutation probability, tournament size. 

 
 
Using these classes and method the GPsys toolkit will generate an initial population of stacks 
and perform the selection and evolution of new generations of stacks until a solution is 
returned. 
 
 
4.2.2 Genetic Operators acting on the Property stack 
 
It is important to next consider what effect the genetic operators have on the protocol stack. 
Therefore, the three operators (crossover, mutation and reproduction) identified in chapter 2 
are discussed to ensure that the stacks are suitably evolved for future generations in line with 
the properties of genetic programming. 
 
 
The desired effect for crossover evolution on protocol stacks is identical to the linear 
crossover method, described in section 2.2.3. That it, a subset of layers from one parent 
should be swapped with a linear segment of the other parent to create two new children for 
the next generation. The use of tree crossover by the toolkit, however, has an identical effect; 
this is due to the structure of the tree defining a stack. Each sub tree within the tree, identifies 
a smaller part of the stack {example UDP: FLUSH}; therefore, when sub-trees are switched 
in the tree crossover method of the GPsys toolkit, it is still linear subsections that are being 
swapped. 
 
 
Linear mutation requires the alteration to occur within the individual elements of the chain 
i.e. the mutation of separate instructions. However, in the case of protocol stacks the 
individual layers are fine-grained building blocks that cannot be altered. The desired effect of 
mutation is to introduce random changes to a fit individual to identify what effect this has in 
the evolution. Therefore, the way to introduce mutation into protocol stacks is to mutate sets 
of layers. Using the tree mutation operator provided by the GPsys toolkit performs this. The 
use of sub-trees to represent sub-sections of the stack�s layers means that a random tree of 
new layers can be inserted in place of a removed set of layers. 
 
 
The reproduction operator, that simply copies a fit individual to the next generation without 
change, is identical for both linear and tree structures. Therefore, the reproduction method of 
the toolkit can be used without change. 
 
 
4.2.3 Fitness Functions 
 
In order for the best stacks to be selected from a population for evolution, the concept of how 
to determine what represents a fit stack compared to another one must be defined. There are 
three different measures that can be taken for how fit one individual stack is. These are a test 
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for semantic viability, a test to check that the stack meets the required communication 
properties and a test of the quality of service provided by the protocol. 
 
 
A JavaGroups protocol stack can be made up of any protocol layers fitted together in any 
order and still be syntactically correct. That is, when a stack is passed to a channel it cannot 
cause a syntax error to occur. However, due to the obvious number of possible combination 
of layers, there are a number of stacks that do not perform any meaningful operation. For 
example, any stack with repeating layers will not allow messages to be sent to the channel. 
JavaGroups provides exceptions if any of these stacks cannot communicate on the channel. 
Therefore, a fitness measure of stacks can determine between stacks that are meaningful and 
those that aren�t. 
 
 
A second type of fitness test is a measure of how well the tested stack meets the requirements 
of the protocol being searched for. This means that a channel must be created and the stack 
passed to it before tests for reliability, group communication, quality of service and ordering 
can occur. The final type of fitness test measures how well the non-functional requirements 
of a communication are met. Therefore, performance measures like throughput and delay are 
calculated and transformed to a fitness value. 
  
 
The fitness tests produce a standardised fitness measure. That is, a meaningful stack that 
fully meets all of the communication requirements has a fitness value of zero. While, a stack 
that has no sensible operation is given the highest value. The range between represents the 
amount it partially meets the communication requirements. The following section describes 
the design and implementation of a test harness that carries out this testing. 
 
 
4.3 Design & Implementation of Fitness Tests  
 
For every stack that is generated by the genetic program, a JChannel must be created in order 
for it to be tested for semantic and performance properties. There are two possible methods 
for controlling these tests: 
 

�� Implement the creation of the channel and sending/receiving process from within the 
fitness test of the genetic program. That is, the code for fitness test consists of the 
method calls to the JavaGroups toolkit to create the channel and sender and receiving 
applications to simulate the tests. The separate send and receive processes are created 
using exec() calls. 

�� Create a distributed system that separates the genetic program from the JavaGroups 
applications. That is, a stack is passed to the separate process (maybe on a different 
machine), which controls the tests using JChannels, and then calculates a fitness 
measure that is then returned to the genetic program.  

 
The first method has the advantage of being the simplest to implement; there is no 
complexity in the implementation of the fitness tests. However, genetic programming is 
extremely computationally intensive and the addition of complex fitness tests that also 
require large amounts of CPU time and memory mean that this method is infeasible, without 
powerful computer performance. The use of exec processes for the separate communication 
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processes is a messy method because communication between the GP process and these must 
use shared memory, which is difficult to control for a large amount of processes. Performing 
these tasks run on a standard workstation will quickly exhaust resources. 
 
 
The second method of distribution overcomes this problem. The genetic program process can 
be implemented on one machine, while the testing processes may run on another. This allows 
a greater pool of resources to be shared, because the system can execute over a number of 
computers rather than an individual machine. The system is also extensible; new processes 
for sending and receiving parties can be easily added on new machines, without worrying that 
they may use up valuable resources. Further advantages include the improved performance 
due to concurrent execution of the software. Due to the number of advantages this method 
provides, it was chosen over the exec solution. 
 
 
The distribution was achieved using Java RMI. This method was chosen over alternative 
distributed system solutions, such as Corba, because Java is already the principle 
implementation tool being used (both toolkits are Java based) and therefore, no extra software 
is required for the creation of the new system. 
 
The model in figure 4.3 shows the design of the core of the distributed system that will form 
the basis of the overall genetic program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Core section of genetic programming system 
 
 
The genetic programming algorithm generates a population of protocol stacks and then calls 
the fitness function to provide a value that will determine if it is selected. 
 
The fitness function carries out the following process: 

1. The creation of a new ProtocolImpl object on the protocol server to test the stack. 
2. Remotely call one of the test methods available from the ProtocolImpl object, passing 

the protocol property sting as the parameter. For example, there is a method to test for 
reliable point-to-point communication and there is also a method to test for reliable 
multicast etc. 

 
Genetic 

Algorithm 

Protocol string

Fitness Value

  
 

Protocol Server

Protocol 
Impl 

Sets of sending and receiving 
JavaGroups to form tests 
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3. Block waiting for the return of a value from the test harness representing the fitness 
measure. 

 
Once the fitness values have been obtained from all members of a population the genetic 
program crates a new generation of stacks by the process of evolution and the process is 
repeated for the required number of generations. 
 
The basic system has been designed to allow extension in the addition of tests controlled by 
the protocol server. Future experiments described later in the report will use this provided 
architecture as the basis of their genetic program. For example, a sending server can provide 
a process for sending messages and a receiving server for providing a process for receiving 
process. The ProtocolImpl object remotely calls the methods to set up tests simulating the 
receiving of messages for a given protocol and obtains a fitness measure from these tests 
before returning this value back to the fitness function of the genetic process. 
 
 
4.4 Conclusions 
 
This chapter has identified methods to allow GP to be fitted to the domain of protocol 
configuration. This consists of a number of basic mechanisms of the GP system to provide 
the basis for further experiments later. 

�� The simulation of a linear stack using the tree methods of a genetic programming 
toolkit. 

�� The use of a distributed system to separate the genetic processes from the protocol 
tests. This has the advantages of: 

o The ability to use a pool of resources to deal with the computationally 
expensive processes involved. 

o Ease of simulating the distance between the processes within group 
communication e.g. a sender and receiver on separate machines. 

o New tests can be created and added easily. 
 
The most interesting part of this system occurs in the design of fitness tests and the design of 
what it means to measure the fitness of a stack in terms of communication requirements. The 
test harness allows tests to be added, removed or changed to provide variety in the protocol 
stacks that are being searched for. For example, a set of fitness tests can be designed, 
implemented and added to the system to test for one type of protocol functionality. This can 
then be redesigned to deal with the needs of a different communication type. Therefore, the 
next stage is to examine how to design the tests for one simple communication type: reliable 
point-to-point communication. 
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Chapter 5 A First Experiment: Reliable Point-to-Point Communication 
 
5.1 Introduction 
 
The simplest form of communication that can take place using the JavaGroups toolkit is 
point-to-point communication. That is, an individual process communicates directly with 
another individual by sending and receiving messages. In this context it is possible to create a 
protocol stack that provides reliable communication, i.e. no messages are lost and the receiver 
is guaranteed to receive all of the messages sent. The main goal of this first experiment is to 
successfully generate a protocol for this straightforward task that can be easily created by a 
human designer, assessing the previously described framework. The design, implementation 
and testing of a genetic programming system to perform this task is presented in this chapter. 
 
 
5.2 Design of the Genetic Program 
 
5.2.1 Introduction 
 
The design of the genetic program follows the description in chapter 4. The two main parts 
are for creating stacks and for measuring the fitness of the stack. The method for generating 
stacks follows closely the description given previously. The important refinement is the 
choice of the terminal set. The fitness test for this case is an extended mechanism of the basic 
test harness to cope with point-to-point communication and provides a fitness measure of a 
stack�s ability to provide reliable unicast. The following two sections describe the design of 
these two main elements of the system 
 
 
5.2.2 Generation of Stacks 
 
The most important design decision in the creation of the genetic program to generate and 
evolve the protocol stacks is in the choice of the terminal set. The set must contain at least the 
layers that are required to generate a protocol for reliable unicast communication; however, 
the more layers that are introduced will affect the performance of the GP. Extra layers do 
provide the possibility of different implementations, but the GP will take longer to find a 
solution because the search space is increased and there is the increased probability that a 
solution may not be found. The following is the set chosen: 
 

�� {UDP, NAKACK, MNAK, UNICAST, GMS, FLUSH} 
 
UDP is included because a transport layer is needed; without it no transmission would be 
possible. The three types of reliability layer are included; NAKACK, UNICAST and MNAK 
provide methods for ensuring that the messages are not lost. GMS and FLUSH are included 
because they provide mechanisms for the control of groups (point to point can be considered 
as a special case of the group communication model). The remaining layers that deal with 
extended group control features and virtual synchrony properties are excluded because they 
are not needed for point-to-point transmission and will only introduce unwanted protocol 
overhead. 
 
The remaining genetic programming parameters are chosen as follows: 

�� Function set {:}. Simply holds the function for stacking layers on top of each other 
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�� Tree grow method � Grow. Grow provides the method for creating trees of different 
depths instead of all at same depth; this is suitable, because the GP must examine 
different lengths of stacks (not all the same).  

�� Crossover probability � 70%, Mutation probability �30%. A higher probability is 
chosen for crossover than mutation because evolution by crossover is more desired as 
it retains the properties of fit individuals as opposed to the random introduction of 
new elements. 

 
5.2.3 Fitness Function and Tests 
 
The key design decision in the design of the fitness function lies in the measure of what is a 
fit stack. The program is searching for a stack that reliably transmits messages from one 
process to another; therefore, a stack that is semantically correct and can transmit and receive 
50 messages under a normal loss less environment and also 50 messages over an environment 
that drops packets. The following is the standardised fitness measure of the stack, chosen for 
use by the fitness function. 
 

�� The fitness lies in the range of 0 to 100. If a stack transmits and receives 100 
messages it has a fitness of 0. If it receives 0 then it has a fitness of 100. 

 
This is as simple a measure as possible, so not to overly intricate the design of this 
experiment. Possible other tests include a measure of the performance of the stack in terms of 
delay and throughput. However, due to this being an initial experiment these are not included 
so that results are not affected by these extra parameters, ensuring that GP can create a 
solution. However, these properties are included in the extended experiment described in the 
next chapter. 
 
 
In order for the fitness measure to be applied to each of the generated population a point-to-
point application must be generated. Figure 5.1 is the complete design of the test harness for 
unicast communication. The core system of a genetic algorithm and protocol server described 
in chapter 4 is extended by the addition of a sending server and a receiving server.  
 
 
The ProtocolImpl has two methods for use in this experiment: 

�� PtTest (String props) � Method for controlling a send of 50 messages from one point 
to a receiver in a normal environment. 

�� DiscardTest (String props) - Method for controlling a send of 50 messages from one 
point to a receiver in a lossy environment. 

 
The creation of a lossy environment is produced using the insertion of the DISCARD layer 
into the protocol stack. It simply has the property of randomly dropping messages by not 
passing them to the next layer. It must occur above the UDP layer, otherwise no messages 
will be dropped. Therefore, in the discard test the property string is parsed and �UDP:� is 
replaced by �UDP: DISCARD�. 
 
 
Using the methods and RMI structure described previously, the testing of one stack that is 
repeated for all members of the population is carried out using the following steps: 
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1. Fitness function called for the individual stack in the genetic program. 
2. Fitness function calls the ProtocolImpl method PtTest() passing the generated 

property string as a parameter. 
3. PtTest() remotely calls the Receive() process of the ReceiveImpl object passing the 

property string as the argument. 
4. The Receive() method creates a JChannel using the stack and then connects to it.  
5. The Receive() method remotely calls the Send() process of the SendingImpl object 

and then blocks waiting to receive messages on the channel. 
6. The Send() method creates a JChannel and connects to the same group as the receiver, 

before sending 50 messages to the receiving process. 
7. The receive() method counts the number of messages received and then return this 

value to the fitness function. 
8. If the value is greater than 20 (ie. It can send messages then the test in a lossy 

environment is carried out) 
9. The DiscardTest() of the ProtocolImpl object is remotely called by the fitness 

function. It carries out steps 3-8 with the changed protocol stack. The number of 
messages received is returned to the fitness function. 

10. The two returned values are used to create a fitness measure between 0 and 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Genetic Programming system for generating a reliable point-to-point protocol stack 
 
 
5.3 Results of the Experiment 
 
The system described in section 5.1 was implemented as a series of Java programs using the 
GPsys and JavaGroups methods; these are found in the supporting documentation.  
 
In order to test the system the four separate processes were run on two individual NT 
workstations, each with 128Mb of memory (to share the resources ensuring the program does 
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not crash). The genetic algorithm and sending server were initialised on one machine and the 
Protocol server and Receiving server were started on the other machine. 
 
Due to memory restrictions the maximum population size was 500 members (This was found 
by experimentation). The system was tested using a range of different population sizes and 
number of generations. The results from these tests are shown in table 5.1 
 
 
Population 
Size 

Number of  
Generations 

Generation 
completed 
in 

Result Time 
(min) 

Fitness 

10 3 3 UNICAST 3 100 
10 3 3 PING 4 100 
10 5 5 MNAK:UNICAST 1 100 
10 5 5 PING 8 100 
10 10 2 NAKACK:UDP:MNAK:PING 7 0 
10 10 10 NAKACK:PING 13 100 
50 3 3 NAKACK:UDP 55 15 
50 5 2 UDP:MNAK 40 0 
250 5 3 UDP:MNAK >120 0 
250 5 2 UDP:NAKACK:UNICAST:FLU

SH:GMS 
100 0 

250 5 5 UNICAST:NAKACK:UDP >120 13 
500 5 2 UDP:UNICAST:MNAK >120 0 
500 5 2 UDP:UNICAST >120 0 
 

Table 5.1 Testing results for reliable, unicast communication 
 
5.3 Analysis of Results 
 
The results in table 5.3 show the following: 
�� A range of different protocols all providing reliable unicast are generated by the genetic 

program. The same result is not always returned. 
�� The correct result is not always provided. A completely unfit solution is provided in the 

low population sizes. On two occasions a stack that sends, but not reliably is produced 
(fitness cases 15 and 13) 

�� The population size affects the performance of the GP. The tests using a population of ten 
members only provided a solution once. However, as the population size was increased to 
500 the probability of failure reduced. 

�� The number of iterations used did not have as great an effect on the result as the 
population size. Increasing the number of generations for a small population size did not 
affect the chance of a correct solution. The use of a larger population size provided a 
solution in an earlier generation. 

�� A large amount of time is needed to find a solution. To find a solution quickly a small 
population can be used, but the probability of finding a solution is low. 

�� Similar patterns occur in the results. It can be seen that the reliable layers are placed 
above UDP (e.g. UDP:MNAK, UDP:NAKACK, UDP:UNICAST).  

�� The less complex protocols e.g. UDP:UNICAST or UDP:MNAK are produced more 
often. However, the more complex (but still correct) solution of 



     42 
 

UDP:NAKACK:UNICAST:FLUSH:GMS is produced once. This is due to the large 
population size generating this stack early in the process, rather than it being evolved to. 

 
 
5.4 Conclusions 
 
The results from these experiments have identified that the domain of configurable protocols 
can be related to genetic programming. This has shown to be the case by generating stacks 
that allow reliable point-to-point communication from learning and evolving stacks.  
 
The results from the experiments using the genetic program have shown that different stacks 
are generated that provide the same solution. These need to be differentiated between; for 
example they will provide different quality of service features. The next chapter examines the 
use of QoS test to select between protocols. 
 
 
The use of a distributed solution provided a number of benefits. The creation of the sender 
and receiver application over a local network was easy to implement. The genetic program 
was spread over more than one workstation; therefore, improving performance and 
preventing crashes due to lack of resources. 
 
 
It can also be seen that the genetic program is not reliable; there is a probability that it will 
not provide a solution with zero fitness. The population size relates to this probability 
because a low population size means a high probability of failure. The GP is also time 
consuming; again this is dependent on the population size and generations. If they are 
decreased the time taken to find a solution reduces. There is therefore a balance between time 
and reliability. 
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Chapter 6 An advanced experiment: Reliable, Ordered Multicast communication 
 
6.1 Introduction 
 
The initial experiment showed in a simple case that genetic programming could provide a 
protocol stack to meet the requirements of a communication. However, JavaGroups provides 
much greater functionality than simple reliable point-to-point communication. It allows the 
ability for protocol stacks to provide reliable and ordered multicast communication.  
 
 
The exchange of single messages is not the best method for communication within a group of 
processes. A multicast message is more appropriate; this is a message that is sent by one 
process to all member processes of the group. Reliable multicast has the property that if a 
message is sent then every member is guaranteed to receive it. Ordered group multicast 
occurs when every member sees the sent messages in the same order. Reliable, ordered 
multicast must ensure that both these properties are met within group communication. 
 
 
This section describes the design of a genetic program to create possible protocol stacks to 
meet the properties of reliable, ordered multicast. This problem is more complex than the 
initial experiment; more protocol layers are considered and more tests are carried out on the 
stacks. However, the basic system architecture is still used and the design follows closely that 
of chapter 5. Having identified in the last section that QoS requirements should also be 
considered in the differentiation between fit stacks, the design of this type of test is also 
introduced.  
 
 
6.2 Design of the Genetic Program 
 
As described previously the most important decision in setting the parameters of the GP run 
is in the choice of the terminal set. This experiment considers a greater number of 
communication properties than reliable unicast, so the set is extended to provide layers to 
meet these new requirements. The chosen set is as follows: 
 

�� Terminal set {UDP, NAKACK, UNICAST, GMS, FLUSH, FD, FD_RAND, 
MACK, MNAK, PING, STABLE, VIEW_ENFORCER, TOTAL} 

 
The UDP layer is included as the transport layer, without which no message transmission can 
occur. The NAKACK, UNICAST, MACK & MNAK all provide reliability mechanisms, 
ensuring that lost messages are retransmitted. The inclusion of both multicast and standard 
acknowledgement layer types investigates if there is an advantage between these two types 
for group communication. GMS, PING, FLUSH, FD & FD_RAND provide the properties for 
controlling the elements within a group, ensuring that all members know about joins, leaves 
and crashes and can respond to them. Finally, the TOTAL layer is included to provide the 
total ordering of messages within a group. This is a sequencer-based method, however there 
are other algorithms that can be used to provide ordering layers but are not included in the 
JavaGroups implementation. 
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The remaining parameters of the GP run are identical to those of the previous experiment. 
This is because the method correctly and efficiently chose stacks to be presented to the tests 
and evolved them in a manner that provided a solution. These parameters are described as 
follows 
 

�� Function set {:} 
�� Crossover probability � 70% 
�� Mutation probability � 30% 
�� Grow method � GROW 

 
 
The design of the fitness measure is important in ensuring that the stack meets the 
requirements of the communication, but also allows for a preference between one stack and 
another depending on the service it provides. The choice of measures are described as 
follows: 
 

�� The stack�s ability to send and receive messages. 
�� The stack�s ability to send and receive messages reliably. 
�� The ability to deal with group changes. 
�� The ability to send and receive message in order. 
�� The performance of the stack in terms of throughput.  

 
 
The first measure takes into account that a stack that is able to send messages under a normal 
environment is fitter than one that cannot send any; if it does not meet any of the 
requirements it still provides layers that must be included. The second measures identifies 
that a stack is fitter if it provides reliable transmission of messages. The third measure 
identifies whether a stack has the properties to deal with members joining and leaving a 
group. A fitter stack is therefore, one that does not send to members that have left and sends 
to new members. The order measure ensures that a stack is fitter if all the members see the 
messages in the same order, providing they have been jumbled in some manner. Finally, a 
performance measure on the stack ensures that those stacks that provide a better quality of 
service are deemed fitter. 
 
 
The weighting of these measures is an important design decision. The weighting of fitness 
deals with identifying which of the measures is more important in selecting the protocol 
properties. For example, if reliability is measured between 0 and 100, while ordering between 
0 and 50; the ordering is weighted less therefore, is not as important.  
 
 
The overall standardised fitness of each stack is a measure between 0 and 400 with 0 
representing the fittest stack and four hundred a stack that meets none of the requirements. 
The most important needs of the protocol are that of reliability, ordering and group 
communication. These are therefore given higher weightings. QoS requirements are not 
deemed as important at this point, because the functionality requirements must be provided 
first before performance differentiates. However, the concluding section of this report 
examines why this may not always be the case. The splitting of the measure is given below. 
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�� Communication 0-50, Reliability, 0-100, Group communication 0-100, Ordering 0-
100, Quality of Service 0-50 

 
In order for a stack to be given a measure of this type, it must have five tests performed using 
it. The following section describes the architecture of the genetic programming for carrying 
out these tests. 
 
 
6.3 System Architecture 
 
As mentioned above, the architecture of the genetic programming system is similar to that 
presented in the previous chapter. It is based on a number of distributed servers and processes 
communicating using RMI to perform a set of tests on the stacks generated by a genetic 
algorithm. The difference lies in the servers that perform the tests for each of the stacks. 
Previously, there was one sending server for creating processes to send messages and another 
to create processes to receive messages.  
 
 
All of the tests involve groups of processes. This means that there must be a sender process to 
more than one receiver process. Figure 6.1 shows the layout of this new architecture. The 
Protocol server controls the creation of a set of 1 to n multicast servers (these provide the 
distribution of receivers) modelling a set of n group members, on which can be created a 
process for receiving multicast messages. Each of the group member objects communicates 
with the ProtocolImpl object by returning a value that measures the stack�s performance. Like 
in the previous experiment there is a single process for casting messages to the remainder of 
the group. There is no need for the sender to be controlled by the protocol server because it 
provides no fitness measure. Therefore, a sender process is simply started by the first 
receiving member remotely calling it to send to the set of members. 
 
 
Table 6.1 provides a description of the objects and methods related to the distributed genetic 
programming system described above. It outlines the elements that will be used for the five 
tests on each stack. Section 6.4 describes the design of each test and implementation in terms 
of these available methods. 
 
 
6.4 Protocol Tests 
 
For each of the five individual measures described previously, an individual test is carried out 
on the protocols to identify its fitness for that property. For example, there is a separate test 
measuring the ordering fitness of a stack from the test for its reliability property. This section 
describes the design of each of these tests and their implementation using the objects and 
methods described in section 6.3. The five tests are: a communication test, a reliable 
multicast test, a group test, an ordered multicast test and a quality of service test.  
 
6.4.1 Communication Test 
 
A fit stack is able to send and receive multicast messages in a perfect environment. To test 
this a sending process casts 25 messages to a group of two other members. The number of 
messages received by each member is counted and returned as a value between 0 and 50. 
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This is implemented using the following steps: 
 

�� The fitness function calls the MCastTest method from the ProtocolObj passing the 
stack it has generated as a parameter. 

�� The MCastTest method creates two threads, one for each receiving process. Each 
thread calls the member process of MulticastImpl objects on separate servers and 
waits for the value returned by that function. 

�� Both members connect to the same group name using channels constructed with the 
protocol stack passed as a parameter. The first member calls the TestSender method 
of SendingImpl object; both processes wait to receive messages. 

�� TestSender connects to the same group name with a channel of the same properties 
and then casts the messages to the channel. 

�� After the two have received all twenty-five or timed out, they return the number of 
messages received. 

�� These values flow back to the fitness function to give the measure between 0 and 50 
(0 implies all messages received).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1  Architecture of the Genetic programming system to create reliable, ordered multicast protocols 
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Object Name Method Description 
ProtocolImpl MCastTest Initiates the creation of a set of three group members by calling 

member() twice with a stack. Waits for the return of the number of 
messages received by both receivers under normal network conditions. 

 MCastDropTest Creates a set of three group members by calling discardmember() twice. 
Waits for the return of number of messages received under lossy network 
conditions. Also waits for the QoS measure of stack to be returned. 

 MCastGroupTest Creates a set of three members using groupmember(). Waits for the 
return of number of messages from both. Adds a new group member by 
calling groupmember(), then reinitiates cast of messages. Waits for the 
return from three processes of number of messages. Finally, disconnects 
the first member and reinitiates the send and then waits for two 
remaining to return.   

 McastOrderTest Creates a set of two members, one receiver (OrderMember()) that tests 
the order of messages and waits for the return of this measure 

MulticastImpl Member Creates a process that connects to the group with a channel constructed 
using the stack passed as a parameter. Waits to receive messages from 
the channel. When complete returns the number received. 

 DiscardMember Creates a process that connects to the group with a channel constructed 
using the stack passed as a parameter. Inserts the discard layer into the 
stack to simulate loss. Waits to receive messages from the channel. 
When complete returns the number received. Creates a timing thread and 
calculates the throughput; returns this measure. 

 GroupMember Same process as Member, however it does not close down after one 
sending set and uses RMI to pass the number of messages back to 
protocolimpl between each send. 

 OrderMember Creates a process that connects to the group using the stack passed as a 
parameter. Inserts the jumble layer to simulate out of order transmission. 
Receives messages and calculates a measure of the ordering received. 
Returns this measure. 

SendingImpl TestSender Constructs a process, connects a channel using the stack passed as a 
parameter and casts 25 messages before disconnecting 

 DiscardSender Same as TestSender, but inserts the discard layer into sending channel�s 
protocol. 

 GroupSender Same as TestSender, but does not close after one send. Waits for 
indication to send again. Contains two Boolean flags go1 & go2 that are 
changed by RMI calls. When changed the method sends again. 

 Change Simple method that alters the value of Boolean flags go1 & go2 when 
called. 

  
Table 6.1 Description of the methods used in the genetic programming system 

 
 
6.4.2 Reliability Test 
 
The reliability test assesses how well a stack provides loss-less transmission of messages to 
all members of a group in a non-perfect environment.  The tests are run on a local area 
network; therefore, the probability of packet loss is very low. This means that the dropping of 
messages must be created to simulate a lossy environment. As described in the experiment in 
chapter 5, the DISCARD layer provided by the JavaGroups toolkit is inserted above the 
transport layer of the protocol. This ensures that a random number of messages are removed 
from the stack before they reach the bottom layer.  
 
 
The structure of the test is identical to the communication test of 6.4.1. However, each group 
member inserts the DISCARD layer into the protocol being tested. One sender multicasts 25 
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messages to a group containing two more elements. Each receiver counts the number of 
messages it has received. These are totalled to provide a scaled rating between 0 and 100. If 
50 messages are received then the protocol provides fully reliable multicast communication. 
 
The implementation uses the following steps: 
 

�� The fitness function calls the MCastDropTest method from the ProtocolObj passing 
the stack it has generated as a parameter. 

�� The McastDropTest method creates two threads, one for each receiving process. Each 
thread calls the Discardmember process of MulticastImpl objects on separate servers 
and waits for the value returned by that function. 

�� Both Discardmembers connect to the same group name, but the protocol stack is 
parsed and the DISCARD layer is inserted above the UDP layer (This must be here, 
because test 1 was passed). The first Discardmember calls the TestDiscardSender 
method of SendingImpl object; both processes wait to receive messages. 

�� DiscardTestSender connects to the same group name, inserting the DISCARD layer in 
the channel stack and then casts 25 messages to the channel. 

�� After the two have received all twenty-five messages or timed out, they return the 
number of messages received. 

�� These values flow back to the fitness function to give the measure between 0 and 100 
(0 implies all messages received).  

 
 
6.4.3 Group Communication 
 
One of the properties that the stack must provide is that of being able to deal with the 
dynamics of a group of processes. It must correctly respond to new member joins as well as 
leaves. To assess this, the test is designed to simulate the changes that incur when a group 
communicates. 
 
 
The test initially creates a group of three members and multicasts 25 messages. The group is 
then changed to four members and the initial sender multicasts another 25 messages. Finally, 
one of the original receiving members is removed from the group and the sender multicasts 
25 messages.  
 
 
Each of the receivers counts the number of messages they correctly receive and these are 
totalled out of 175. The weighting requires a measure between 0 and 100; therefore, the count 
is scaled to lie within that range. 
 
 
This is implemented uses the same steps as test 1 but uses the McastGrouptTest, 
GroupMember and GroupSender methods in place of the standard methods. 
 
 
6.4.4 Ordering Test 
 
This test creates the measure of the fitness of a stack in providing ordering of messages 
between group members. That is, a fit stack ensures the receiver member sees the messages 
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in the same order that they were sent by another member. An unfit stack may partially order 
the messages or not deal with the order in any manner.  
 
 
The testing environment is within a local area network, therefore, the probability of messages 
being jumbled during transmission is low. There must be a method for creating out of order 
transmission. Two possible methods are available: 
 

�� A separate process that alters the order of messages during transmission. This could 
take the form of removing a message from the channel and then waiting a period of 
time before replacing it. 

�� A protocol layer can be created and inserted into the stack. The layer has the 
functionality of changing the order of the messages that go through it. That is, it has 
local state for storing messages and sending them later.  

 
There are two problems with the initial method. It is difficult to implement, because the 
process of placing messages on the channel must be altered in some way. Secondly, it is 
difficult to control because an extra process is running in the background and must be 
synchronised with the numerous other processes that deal with the channel communication. 
The protocol layer method is less complex to implement; JavaGroups provides general 
outlines of how new layers should be implemented so they fit easily into the stack 
architecture. There is no extra control structure needed; as shown with the DISCARD tests 
the layer is simply inserted into the protocol being tested. Due to these benefits the method of 
protocol module insertion was chosen. The design of this module is described in section 6.5. 
 
 
To test for ordering, a group of one sender and one receiver is created. The testing of the 
correct order in more than one receiver is desirable; however, ordering is an extremely time 
intensive operation, so one is chosen to keep the testing time at a minimum. If one receiver 
orders correctly then it is assumed that all members will do the same because each uses the 
same protocol. 
 
 
The sender casts a total of 25 messages each with a number indicating its position in the 
sequence. The receiver uses the following algorithm to measure the order. It examines if the 
message sequence number is one greater than the one it just received. If it is then the fitness 
is increased by one. This will total a score out of 25; however, the weighting requires it to be 
between 0 and 100, therefore, it is multiplied by four. 
 
 
The implementation carries out this test with the following steps: 

�� The fitness function calls the MCastOrderTest method from the ProtocolImpl Object 
passing the stack it has generated as a parameter. 

�� The MCastOrderTest method calls the Ordermember process of the MulticastImpl 
object on and waits for the value returned by that function. 

�� The Ordermember inserts the JUMBLE protocol to the top of the stack and then 
connects to the group using a channel with the updated protocol. It then calls the 
TestSender method 

�� TestSender connects to the same group name, inserting the JUMBLE layer in the 
channel stack and then casts 25 messages into the channel. 
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�� The receiver calculates the order fitness and returns this. 
�� The value flows back to the fitness function to give the measure between 0 and 100 (0 

implies all messages received in order).  
 
 
6.4.5 Quality of Service Test 
 
A number of different stacks may meet all of the functional requirements i.e. they provide 
reliable, ordered, group communication. However, some of these stacks can be determined as 
being fitter than the others. This measure depends on the performance of the stack in 
providing a certain quality of service.  
 
 
The quality of service test measures the throughput of each protocol stack. [Fluckiger, 1995] 
defines throughput to be the number of binary digits that the network is capable of accepting 
and delivering per unit time. In the case of these tests, it is the number of messages sent and 
received per unit time.  
 
 
To create the throughput test, a timing thread is initialised in parallel with one of the 
receiving processes. This thread is started after the first of the 25 messages is received and 
stopped after the last has arrived. The time the thread accumulates in this interval measures 
the throughput. However, a function is needed to turn this into a fitness value between 0 and 
25. The graph in figure 6.2 shows how to calculate this measure. If the throughput is equal to 
or lower than a given value (in this case the throughput of UDP i.e. the best throughput) then 
it is a given a value of 0. Otherwise the throughput is scaled to be between 0 and 25.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Graph representing the fitness measure for a given throughput value 
 
  
The implementation is carried out as part of the reliability test. It is therefore implemented 
within the discardmember method. This decision was taken to reduce the time of testing by 
placing two tests in parallel. One of the receiving members carries out the QoS test while it is 
performing the reliability test.  
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6.5 Design and Implementation of a micro-protocol 
 
In order to provide the test for ordering of messages, a protocol layer needed to be created to 
jumble the order of messages as they are transmitted through the stack. This section describes 
the design of a new protocol layer to perform this called JUMBLE. 
 
 
The initial design decision was whether to physically alter the messages or simulate the 
alteration by altering sequence numbers in the headers. JavaGroups adds separate sequence 
numbers for each layer of the stack e.g. the TOTAL layer has a different sequence number 
than the NAKACK layer, therefore, it is difficult to change the order if these layers aren�t in 
the protocol stack. Therefore, a decision to physically alter the messages was taken. 
 
 
A protocol layer has two basic methods that must be created: up and down. These specify the 
operations carried out on the message (e.g. add header, remove header) as it is passed up or 
down the stack.   
 
 
To re-order the messages only the up method needs to be created (The down method simply 
passes messages on with no processing), so that messages are jumbled before they are sent. In 
order to do this the layer contains an array of 10 messages. A random number of messages 
are placed in the array and not passed to the next layer when received. In their place one of 
the current members of the array is sent instead. However, there must be a dummy message 
in the array or the first change will have nothing to send. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

public class JUMBLE extends Protocol {

public Object[] saved = new Object[100]; // Array of stored messages

public void Up(Event evt) { //Method that deals with events passing up stack
Message msg;
Int pair1, pair2 ; //Pair1 holds the first value to start switching on

//Pair2 holds the next switch number
int pointer =0; //Pointer to next message to send
case Event.MSG: //If a message occurs do the following

Object temp_obj = evt.GetArg();

if ( temp_obj instanceof Message ) {
msg = (Message) temp_obj;
y--; //increase number of messages received
u++; //increase pointer to array position

saved[u]=temp_obj; //Store message in array
if (y==pair1)

return; //First switch so simply don’t pass

if (y==pair2){ //Pass a message in array instead
Message msg2 = (Message) saved[pointer];
msg.SetBuffer(msg2.GetBuffer());
msg.SetDest(msg2.GetDest());
msg.SetSrc(msg2.GetSrc());
msg.SetHeaders(msg2.GetHeaders());

}
pointer++;
pair=pair+5;

}
break;

}
PassUp(evt); // Pass up to the layer above us

}
}
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The JUMBLE.java code (part of which is displayed above) shows the implementation of this 
algorithm within the framework of a protocol layer. To test the layer, a standard send-receive 
application was used with UDP:JUMBLE as the stack. The messages were received out of 
order, identifying that it functioned correctly. 
 
 
6.6 Testing and Results 
 
To test the system it was run using three workstations. Therefore, the genetic algorithm 
process and one multicast server were started on one machine. The protocol server and one 
multicast server were initiated on another machine. Finally, the remaining multicast and 
sending server were placed on the last workstation. This provided an appropriate distributed 
basis for the testing of group communication. 
 
Due to the length of time for one test to be completed, the GP was run five times. In the first 
three runs, the test for ordering is not included as a fitness measure; therefore, it is a test for 
reliable group multicast. The last two represent the complete solution of reliable, ordered 
multicast. The results from these five runs can be found in table 6.2 and 6.3. 
 
 

Test 
Number 

Population 
size 

Result Generations Fitness 

1 100 UDP:NAKACK:PING:FLUSH 2 71 
2 200 UDP:PING:MNAK:NAKACK:FL

USH:GMS 
3 35 

3 300 UDP:PING:FD:MNAK:FLUSH:G
MS 

3 0 

 
Table 6.2 Results of GP runs for reliable multicast protocol generation 

 
  

Test 
Number 

Population 
size 

Result Generations Fitness 

1 300 FD:UDP:MACK:PING:NAKACK:FLU
SH:GMS 

3 83 

2 500 UDP:PING:FD:NAKACK:FLUSH:GM
S:TOTAL 

4 0 

 
Table 6.3 Results of GP runs for reliable, ordered multicast protocol generation 

 
 
6.7 Analysis of Results 
 
There are a number of points that can be identified about the results: 
• The tests show that the genetic program can be successful. The third case in table 6.2 and 

the second case in table 6.3 show that the protocol stacks for reliable multicast and 
reliable, ordered multicast have been effectively generated. 

• The number of generations chosen to iterate through is low. This is because the time 
taken to process each generation is large (although it depends on population size). For 
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example to test one stack using all five tests takes approximately 15 minutes. Therefore, 
the increase in the number of generations makes the time to complete infeasible. 

 
• The solution provided is not always zero. This is explained in the case of each of the tests 

by table 6.4: 
 
Test No. Explanation 

1 There is no GMS layer to control group changes. Therefore, the fitness reflects the stack�s 
inability to recognise new members and discard old ones. It may also perform poorly in terms of 
quality of service. 
 

2 All layers for functionality are included, however, there is repeated functionality for reliability. 
This means that the quality of service requirement has not been met completely. 

3 The fitness is zero and therefore provides a stack that meets both the performance measures as 
well as the functional requirements. 

4 TOTAL is a complex layer to introduce, because it depends on a number of layers below it 
(PING:FD:FLUSH:GMS). Therefore, it is difficult for the genetic program to find the solution. 
In this case, TOTAL has not been introduced correctly and the fitness is high because it has 
failed the ordering tests, as well as some of the others. 

5 Extending the population size has ensured that more evolutions have found the correct position 
for the total layer and introduced it in the correct place. Providing the required functionality. 

 
Table 6.4 Explanation of fitness value returned for the five tests. Tests 1-3 are for reliable multicast. Tests 4 and 

5 include an ordering test 
 

• The time to run a GP is extensive, although no exact measures were taken. The worst case 
(test 5) was estimated to take over 8 hours, while the best case (test 1) took around 2 
hours. 

• The testing quickly consumed system resources; the use of a population size of 300 was 
chosen because the system ran out of memory in the initial generations for larger values 
than 500. 

• The extending of the problem to include more functional and non-functional requirements 
shows that the probability of finding a perfect solution is lowered. In this case, the GP 
only found the solution two times out of five runs. 

• Test 3 shows that the introduction of a quality of service measure ensures that protocols 
can be chosen that do not have redundant processing. For example, the repeated layer 
types of result 2 are not found. 

 
 
6.8 Conclusions 
 
The created system has shown that it is possible to generate a protocol stack that meets the 
needs of reliable, ordered communication automatically. However, the GP problems that 
were identified in the previous experiment resurface here. The complex layer structures are 
more difficult to evolve to and, therefore, reliability is a problem. The time taken to perform 
the tests is longer than the previous experiment and more system resources are used. 
 
This test has also identified the important introduction of quality of service tests. The GP 
provides a number of stacks that meet the functional requirements, but the introduction of 
throughput measures ensures that stacks that perform better are selected. 
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Chapter 7 Conclusions 
 
7.1 Overview of Work  
 
The initial goal of the project was to investigate how to apply genetic programming to the 
domain of protocol configuration and to identify the benefits it may bring in this area. 
Conclusions from the project can be drawn from both the design of a genetic program for 
protocol configuration and the analysis of the results obtained from the runs of this genetic 
program. 
 
 
A genetic program was designed to provide the protocol stacks for JavaGroups applications. 
This genetic program was tested to identify if it was possible to automatically generate a 
protocol for reliable unicast communication. It was then further explored by attempting to 
provide reliable, ordered multicast communication. This needed a more complex stack 
chosen from a greater number of layers. The testing of the genetic program showed that it 
was successful in generating the stacks for both cases. 
 
 
7.2 Major contributions 
 
The project has identified what it means to represent a protocol stack as a structure for GP to 
evolve. The use of linear stacks of individual building blocks provides a basis for the 
evolution operators to identify and evolve fit portions of the stack. The experiments have 
identified how genetic operators should affect a protocol stack. Crossover and mutation either 
swap or change linear segments of the stack�s clearly defined building blocks to evolve. 
 
 
The important issue of what is the fitness of a stack been identified. The first step identified 
that a protocol stack is fit if it meets its functional requirements. That is, the fitness measure 
is a range of values for each of the requirements. Each of these requirements is tested by an 
individual test and an overall value provides the fitness measure. 
 
 
However, the results from the initial experiment showed that the genetic program provides a 
number of different protocol stacks that meet the functional requirements and there may be a 
need for the user to select the fittest from this subset. Their new requirements are the non-
functional requirements that are met by the stack. That is, which stack meets their quality of 
service demands? The extended experiment added tests and a fitness measure that identified 
the fitness of a stack in terms of the QoS parameters of throughput and delay. 
 
 
The use of a suite of five tests in the extended experiment identified the need for weighting of 
measures for each requirement. Stacks that score highly for reliability and ordering must be 
considered more important than stacks that score highly for throughput and reliability, 
because the winners are the basis of future generations and these are the properties that must 
be passed to provide a result. However, the issue of weighting to meet changing requirements 
is considered in the further work section. 
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7.3 Other notable contributions 
 
An original aim of the project was to identify how reliable and expensive GP was in the area 
of protocol generation. These are two of the main problems associated with the technique and 
both were significant features in the testing of the system. 
 
 
The results from both experiments showed that genetic programming is a time intensive task. 
In the case of the simple generation of a reliable point-to-point protocol the fastest time to 
generate a solution was only a few minutes. However, the tests also provided a solution that 
took 2 hours. This problem is shown more clearly by the extended experiment for reliable, 
ordered multicast communication; the time for the five tests ranged between 2 hours and over 
10 hours.    
 
 
Another feature of the genetic program is that it is resource intensive. Each test creates a 
number of processes distributed between two or three workstations with a high amount of 
system RAM. This limits the system to be used by only high-end systems, not low 
performance terminals such as mobile devices. 
 
 
[Koza, 1992] identifies that GP is not a completely reliable method for finding the solution to 
a problem. It is possible that the solution given is not correct, however, it will be the closest 
to the solution from the generated set. This is also seen to be the case within the two 
experiments carried out. Solutions were given that did not provide a zero fitness measure (i.e. 
all fitness requirements were met), but did indicate fitness in some of the measures. 
 
 
The problem of reliability in genetic programming is only dependant on the situation it is 
used in. If it is used to generate stacks for a programmer attempting to implement a group 
communication system in JavaGroups, then reliability is not a serious factor as the GP can be 
run several times if necessary. However, the GP could be running in an adapting environment 
that generates stacks during run time to be used by an application when the needs of its 
communication change. The GP must provide the correct solution in this case, or the user�s 
requirements will not be met. For these situations time is also a factor. In the first case time is 
not critical, however, in the second 10 hours to generate a solution is infeasible. 
 
 
The results from the two experiments showed that the choice of population size and the 
number of generations is an important factor. If the initial population of stacks does not 
contain the properties that will be needed, then the probability of a correct solution being 
reached is low. 
 
 
The results of the two experiments also identified a trend between the time taken and the 
reliability of a solution being generated. If a small population and number of generations 
were selected then the time taken to provide a solution was shorter than for a greater 
population size and number of generations. However, the probability of the correct solution 
being generated in the later case was much higher. The trade off between time and reliability 
is useful in situations where a solution is needed quickly without all of the properties. 
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Finally, the experiments have shown that using the appropriate fitness tests the designed 
genetic programs will generate the correct stack for the communication type. GP also has the 
advantage of generating different stacks that may have not been thought of by a human 
designer, which may in turn provide better performance. For example, the generation of 
UDP:MNAK for point to point communication; this uses an alternative acknowledgement 
layer as opposed to the standard NAKACK layer. GP does suffer from the problems of 
reliability and resource use that hinder it in terms of a real time solution provider.   
 
 
7.4 Further Work 
 
7.4.1 Future testing of current work 
 
Due to limitation of time within the project the second system only has five results generated. 
This is not a large enough measure to completely identify all trends and properties of the 
genetic program. Therefore, the system should ideally be run another say 20 times with a 
range of initial population sizes (because of the range of modules available the initial size 
will have a greater effect) from 10 to 1000.  
 
 
[Koza, 1996] identified that in four application areas genetic programming out-performed a 
human designer. Further testing of the system, therefore could identify if this is the case for 
protocol design. The following could take place: 
 
• Ask a human designer to create a stack for a given communication type and then test it 

for protocol performance properties.  
• Perform the same tests on a stack generated by the genetic programming system and then 

compare the results to see which performs better. 
 
This should be repeated for a range of communication stacks to ensure that the results are 
realistic. 
 
 
7.4.2 Performance improvement 
 
The performance of the individual tests identified that the protocols for group communication 
in JavaGroups are slow. [Hayden, 1998] identifies that Ensemble�s protocol layers provide a 
high performance. Therefore, a possible measure to increase the speed on the genetic 
program may be in changing the performance of the building blocks and communication 
channel. To do this the Genetic program could be re-implemented in another toolkit e.g. 
Ensemble and the same experiments performed. The timing of the tests would identify 
whether this measure has any effect on the performance of the genetic program. 
 
 
An alternative method for improving performance is to run tests in parallel. Therefore, the 
system could be altered to run on a specialised parallel architecture that allows each of the 
five tests for one stack to be run together or the testing of each stack to be carried out in 
parallel. 
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7.4.3 User specification of the Genetic Program�s output 
 
The main goal of genetic programming is to provide a system that allows the user to specify 
what they require and then have the system return the solution for this. The system in its 
present state does not do this. It has been designed to provide one solution in the case of 
reliable unicast and reliable, ordered multicast. Therefore, further work in the project area 
must investigate the possibility of providing solutions for a range of different communication 
types using one genetic programming system that takes as input the functional and non-
functional requirements. This could be done by: 
• Creating a method for a user to specify what they require from a protocol. This may take 

the form of a formal language description of the properties to include. 
• Changing the fitness weightings to simulate the needs of the user. That is, the process 

must take the requirements and map them onto the weightings. For example, if a high 
throughput and low reliability multicast protocol was needed. Then the reliability 
weighting would be set of zero and the quality of service rating would be given the 
highest weighting. 

• The changing of the weight ensures the performing from the test suite of only the tests 
that meet the requirements. For example, only running the tests for reliability and quality 
of service.  

 
 
7.4.4 Dynamic adaptation 
 
The area of dynamic protocols has identified the need to adapt at run time to the changing 
needs of a communication. That is, generate a new protocol stack or change the current one 
so that it still meets the requirements within the changed environment. The designed genetic 
program is static and run off line to meet the needs of an individual communication type. 
Having investigated the mapping of a range of specifications into a system. The next step 
would be to investigate if it feasible to apply this in a real time communication. The 
following would need to be performed: 
• Design how to obtain the current environment conditions and requirements of the 

communication in real time. Once obtained, map these specifications into the genetic 
program to generate the adapted stack. 

• The investigation of using only the current stack to populate the GP. It will be close to the 
solution and may reduce search time; this is due to only a small number of evolutions 
from this stack to the required stack.  

• Creating increased performance of the genetic program. In its present state, it is not 
feasible to perform in real time. Therefore, an improved implementation is needed to deal 
with real time requirements. 

 
 

7.5 Concluding remarks 
 
This dissertation has identified that genetic programming has provided a successful technique 
for automatically generating communication protocols. The important issues of genetic 
programming have been fitted to the domain of configurable protocol stacks and protocols for 
determined communication types have been generated. However, the main problems of time 
and reliability within GP have been identified. Therefore, future investigation into this 
domain must provide suitable solutions to overcome these and make the method useful for 
real world applications. 



     58 
 

Chapter 8 References 
 
 
[Ban, 1999] B. Bann. JavaGroups User's Guide. 
 http://www.cs.cornell.edu/Info/Projects/JavaGroupsNew/usergu

ide/html/user/index.html 
 
[Banzhaf et al, 1997]  W. Banzhaf, P. Nordin, R. E. Keller & F. D. Francome. Genetic 

Programming: An Introduction � On the automatic evolution of 
computer programs and its applications. Morgan Kaufman. 
1997. 

 
[Birman et al, 1994]  K. Birman & R. Van Renesse. Reliable Distributed Computing 

with the Isis Toolkit. IEEE Computer Society Press. 1994 
 
[Colouris et al, 1994]  G. Colouris, J. Dollimore & T. Kindberg. Distributed Systems, 

 Concepts and Design. Addison Wesley. 1994. 
 
[Cornell, 1999] Cornell University. JavaGroups - A Reliable Multicast 

Communication Toolkit for Java. 
 http://www.cs.cornell.edu/Info/Projects/JavaGroupsNew/ 
 
[Crepeau, 1995] R. Crepeau. Genetic evolution of machine language software. In 

Proceedings of the workshop on Genetic Programming: From 
theory to real world applications. J. Rosco editor. pp121-134. 
1995. 

 
[Darwin, 1859] C. Darwin. On the Origin of Species by Means of Natural 

Selection or the Preservation of Favoured Races in the Struggle 
for Life. Murray, London, UK. 1859. 

 
[Fraser, 1994] A. Fraser. GPC++ - Genetic Programming C++ Class Library. 
  http://www.emk.e-technik.tu-darmstadt.de/~thomasw/gp.html 
 
[GrefenStette & Baker,1989] J. GrefenStette and J. Baker. How genetic algorithms work: A 

critical look at implicit parallelism. In Proc. 3rd International  
Conference on Genetic Algorithms. pp20-27. 1989 

 
[Hayden, 1998]  Hayden, M. The Ensemble system. Cornel University technical 

report. January, 1998.  
 
[Hayton et al, 1999] R. Hayton, A. Herbert & D. Donaldson. FlexiNet � A Flexible 

component oriented middleware system. In Advances in 
Distributed Systems, Advanced Distributed Computing: From 
Algorithms to Systems. Lecture Notes in Computer Science, 
Vol. 1752. Pp 497- end. 1999  

 
[Holland, 1975] J. H. Holland. Adaptation in natural and artificial systems. 

Cambridge, MA: MIT Press. 1975.  
 



     59 
 

[Hutchinson, 1991] N. Hutchinson. The X-Kernel: An architecture for 
implementing network protocols. IEEE transactions of software 
engineering, 17(1), pp64-76. January, 1991. 

 
[Koza, 1992a]  J. Koza. Genetic Programming: On the programming of 

computer by means of natural selection. Cambridge, MA: MIT 
Press. 1992. 

 
[Koza, 1992b] J. Koza.  A genetic approach to the truck backer upper problem 

and the inter-twined spiral problem. In Proceedings of IJCNN 
International Joint Conference on Neural Networks.Volume IV. 
pp310-318. IEEE Press. 1992. 

 
[Koza et al, 1996a] J. Koza, F. Bennett III, D. Andre & M. Keane. Automated 

WYWIWYG design of both the topology and component values 
of electrical circuits using genetic programming. In Genetic 
Programming: Proc. of first annual conference. Editors J. Koza 
et al.  pp123-131. 1996. 

 
[Koza et al, 1996b] J. Koza, F. Bennett III, D. Andre & M. Keane. Four problems 

for which a computer program evolved by genetic programming 
is competitive with human performance. Proceedings of the 
1996 IEEE International Conference on Evolutionary 
Computation pp 1-10. 1996 

  
[Kruthoff, 1999] A. Kruthoff. Jini and Software bus systems. IFI, University of 

Zurich. 1999. 
 
[Mitchell, 1996]  T. Mitchell. Machine Learning. McGraw Hill. 1996. 
 
[O�Malley & Peterson, 1992] S.W. O�Malley & L. L. Peterson. A dynamic network 

architecture . ACM transactions on Computer Systems. 10(2), 
pp110-143. May, 1992. 

 
[O� Reilly & Oppacher,1994] U. O'Reilly & F. Oppacher: Program Search with a 

Hierarchical Variable Length Representation: Genetic 
Programming, Simulated Annealing and Hill Climbing. In the 
Proc. Third Conference on Parallel Problem Solving from 
Nature. pp 397-406. 1994 

 
[Plagemann, 1994] Plagemann, T., Gotti, A., Plattner, B. CoRA - A Heuristic for 

Protocol Configuration and Resource Allocation, IFIP Fourth 
International Wokshop on Protocols for High-Speed Networks, 
Vancouver, Canada, August 1994, pp. 85-102 

 
[Plagemann, 1996] Plagemann, T. Protocol Configuration - A Flexible and 

Efficient Approach for QoS Provision, (short paper) Fourth 
International IFIP Workshop on Quality of Service - IWQoS'96, 
Paris France, March 1996, pp. 235-238 

 



     60 
 

[Plagemann, 1999] Plagemann, T. A Framework for Dynamic Protocol 
Configuration, in European Transactions on 
Telecommunications (ETT), Vol. 10, No. 3, May June 99, 
Special Isssue on ARCHITECTURES, PROTOCOLS AND 
QUALITY OF SERVICE FOR THE INTERNET OF THE 
FUTURE, pp. 263-273 

 
 
[Punch & Zongker, 1998] B. Punch & D. Zongker. Lil-GP genetic programming system. 

http://garage.cps.msu.edu/software/lil-gp/lilgp-index.html 
 
[Quereshi, 1998] A. Quereshi. GPsys. 
  http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html 
 
[Ritchie, 1984] Ritchie. A Stream Input-Output System. AT&T Bell  

laboratories Technical journal 63 no8 Part 2 pp1897-1910. 
October 1984. 

 
[Softwired, 1999]  Softwired Inc. iBus � The Java multicast object bus. 1998. 

http://www.softwired-inc.com/ibus 
 
[Sun, 1999]  Sun Microsystems. Java Core Reflection.  
  http://java.sun.com/products/jdk/1.1/docs/guide/reflection/ 
 
[Teller & Veloso, 1995] A. Teller and M. Veloso. PADO: Learning tree structured 

algorithms for orchestration into an object recognition system. 
Technical Report CMU-CS-95-101. Department of Computer 
Science. Carnegie Mellon University. Pittsburgh. 1995 

 
[Teller, 1996]  A. Teller. Evolving Parameters: The co-evolution of intelligent 

recombination operators. In Advances Genetic Programming 2. 
Editors P. Angeline et al. pp 45-68. Cambridge, MA: MIT 
Press, 1996. 

 
[Teller & Veloso, 1996] A. Teller and M. Veloso. PADO: A new learning architecture  
    for object recognition. In Symbolic Visual Learning. K. Ikeuchi 
    & M. Veloso editors. pp 81-116. 1996. 
 
[Van Renesse et al, 1996] R. Van Renesse, K. Birman & S. Maffeis. Horus: a flexible 

group communication system. Communications of the ACM. 
April 1996.  

 
  


