

Overcoming Middleware Heterogeneity
in Mobile Computing Applications

Paul Grace
B.Sc. Hons. University of York, 1999

M.Sc. Lancaster University, 2000

Computing Department
Lancaster University

A thesis submitted for the degree of Doctor of
Philosophy

March 2004

 2

Overcoming Middleware Heterogeneity in Mobile
Computing Applications

Paul Grace

B.Sc. Hons. University of York, 1999
M.Sc. Lancaster University, 2000

Computing Department
 Lancaster University

A thesis submitted for the degree of Doctor of Philosophy

 March 2004

Abstract

Recent technical advances have fuelled the popularity of mobile computing. Mobile

devices such as smart phones and personal digital assistants are becoming more

commonly used due to the reduction in their size and increase of computational

power. In addition, wireless network hotspots (in airports, hotels and commercial

outlets) are now beginning to populate the environment. With these advances, new

types of mobile applications are becoming available to support users on the move. The

mobile environment presents a number of challenges to application developers

(including frequent network disconnection and variable bandwidth); therefore mobile

middleware platforms have emerged to simplify the development process of

distributed mobile applications. However, the range of platforms now available

introduces the new problem of middleware heterogeneity, i.e., applications developed

upon different types of middleware do not interoperate with one another. Hence, the

next generation of mobile computing applications must be developed independently of

specific middleware implementation to allow them to continue interoperating in new

locations.

This thesis investigates the problem of middleware heterogeneity in the mobile

computing environment. The approach taken to solve this problem involves the

development of a component-based, higher-level middleware framework (named

ReMMoC) that can dynamically adapt its underlying behaviour between different

concrete middleware implementations e.g. in one location CORBA is utilised,

whereas at the next location SOAP is used. Furthermore, this framework promotes a

higher-level programming abstraction based upon the abstract services concepts of the

 3

Web Services Architecture. The ReMMoC framework is evaluated to ensure that

middleware transparency is achieved and that applications can be developed that will

operate in unknown locations across unpredictable middleware implementation.

Inevitably, the ability to overcome heterogeneity comes at the cost of an incurred

performance overhead; hence, this thesis also evaluates the impact of this overhead in

the domain of mobile computing.

 4

Declaration

The work reported in this thesis has not been previously submitted for a degree, in this

or any form.

The design and implementation of the ReMMoC framework was carried out by

myself. The framework was implemented upon the OpenCOM component model,

which was originally developed at Lancaster; I ported this platform to Windows CE,

and enhanced it in order for it to be usable within the project. Finally, the

implementation of the service discovery personalities, and the SOAP and IIOP

personalities was performed by myself. For all but SOAP, this involved porting open

source material to OpenCOM components. However, the implementation of the

publish-subscribe binding personality was developed by Thirunavukkarasu Sivaharan.

 5

Acknowledgements

The author wishes to thank the many people who have helped in the production of this

thesis. Firstly, my supervisor Professor Gordon Blair, who first encouraged my

interest in distributed systems research, and who has provided advice, encouragement

and insightful criticism throughout my PhD and in the preparation of this thesis.

Secondly, the members of the Distributed Multimedia Research Group and in

particular the Next Generation Middleware Group, who during my time at Lancaster

have contributed in numerous ways, offering informed debate and a friendly work

environment. Special thanks must go to Georgios Samartzidis, Thirunavukkarasu

Sivaharan and Michael Clarke, for their input to the development of software for this

thesis. And additional thanks to Geoff Coulson, Fabio Costa, Hector Duran-Limon, Jo

Ueyama, Lee Johnstone, Akbar Joolia, Kevin Lee, Paul Okanda, Nikos Parlavantzas,

Katia Saikoski, Ben Bappu, Wei Cai, Nelly Bencomo, Maomao Wu and Wai Kit

Yeung for thought-provoking discussions and helpful advice.

Finally, I would like to offer my thanks to Bell Labs UK for sponsoring me for the

duration of my Ph.D., and thanks in particular to Sam Samuel and Jerry Horton, who

helped shape this research and made my time in Swindon a brief but enjoyable

experience.

 6

Table of Contents

CHAPTER 1 INTRODUCTION.…………………………………………….13

1.1 OVERVIEW...13
1.2 MOBILE COMPUTING..14

1.2.1 Overview...14
1.2.2 Mobile applications...14
1.2.3 Mobile Devices..15
1.2.4 Wireless networks..17
1.2.5 The Challenges of Mobile Computing..18

1.3 MOBILE COMPUTING MIDDLEWARE ...19
1.3.1 The Importance of Middleware..19
1.3.2 Styles of Middleware ...20
1.3.3 A New Problem ...21

1.4 ILLUSTRATING MIDDLEWARE HETEROGENEITY ..22
1.5 AIMS ...23
1.6 STRUCTURE OF THE THESIS...24

CHAPTER 2 MIDDLEWARE FOR MOBILE COMPUTING …………..26

2.1 INTRODUCTION ..26
2.2 ESTABLISHED MIDDLEWARE ..26

2.2.1 Overview...26
2.2.2 Common Object Request Broker Architecture (CORBA)....................27
2.2.3 Java RMI Solutions ...31
2.2.4 Simple Object Access Protocol (SOAP) ..33
2.2.5 Analysis of Enhancements to Established Middleware.......................34

2.3 ASYNCHRONOUS MIDDLEWARE ...35
2.3.1 Overview...35
2.3.2 Asynchronous RPC – “An Early Solution”..36
2.3.3 Tuple Spaces ...37
2.3.4 Publish-Subscribe Middleware ..40
2.3.5 Analysis of Asynchronous Middleware ..45

2.4 DATA SHARING MIDDLEWARE ...46
2.4.1 Overview...46
2.4.2 Bayou..46
2.4.3 AdHocFS...47
2.4.4 XMIDDLE...48
2.4.5 Analysis of Data Sharing Middleware ...48

2.5 MOBILE AGENTS..49
2.5.1 Overview...49
2.5.2 Java-based Mobile Agents...49
2.5.3 Tacoma and Tacoma Lite ..50
2.5.4 Analysis of Mobile Agents ...51

2.6 SERVICE DISCOVERY ...52
2.6.1 Overview...52
2.6.2 Jini ..53
2.6.3 Service Location Protocol (SLP) ...54
2.6.4 Universal Plug and Play (UPnP)...55
2.6.5 Salutation..56

 7

2.6.6 Service Discovery Protocol (SDP)...56
2.6.7 MARE ...57
2.6.8 The Java Enhanced Service Architecture (JESA)58
2.6.9 Centaurus..58
2.6.10 Analysis of Discovery Protocols ..59

2.7 ADAPTIVE MIDDLEWARE ...60
2.7.1 Overview...60
2.7.2 Reflective Middleware ...60
2.7.3 Policy based Adaptive Middleware..67
2.7.4 Analysis of Adaptive Middleware...71

2.8 CONCLUSIONS..72

CHAPTER 3 TACKLING MIDDLEWARE HETEROGENEITY………..74

3.1 INTRODUCTION ..74
3.2 WEB SERVICES ARCHITECTURE..74

3.2.1 Overview...74
3.2.2 Analysis of Web Services ...77

3.3 WEB SERVICES INVOCATION FRAMEWORK (WSIF).....................................78
3.3.1 Overview...78
3.3.2 Analysis of WSIF ...80

3.4 MODEL DRIVEN ARCHITECTURE ..82
3.4.1 Overview...82
3.4.2 Analysis of Model Driven Architecture ..83

3.5 MIDDLEWARE BRIDGES..83
3.5.1 Overview...83
3.5.2 Unified Component Meta Model Framework (UNIFrame)84
3.5.3 Analysis of Middleware Bridges ..85

3.6 LOGICAL MOBILITY ...86
3.6.1 Overview...86
3.6.2 SATIN ...86
3.6.3 Jini ..87
3.6.4 Analysis of Logical Mobility ..87

3.7 UNIVERSAL INTEROPERABLE CORE ..88
3.7.1 Overview...88
3.7.2 Analysis of Universal Interoperable Core..89

3.8 CONCLUSIONS..90

CHAPTER 4 TECHNOLOGIES FOR BUILDING A REFLECTIVE
FRAMEWORK ……………………………………………………………………. 91

4.1 INTRODUCTION ..91
4.2 COMPONENTS IN REMMOC ...93

4.2.1 Overview of Components...93
4.2.2 Investigation of Available Component Models93
4.2.3 Background on OpenCOM ..95

4.3 COMPONENT FRAMEWORKS ...97
4.3.1 Overview of Component Frameworks..97
4.3.2 Existing Component framework Models ..98
4.3.3 ReMMoC’s Component Framework Model..99

4.4 REFLECTIVE MIDDLEWARE FOR MOBILE COMPUTING (REMMOC)............ 105
4.4.1 Requirements for the ReMMoC Middleware Framework 105

 8

4.4.2 The Reflective Framework... 106
4.5 THE SERVICE DISCOVERY FRAMEWORK ... 108

4.5.1 Overview... 108
4.5.2 The “Cycle and See” Philosophy... 109
4.5.3 The Architecture of the Service Discovery Framework 110
4.5.4 Service Lookup Personalities... 111
4.5.5 Mirroring the Network Environment.. 115
4.5.6 New Discovery Protocols .. 120

4.6 THE BINDING FRAMEWORK .. 121
4.6.1 Overview... 121
4.6.2 The Architecture of the Binding Framework 123
4.6.3 Binding Personalities .. 124
4.6.4 Integrity Maintenance ... 129
4.6.5 New binding types ... 130

4.7 SUMMARY ... 130

CHAPTER 5 THE ABSTRACT SERVICE PROGRAMMING MODEL …132

5.1 INTRODUCTION .. 132
5.2 THE OVERALL REMMOC ABSTRACTION ARCHITECTURE 133
5.3 THE SERVICE DISCOVERY ABSTRACTION.. 134

5.3.1 Overview... 134
5.3.2 The Service Discovery Abstraction .. 135
5.3.3 Abstract to Concrete Mappings ... 137
5.3.4 Proof of Concept (Implementation of Mapping Components) 138

5.4 THE ABSTRACT SERVICE BINDING MODEL ... 139
5.4.1 Overview... 139
5.4.2 Abstract Web Services ... 139
5.4.3 The Abstract Binding API.. 142

5.5 MAPPING ABSTRACT OPERATIONS TO CONCRETE COMMUNICATION
PARADIGMS... 147

5.5.1 Introduction .. 147
5.5.2 Mapping Abstract Operations to Remote Method Invocation........... 148
5.5.3 Mapping to Publish-Subscribe... 151
5.5.4 Implementation of mapping components.. 155

5.6 MANAGING ADAPTATION OF THE BINDING FRAMEWORK 159
5.6.1 Overview... 159
5.6.2 Rules for Configuration based upon Binding Information................ 159
5.6.3 Rules for Configuring Client and Server Side Bindings.................... 160

5.7 SUMMARY ... 161

CHAPTER 6 EVALUATION ………………………………………………162

6.1 INTRODUCTION .. 162
6.2 QUALITATIVE EVALUATION ... 163

6.2.1 Overview... 163
6.2.2 Mobile Scenario .. 163
6.2.3 Implementing the Scenario .. 165
6.2.4 Results of ReMMoC’s Operation within Case Studies...................... 174
6.2.5 Analysis of Qualitative Evaluation... 179

6.3 QUANTITATIVE EVALUATION ... 180
6.3.1 Overview... 180

 9

6.3.2 Abstract Operation Overhead in ReMMoC...................................... 181
6.3.3 Measurements of Coarse-Grained Reflective Operations................. 185
6.3.4 System Memory Costs incurred when using Reflection..................... 189
6.3.5 Analysis of Quantitative Evaluation... 191

6.4 SUMMARY ... 193

CHAPTER 7 CONCLUSIONS ……………………………………………..194

7.1 INTRODUCTION .. 194
7.2 THESIS OVERVIEW ... 194
7.3 MAJOR RESULTS .. 196

7.3.1 Identification of Middleware Heterogeneity in Mobile Computing...196
7.3.2 The ReMMoC Approach..197
7.3.3 A Higher-level Middleware Abstraction .. 198

7.4 OTHER SIGNIFICANT RESULTS ..198
7.4.1 The OpenCOM Component Framework Model................................ 198
7.4.2 The “Cycle and See” Philosophy... 199
7.4.3 The use of Reflection on Mobile Devices ... 199
7.4.4 Abstract-to-Concrete Mappings... 200

7.5 FUTURE WORK .. 200
7.5.1 Additional Middleware Personalities... 200
7.5.2 Security Component Framework ... 201
7.5.3 Resource Management Component Framework............................... 201
7.5.4 Web Service Extensions... 201
7.5.5 Semantic Service Matching.. 202
7.5.6 Dynamic Component Downloading ... 202
7.5.7 Ubiquitous Computing Environments .. 203

7.6 CONCLUDING REMARKS... 203

REFERENCES ……………………………………………………………………204

APPENDIX A COMPONENT FRAMEWORK META INTERFACES.... 215

APPENDIX B EXAMPLE XML COMPONENT CONFIGURATION ….217

APPENDIX C WSDL OF APPLICATION SERVICES …………………..220

 10

Table of Figures
Table 1.1 Example mobile computing applications __________________________ 15
Figure 1.1 Heterogeneous mobile application services in two locations__________ 22
Figure 2.1 The relational model specified in CORBA ________________________ 27
Figure 2.2 The Object Request Broker ____________________________________ 28
Figure 2.3 The Java RMI architecture ____________________________________ 32
Table 2.1 Challenges of mobile computing met by established middleware _______ 35
Figure 2.4 Filtering tuples from one tuple space to another [Wade99]___________ 37
Figure 2.5 Transiently shared tuple spaces [Murphy01] ______________________ 39
Figure 2.6 Event notification in CEA: a) direct and b) mediated [Bacon00] ______ 41
Figure 2.7 Traffic light application demonstrating proximity group [Meier02] ____ 43
Table 2.2 Challenges of mobile computing met by asynchronous middleware _____ 45
Table 2.3 Challenges of mobile computing met by data-sharing middleware ______ 49
Figure 2.8 Maintaining state in Tacoma using folders, briefcases and file cabinets_ 51
Table 2.4 Challenges of mobile computing met by agent-based middleware_______ 52
Figure 2.9 Service discovery in SLP: (a) using a directory agent and (b) without using
a directory agent ___ 55
Figure 2.10 Number of messages to discover four services in different protocols___ 57
Table 2.5 Challenges of mobile computing met by service discovery middleware __ 59
Figure 2.11 The Meta-Space structure of OpenORB _________________________ 62
Figure 2.12 The component frameworks of Open ORB _______________________ 63
Figure 2.13 Reifying the dynamicTAO structure [Roman01] __________________ 64
Figure 2.14 dynamicTAO Components [Roman01] __________________________ 65
Figure 2.15 Architecture to support adaptive applications ____________________ 69
Figure 2.16 A CHARISMA application profile [Capra02] ____________________ 70
Table 2.6 Challenges of mobile computing addressed by adaptive middleware ____ 72
Figure 3.1. The elements of WSDL [Newcomer02] __________________________ 75
Figure 3.2 Web Services Technologies [Booth03] ___________________________ 77
Figure 3.3 Example EJB binding in WSDL ________________________________ 79
Figure 3.4. The WSIF Client Framework __________________________________ 80
Figure 3.5 OMG’s Model Driven Archtecture [Miller01] _____________________ 82
Figure 3.6 Architecture of the Unified Component Interoperability framework ____ 85
Figure 3.7 Capabilities in a SATIN application _____________________________ 87
Figure 3.8 UIC Personalities [Roman01] _________________________________ 89
Figure 4.1 The OpenCOM architecture ___________________________________ 96
Figure 4.2 An OpenCOM component framework. __________________________ 100
Figure 4.3 Composition of Component Frameworks ________________________ 101
Table 4.1 Operations for inspection of the internal CF structure ______________ 102
Table 4.2 Operations for dynamic reconfiguration _________________________ 102
Figure 4.4 The IAccept Interface _______________________________________ 103
Figure 4.5 Implementation of an OpenCOM component framework ____________ 104
Figure 4.6 XML description of a component configuration ___________________ 105
Figure 4.7 The top level architecture of ReMMoC__________________________ 107
Figure 4.8 The Service Discovery Component Framework Architecture_________ 110
Table 4.3 Components of the SLP Lookup Personality ______________________ 112
Figure 4.9 OpenCOM configuration for SLP lookup personality ______________ 113
Figure 4.10 The IUPnP Interface _______________________________________ 114
Table 4.4 UPnP components___ 114
Figure 4.11 UPnP lookup component personality. _________________________ 115
Figure 4.12 IDiscoveryDiscovery Interface _______________________________ 116

 11

Figure 4.13 Discovery protocol tests ____________________________________ 117
Figure 4.14 Part of the XML description for the SLP personality ______________ 118
Figure 4.15 Pseudo code for XML based configuration of personalities_________ 119
Figure 4.16 IDL definition of IServiceDiscoveryCFAdmin interface____________ 121
Figure 4.17 The binding component framework architecture _________________ 124
Table 4.5 Component elements of the IIOP client personality _________________ 125
Figure 4.18 IIOP client binding personality_______________________________ 125
Table 4.6 Additional IIOP server components _____________________________ 126
Figure 4.19 IIOP Server side binding personality __________________________ 126
Table 4.7 Components of SOAP RPC client personality _____________________ 127
Figure 4.20 Component configuration for SOAP RPC client personality ________ 127
Table 4.8 Component descriptions for subscriber personality_________________ 128
Figure 4.21 Component configuration of subscriber personality_______________ 128
Figure 4.22 Component configuration of publisher _________________________ 129
Figure 5.1 The ReMMoC programming model ____________________________ 133
Figure 5.2 IDL definition of IServiceDiscovery interface ____________________ 135
Figure 5.3 The ServiceReturnEvent data structure _________________________ 135
Figure 5.4 Abstract to concrete service discovery architecture ________________ 138
Figure 5.5 ReMMoC’s role in the Web Services Architecture _________________ 141
Figure 5.6 An abstract WSDL description for a sport news service_____________ 142
Figure 5.7 Invoking remote WSDL operations (RequestResponse and OneWay) __ 143
Figure 5.8. The WSDL data structure____________________________________ 144
Figure 5.10 Elements of a WSDL operation_______________________________ 148
Figure 5.11 Elements of a Remote Method Invocation_______________________ 149
Figure 5.12 Mapping abstract Request-Response to RMI ____________________ 149
Figure 5.13 Mapping abstract One-Way to RMI ___________________________ 150
Figure 5.14 Mapping abstract Solicit-Response to RMI _____________________ 151
Figure 5.15 Mapping abstract Notification to RMI _________________________ 151
Figure 5.16 General elements of a produced Publish-Subscribe event __________ 152
Figure 5.17 Mapping Request-Response to Publish-Subscribe ________________ 153
Figure 5.18 Mapping One-Way to Publish-Subscribe _______________________ 153
Figure 5.19 Mapping Solicit-Response to Publish-Subscribe _________________ 154
Figure 5.20 Mapping Notification to Publish-Subscribe _____________________ 155
Figure 5.21 The IMap and IServiceCallback interfaces______________________ 155
Figure 5.22 The IIOP map component ___________________________________ 156
Table 5.1 URL formats for binding types _________________________________ 160
Figure 6.1 The evaluation scenario _____________________________________ 164
Figure 6.2 Implementation of the CORBA chat application___________________ 166
Figure 6.3 Implementation of chat application using publish-subscribe _________ 167
Table 6.1 Discovery protocol advertisements of application services ___________ 168
Figure 6.4 Screen shots from the stock quote client application _______________ 169
Figure 6.5. Code extracts from the stock quote application___________________ 169
Figure 6.6 Screen shot from the jukebox client application ___________________ 170
Figure 6.7 Code fragments of the jukebox client application__________________ 171
Figure 6.8 Screen shots from chat client application ________________________ 172
Figure 6.9 Code fragments of the chat client application ____________________ 172
Figure 6.10 Illustration of stock application behaviour across changing locations 176
Figure 6.11 Illustration of the jukebox application behaviour across changing
locations __ 177

 12

Figure 6.12. Illustration of the chat application behaviour across changing locations
__ 179
Figure 6.13 Comparison of service invocations____________________________ 182
Figure 6.14 Abstract-to-concrete mapping costs during service invocation ______ 183
Table 6.2 Cost of dynamic reconfiguration _______________________________ 184
Table 6.3 Component insertion measurements_____________________________ 186
Table 6.4 Binding framework configuration measurements___________________ 186
Table 6.5 Detailed binding framework configuration measurements ___________ 187
Table 6.6 Service Discovery framework configuration measurements __________ 188
Figure 6.15 Performance of dynamic reconfigurations in discovery framework___ 188
Table 6.7 Memory footprint sizes of component configurations in ReMMoC _____ 190

 13

1Chapter 1 Introduction

1.1 Overview

Improving mobile device and wireless network technology has fuelled the popularity

of mobile computing over the last decade. Handheld devices have become smaller,

more computationally powerful and their usage is now commonplace. Wireless

networks proliferate the environment we live in; high-speed wireless networks are

available in particular hot spots such as hotels, coffee bars, university campuses and

office buildings. Meanwhile, lower speed wireless networks cover wider geographical

areas, ensuring mobile users can remain permanently connected. Consequently, new

application types are being developed to exploit these technologies and provide novel

methods of interaction between mobile device users and their environment.

Developing distributed mobile applications to operate across wireless networks is a

complex task. The mobile environment is hampered by problems of weak connection,

poor network Quality of Service (QoS) and changing context (e.g. device location).

Middleware has proven a successful technology in supporting distributed computing

across wired networks, overcoming the problems of platform heterogeneity and

simplifying the development process. Hence, a large body of research has been carried

out to examine how middleware should support distributed mobile applications and

overcome the limitations of wireless networks [Mascolo02]. However, the

heterogeneity that exists between different middleware solutions in turn generates a

new problem. These solutions do not interoperate with one another; applications are

unable to interact with different middleware implementations.

This thesis investigates the problem of middleware heterogeneity in mobile computing

environments and examines how an adaptive middleware framework can overcome

this problem. The remainder of this chapter is structured as follows. Section 1.2

provides an introduction to the facets of the mobile computing domain and section 1.3

describes the area of mobile computing middleware. Section 1.4 introduces the

particular problem of middleware heterogeneity that this thesis aims to address.

Finally, section 1.5 describes the main aims of the research, and section 1.6

documents the overall thesis structure.

 14

1.2 Mobile Computing

1.2.1 Overview

Mobile computing is characterised by users carrying portable computational devices

that interact with shared infrastructures independent of their physical location; this

allows intercommunication between people and continuous access to networked

services [Forman94]. This section first examines the applications that drive the

research requirements of mobile computing. Then, in turn, the improving

technological aspects of mobile devices and wireless networks are presented.

1.2.2 Mobile applications

Until the emergence of public-domain wireless networks, mobile computing was

confined to performing desktop-style applications (e.g. word processors and

spreadsheets) on the move. However, the services provided by next generation mobile

applications are now explicitly linked to the mobility of the user. These applications

seek to enhance user experience and productivity as they go about day-to-day tasks.

Currently, distributed mobile applications fall into two categories:

• Location-based Services. In these application types, the service is moulded to

the current location of the mobile device.

• Communication Services. Traditional distributed communication applications

that operate across wireless networks; for example, e-mail, chat, mobile

gaming, co-operative work and video messaging.

Example location-based mobile applications are illustrated in table 1.1; these serve to

identify the activities that mobile users perform, rather than exhaustively document all

types of mobile applications. The services provided include: entertainment,

information, commerce and healthcare. This demonstrates the diversity of mobile

applications, which will only extend further in the future as visions of how they can

improve current environments are identified.

In all of the examples, users interact with mobile applications using a mobile device.

Alternatively, Ubiquitous Computing [Weiser91] is a field of computer science that

aims to make the computational device disappear and, as the user moves around, the

environment responds to meet their requirements. For example, in Flump [Finney96]

 15

personalised web content is exhibited on wall-based displays close to the user.

Ubiquitous computing is closely related to mobile computing, and offers alternative

application scenarios (i.e. the environment reacts to mobile users); however, it has

different middleware requirements than mobile computing scenarios (i.e. there may be

no mobile device for middleware to operate upon) and hence, these application

scenarios are not addressed by this thesis.

Category Description Examples

Tourist Guide Dynamically changes content to help

tourists navigate through and be informed

about nearby points of interest.

Guide [Davies99],

CyberGuide [Long96]

Shopping Assistant Guides shoppers through stores, helps

locate items and informs them of special

offers.

DealFinder [Chan01],

Shopping Assistant

[Asthana94]

Weather Sends local weather updates to the mobile

device.

[Jacobsen99]

Traffic Congestion Monitors current traffic levels on local

roads, warning the mobile user they are

approaching congestion and suggests an

alternate route.

Traffic congestion

[Cole03]

Reminder Reminds the user what to do at a particular

time, when they reach a new location or

they are co-located with another user.

ComMotion

[Marmasse00],

CybreMinder [Dey00]

Conference Assistant Supports conference attendee by

suggesting presentations to attend based

upon preferences and provides extra

information to users located at each talk.

Conference Assistant

[Dey99]

Healthcare Provides doctors with information such as

medical records and changes in patient

status, whatever their location.

[Mitchell00]

Table 1.1 Example mobile computing applications

1.2.3 Mobile Devices

A key factor in the popularity of mobile computing lies with the end system; this

should be lightweight, conservative with power, and easy to use. Currently available

mobile devices fall into categories based upon differences in physical size, screen size,

 16

memory capacity and processor speed. These categories are: laptops, tablet PCs,

handheld PCs, smart phones and wearable computers. They share the common

characteristic of limited battery life, requiring the mobile device to be frequently

recharged.

Laptop computers and Tablet PCs provide the closest in terms of performance to

desktop machines, with similar processor and memory capacity including a hard disk

drive providing large amounts of secondary storage. They have the largest screen sizes

(ranging between 10” and 17”) and hence are physically the largest and heaviest

mobiles (typically weighing between 1Kg and 2.5Kg). Laptops primarily use a

keyboard and touchpad as input devices; however, these are difficult to use by

“moving” users. Therefore, tablet PCs provide pen-based input through a touch

screen.

Handheld PCs offer increased portability; the average screen size is between 3” and

4”. This means that they are significantly smaller and weigh much less than Laptops

and Tablets (e.g. 150g to 250g). Although some models include a miniature keyboard,

the primary input mechanism is by touch screen. Whilst still computationally

powerful, they currently lag behind laptops in terms of processor performance and

memory capacity. Typical devices have between 8 to 64Mb of RAM with no large

secondary storage. A Smartphone is a mobile telephone that combines traditional

cellular voice connectivity with handheld PC capabilities. Typically they have similar

physical and performance characteristics to handheld PCs, however they provide user

input through keys on the handset rather than a touch screen.

In contrast to the described mobile devices, wearable computers are being researched

and developed. These aim to remove the handheld carrying of a portable device and

support the vision of ubiquitous computing. For example, IBM has developed a

wristwatch that runs the Linux operating system, has a touch screen display and

Bluetooth wireless connectivity [Narayanaswami00]. Head-mounted sets (e.g.

POMA from Cybernaut [POMA03]) demonstrate alternative output displays; for

example, a 1” LCD screen that sits in front of the user’s eye.

 17

1.2.4 Wireless networks

Wireless networks allow mobile devices to communicate with one another, connect to

the Internet or access network services. Advances in wireless networking technologies

have provided solutions for local area (LAN) and wide area (WAN) coverage.

Wireless LANs cover small geographic areas (e.g. rooms, buildings, city centres etc)

and operate in either infrastructure or ad-hoc fashion. In infrastructure mode, all

network traffic passes through a fixed access point, whereas ad-hoc networking

involves routing the traffic between the local devices in a peer-to-peer fashion.

Alternatively, wireless WANs are infrastructure based (devices connect to and roam

between fixed base stations) and cover larger areas ranging from whole cities to

continents. This section introduces the key technologies currently in widespread use;

for a more detailed survey of wireless networks see [Friday96], [Lin01], [Stallings02].

The IEEE 802.11 working group for local wireless networking [IEEE03] has proposed

three separate standards: 802.11b, 802.11a and 802.11g. The most popular at present,

802.11b, is a radio frequency based technology that uses the 2.4 GHz microwave band

designated for low-power unlicensed use and provides a theoretical maximum

bandwidth of 11Mbps. Furthermore, both infrastructure and ad hoc operating modes

are available. 802.11a uses the 5GHz band and provides up to 54 Mbps bandwidth;

however, it is not interoperable with 802.11b. In contrast, 802.11g is backward

compatible with 802.11b, uses the same frequency and offers an increased bandwidth

(20+ Mbps).

Alternative ad-hoc local area network solutions use either infrared or radio frequency

techniques. IrDA [IrDA01] is an example of an infrared LAN; its main use is the

wireless connection of devices that would normally use cables. IrDA is a point-to-

point, narrow-angle (30-deg), data-transmission standard designed to operate over a

distance of 0 to 1 m and at speeds of 9.6 kb/s to 16 Mb/s. However, once an IrDA

device is connected to the LAN, it must remain relatively stationary to maintain the

connection. On the other hand, Bluetooth [Bluetooth99] is a radio frequency LAN

that provides short-range, point-to-multipoint voice and data transfer and can transmit

through solid, non-metal objects. The nominal range of a Bluetooth device is 10 cm to

10 m.

 18

Examples of commonly used wide area networks are from the GSM family. GSM

(Global System for Mobile Communication) [Rahnema93] is a circuit-switched

technology that can transmit data at 9.6 kbps. However, using packet-based

technologies has led to higher data throughput. GPRS (General Packet Radio Service)

[Rysavy98] can transmit at a maximum of 171 Kbps and third generation networks

e.g. UMTS (Universal Mobile Telecommunications System) [Muratore00] can send

at up to 2 Mbps.

The collection of wireless technologies presented allows a user to be continuously

connected; that is, they may roam from location to location using whichever network

technology is available. For example, the user may be connected to the network while

within a building covered by an 802.11b network, when they then move outside of the

building the device communicates by using a GSM network. This concept is known as

overlay networks and research has examined methods to make the transition seamless

[Brewer98].

1.2.5 The Challenges of Mobile Computing

The following list describes some of the key challenges of mobile computing

[Forman94][Satyanarayanan96b]; mobile middleware aims to address these problems

to better support the development of distributed mobile applications.

1. Disconnection. Mobile devices are frequently disconnected from the network

(weak connection); for example, when handing over to a new network, or when

the device moves out of range of wireless coverage.

2. Low Bandwidth. The bandwidth of wireless networks can be low, particularly in

wireless wide area networks, and when there are many users in a wireless cell.

3. Variable Bandwidth. The bandwidth available to a device can change

dramatically, e.g. when more users use a wireless cell it will reduce. Furthermore,

it can increase when the user moves from a low speed wide area network to high-

speed local area network.

4. Address Migration. Existing applications send packets to a fixed network

address. However, the “local” address of a mobile device changes as it moves

between networks. Therefore, messages must be routed to and from this moving

device.

 19

5. Low Power. Mobile devices rely on a finite energy supply that eventually needs to

be recharged.

6. Small Storage Capacity. The memory capacity of mobile devices is poor relative

to fixed devices.

Additional properties of mobile environments that offer further challenges to mobile

computing are: devices with low computational processing capabilities, high network

latency and frequent loss of data packets transmitted across wireless networks.

1.3 Mobile Computing Middleware

1.3.1 The Importance of Middleware

Middleware is defined as “a layer of software residing on every machine, sitting

between the underlying operating system and the distributed applications, whose

purpose is to mask the heterogeneity of the co-operating platforms and provide a

simple, consistent and integrated distributed programming environment”

[Coulouris00]. Middleware has proved a successful technique in fixed networks for

overcoming heterogeneity and integrating existing legacy systems. Typically,

heterogeneity applies to networks, computer hardware, operating systems and

programming languages. In addition, middleware offers a distributed programming

environment that eases development and makes transparent particular aspects of

distribution (e.g. Access Transparency makes local and remote operations identical).

Finally, middleware upholds the concept of Open Distributed Processing (ODP) i.e.

distributed systems can be extended and re-implemented, because key software

interfaces are made public.

Well-established middleware standards for fixed networks are now in place, these

include: Common Object Request Broker Architecture (CORBA) [OMG95], SOAP

[Box00], Distributed COM (DCOM) [DCOM96], Enterprise Java Beans (EJB)

[Monson-Haefel00] and Java Remote Method Invocation (Java RMI) [Sun97].

However, these are demonstrably inappropriate for the mobile domain. They have

heavyweight implementations unsuited to memory-constrained devices [Roman01].

Their operation across unpredictable wireless networks is poor

[Haahr00][Liljeberg97][Campadello00]; for example remote object invocations fail

 20

during disconnection. Furthermore, their fixed black-box implementations whose

underlying structure and behaviour is hidden from the programmer cannot be altered

at run-time to cope with the changes that occur in the mobile environment e.g.

fluctuating network QoS [Blair01][Seitz98]. Therefore, domain-specific middleware

has emerged to meet the demands of mobile computing. These contrast greatly in style

and implementation and are introduced in turn in the following section.

1.3.2 Styles of Middleware

The properties of wireless networks means that mobile devices may become

disconnected involuntarily, or otherwise choose to become disconnected to save

resources such as battery power. Furthermore, network QoS fluctuates, error rates are

high and packets are lost. These characteristics have proven a driving factor in the

initial development of middleware platforms for this domain. Different techniques and

middleware paradigms have been developed to address these problems:

• Asynchronous communication paradigms. To resolve the problem of weak

connection, communication mechanisms that do not rely on the sender and

receiver being coupled in time and space have emerged. Examples are tuple spaces

[Davies98][Murphy01] and publish-subscribe systems [Meier02][Cugola01].

Mobile clients transmit and receive information only whilst they are connected to

the network.

• Adaptive Middleware. Fixed black-box middleware implementations cannot be

altered at run-time to cope with changes that occur in the mobile environment.

Therefore, adaptive middleware solutions exist that are configurable and

dynamically reconfigurable to enable the platform to respond to changes in its

environment and maintain the best level of operation under current conditions

[Capra02][Blair01].

• Established Middleware Enhancements. Alternatively, other projects have

extended traditional standards based solutions to make them effective over

wireless networks. These include making their implementation smaller to fit on to

resource constrained devices [Roman01][Klefstad03], or making their

communication mechanism operate more effectively over wireless networks

[Seitz98][[Haahr00].

 21

• Mobile Agents. The agent paradigm [Johansen95][Lange98], where executable

code moves from host to host, is well suited to mobile computing. Client code can

move to the server and perform all communication locally. With scarce bandwidth

this limits network communication and reduces the possibility of failure due to

partition or disconnection. Furthermore, moving the logic and communication

processing to a more powerful server host reduces the load on resource-

constrained devices.

• Service Discovery Solutions. An important element of mobile computing is the

ability to discover what services are available at a particular location. A simple

example of this is a room that has a service available to control the light switch; a

person who then enters the room with a PDA can discover the service and switch

the lights on and off using their handheld. There are a number of existing service

discovery technologies currently available e.g. Jini [Arnold99], Service Location

Protocol (SLP) [Veizades97], Universal Plug and Play (UPnP) [Microsoft00b] and

Salutation [Salutation98].

1.3.3 A New Problem

We have seen above that the different solutions introduce the problem of middleware

heterogeneity; they offer incompatible communication paradigms, including: remote

method invocation, publish-subscribe, message-oriented, agents and tuple spaces.

Furthermore, implementations of individual paradigms differ, e.g. SOAP and IIOP for

remote method invocation. Similarly, different service discovery protocols do not

interoperate, and with new technologies emerging to better support discovery in

mobile environments (e.g. JESA [Preuss02] & Centaurus [Kagal01]) and across

wireless ad-hoc networks (e.g. SDP in Bluetooth and Salutation Lite) this problem

will become worse.

In reality, the primary goal of current mobile middleware is to support distributed

programming. They only partially solve the heterogeneity problem, in scenarios where

implementations of the middleware can be guaranteed to reside on every device.

However, the scenario in the following section demonstrates applications where the

user enters a new location with unknown middleware implementations.

 22

1.4 Illustrating Middleware Heterogeneity

In this section, a mobile computing scenario illustrates how middleware heterogeneity

exists in mobile environments. In this example, three application services are available

to mobile users at two different locations. Instances of each service are implemented

using different types of middleware and advertised using contrasting service discovery

protocols. Application 1 is a mobile sport news application, whereby news stories of

interest are presented to the user based on their current location. Application 2 is a

jukebox application that allows users to select and play music on an audio output

device at that location. Finally, application 3 is a chat application that allows two

mobile users to interact with one another.

Figure 1.1 Heterogeneous mobile application services in two locations

Figure 1.1 illustrates the two locations (a coffee bar and a public house) in the session

of a mobile user. At each location the same application services are available to the

user, but their middleware implementations differ. For example, the Sport News

service is implemented as a publish-subscribe channel at the coffee bar and as a SOAP

service in the public house. Similarly, the chat application services and jukebox

services are implemented using different middleware types. The service discovery

protocols are also heterogeneous, i.e. the services available at the public house are

discoverable using SLP and the services at the coffee bar can be found using both

UPnP and SLP. For example, at the coffee bar the jukebox application must first find

Sport News
Channel

P/S Publisher

CORBA Chat
Service

P/S Chat
 Service

SLP

SLP

SLP

Sport
News

SLP

Jukebox
Service

SOAP Server

UPnP

SOAP Server

Mobile
User

Jukebox
Service

CORBA Server

SLP

Coffee Bar (802.11b Wireless Network) Public House (802.11b Wireless Network)

 23

its corresponding service using UPnP and then use SOAP to control functionality.

When it moves to the public house, SLP and CORBA must be used. Given scenarios

of this type a mobile middleware platform should be reconfigurable to interact with

different middleware types and utilise different service discovery protocols. In turn,

this will allow the development of mobile applications independently of fixed

platform types whose properties are unknown to the application programmer at design

time.

1.5 Aims

The main aim of this thesis is to investigate and overcome the problem of middleware

heterogeneity in the mobile computing environment. That is, the goal is to develop a

higher-level adaptive middleware framework, which allows mobile applications to be

developed independently of concrete middleware implementations. Furthermore, the

thesis investigates how to provide a suitable model for abstracting over the different

communication paradigms presented by heterogeneous middleware implementations.

More specifically, the research takes the following approach:

• An investigation of the state of the art in middleware platforms that support

mobile applications, including an analysis of how effective their techniques are

to overcome the challenges of the mobile environment. Additionally, how

these solutions add to the problem of middleware heterogeneity is examined.

• An evaluation of evolving standards-based approaches to the integration of

established middleware, exploring the techniques employed to produce the

required middleware transparency.

• The production of an adaptive middleware framework that resides on mobile

client devices, which overcomes the problems of middleware heterogeneity in

mobile environments.

• The production of a higher level distributed programming abstraction that

addresses the differences in individual middleware communication paradigms,

and provides middleware transparency.

• The implementation of a mobile scenario that evaluates the effectiveness and

performance of the higher-level middleware framework in overcoming

heterogeneity.

 24

• An evaluation of the appropriateness of reflective middleware for mobile

devices. The goal is to demonstrate that a technique often criticised for

incurred overhead can operate effectively in the resource constrained domain.

This thesis does not address a number of related aspects, which the author considers

important to the domain of mobile computing middleware. Firstly, the thesis offers no

new solutions to the original challenges of mobile computing (e.g. problems of weak

connection and poor QoS); rather this is left to the core middleware implementations

that are encompassed by the framework. Secondly, resource management allows

maximum utilisation of device resources (e.g. battery power), however this is left to

future work. Finally, the research addresses traditional mobile computing scenarios,

where mobile applications operate upon a mobile device; although the author believes

the approach to be suitable for emerging application domains such as ubiquitous

computing, smart home environments and the Grid, these are not evaluated and are

left to future work.

1.6 Structure of the thesis

The following two chapters present a state of the art investigation in the related areas

of research to this thesis. Chapter 2 surveys mobile and adaptive middleware

platforms, examining closely the paradigms that each utilises and what challenges of

mobile computing are addressed. Chapter 3 looks at some of the solutions to

middleware integration and overcoming middleware heterogeneity.

Chapters 4 and 5 document the design and implementation of the adaptive middleware

framework. Chapter 4 describes the underlying component model and reflective

architecture, which provides the capabilities to interact with both heterogeneous

middleware and service discovery technologies. Chapter 5 then describes the design of

the platform’s programming model that presents middleware transparency to the

developer.

Chapter 6 follows with an evaluation of the proposed platform for overcoming

heterogeneity. Firstly, investigating qualitatively if the platform meets the

requirements of demonstrated mobile application scenarios, populated by

 25

heterogeneous middleware. Furthermore, quantitative measures that evaluate the

practicality of the solution in the mobile domain are documented. Finally, chapter 7

highlights the major results and contributions of the thesis, along with a discussion of

future directions for this work.

 26

2Chapter 2 Middleware for Mobile Computing

2.1 Introduction

The primary goals of middleware are two-fold: 1) to mask heterogeneity of networks,

end-systems, operating systems and programming languages, and 2) to provide a

simple, integrated distributed programming model. Established middleware solutions,

including CORBA [OMG95] and Java RMI [Sun97], have proved successful for

business applications, supporting the integration of legacy systems. Current

middleware research is now examining how middleware can benefit wider application

areas e.g. mobile computing, multimedia, E-Science, real-time computing,

programmable networking and peer-to-peer computing. This chapter focuses on the

state of the art in the domain of mobile computing and adaptive middleware.

The previous chapter identified the domain specific problems faced by mobile

application developers. A wide variety of middleware has been produced to overcome

these issues and support the development of distributed mobile applications. These

solutions can be separated into categories based upon the middleware functionality

provided e.g. fixes to established middleware (promoting synchronous

communication), asynchronous middleware, service-discovery, mobile code, data

sharing and adaptive middleware. In the following sections, key examples of

individual implementations of these paradigms are described and their effectiveness in

overcoming the challenges of mobile computing, described in section 1.2.5, is

analysed.

2.2 Established Middleware

2.2.1 Overview

CORBA [OMG95], .NET [Microsoft00], SOAP [Box00], DCOM [DCOM96],

Enterprise Java Beans [Monson-Haefel00] and Java RMI [Sun97] are examples of

established middleware in the fixed network domain. However, these have originally

been identified as unsuitable for use in the field of mobile computing for two reasons:

1) the core communication mechanisms are synchronous, which are prone to failure

due to disconnection in unpredictable wireless networks [Mascolo02], and 2) they

 27

consist of heavyweight implementations, which exhaust mobile devices of their

limited memory resources [Roman01] e.g. the static memory footprint of a CORBA

ORB implementation (Orbacus 4.0.5) is approximately 8 Megabytes. Nonetheless,

these platforms remain important in the mobile computing domain; they are well used

and understood, and allow interoperation with a catalogue of pre-existing fixed

network services. Therefore, research has examined methods to make these

middleware technologies operate more effectively in wireless environments. The

following sections describe enhancements to CORBA, Java RMI and SOAP for

mobile computing.

2.2.2 Common Object Request Broker Architecture (CORBA)

Background

The Object Management Group (OMG) has defined a standard distributed open

systems framework named the Common Object Request Broker Architecture

(CORBA) [OMG95] to address the problems of developing portable distributed

applications for heterogeneous systems. CORBA presents an object model and a

relational model to specify how distributed objects interact. Within the object model,

an object is an entity that provides one or more services that can be requested by a

client through well-defined, strongly typed interfaces. Interfaces are defined in IDL

(Interface Definition Language), which provides a language independent method to

define the structured data types and operation signatures clients can communicate

through.

Figure 2.1 The relational model specified in CORBA

Object Request Broker (ORB)

Application
Interfaces

Domain Interfaces

Object Services

 28

The relational model describes the categories of interfaces; figure 2.1 illustrates these

categories that are conceptually linked by the Object Request Broker (ORB). Object

Services are horizontally oriented interfaces used by many applications; for example,

the OMG Naming Service provides references to objects that applications intend to

use. Domain interfaces provide similar roles to object services, but are domain

specific or vertically oriented e.g. healthcare applications. Finally, application

Interfaces are developed specifically for newly created applications.

The fundamental component of CORBA is the ORB (illustrated in figure 2.2); this

allows clients to transparently invoke the operations of objects hosted remotely. The

low level mechanism is a synchronous Remote Procedure Call (RPC). The

architecture allows both static and dynamic invocation of these requests. In the static

approach, an interface description is translated into stubs and skeletons that are

compiled into the application. A stub is a client side function that allows a remote

invocation to be made via a local call. Similarly, the skeleton is a server side function

that allows a request invocation to be received and dispatched to the appropriate

object implementation. Dynamic invocation involves the construction of CORBA

requests at run time. The dynamic skeleton interface accepts requests for which it has

no skeletons, inspects its contents and invokes the object and method it is targeted for.

Figure 2.2 The Object Request Broker

The General Inter-ORB Protocol (GIOP) specification defines the Common Data

Representation (CDR) for encoding method calls and the message formats transmitted

during sessions. GIOP is a generic protocol that guarantees interoperability between

ORB implementations from different vendors; GIOP is mapped onto different

underlying transport protocols. For example, the Internet Inter-ORB Protocol (IIOP) is

a specialised mapping of GIOP to TCP, the Internet transport layer.

 29

Employing CORBA in a mobile environment is subject to problems. CORBA is a

large standard and implementations will not fit on devices with limited resources;

furthermore, they do not provide customisation tools that would select only the

required functionality [Roman01]. In addition, CORBA specifies that a continuous

connection be maintained throughout an invocation, which cannot be guaranteed

given the properties of wireless networks. Initiatives to address these problems are

now described in turn.

ALICE

The Architecture for Location Independent CORBA Environments (ALICE)

[Haahr00] allows CORBA objects executing on mobile devices to interact

transparently with objects residing upon fixed hosts. They have identified that using a

full ORB on a mobile device is infeasible and hence propose that a subset, the IIOP

protocol (the minimum protocol necessary to transfer invocations between ORBs), is

suitable for mobile CORBA. The ALICE architecture is composed of Mobile

Gateways, to which every mobile host connects; these gateways act as proxies,

transferring invocations between mobile and fixed hosts. When a host handovers from

one mobile gateway to another, ALICE ensures that all open client-server connections

are transparently retained allowing invocations to complete. In particular, ALICE

addresses the problems of disconnection, address migration and limited memory

capacity. Although no changes need to be made to fixed ORBs, the solution relies on

gateways being available in the network environment, which cannot be guaranteed

across all wireless networks.

Notably, the ALICE framework has been extended to become general from CORBA;

indeed ALICE is now short for Architecture for Location Independent Computing

Environments [Biegel02], and as such can be applied to other RMI based middleware

implementations including Java RMI and SOAP. This new framework extracts

specific layers of mobile functionality that can be re-used per RMI implementation. A

mobility layer handles connections between the mobile host and the local gateways. A

swizzling layer translates server references to refer to mobile gateways (supporting

server mobility), and a disconnection layer handles mobile host disconnection by

caching server functionality locally.

 30

DOLMEN

The DOLMEN project [Liljeberg97] seeks to overcome the wireless access and

terminal mobility problems of CORBA. The solution uses CORBA bridging to

connect the ORB on the mobile terminal to the fixed ORB in the core network

domain. The bridge consists of two half bridges: the Mobile Domain Distributed

Processing Environment Bridge (MDBR) and the Fixed Domain Distributed

Processing Environment Bridge (FDBR). As the mobile host changes location it

connects to different FDBRs; mobility functions built into the two bridges then

enforce location transparency and invocations are mapped to the correct object. The

two bridges form a closed interoperability domain. DOLMEN takes advantage of this

by using a special Light-Weight Inter-ORB protocol (LW-IOP) for communication.

The protocol is based upon efficient message formats and compressed data

representation for object communication over a wireless link, ensuring minimum

bandwidth is consumed. Like ALICE, this solution tackles address migration and

disconnection problems using a proxy based approach. However, it also improves the

operation of CORBA over low bandwidth networks.

Wireless Access and Terminal Mobility in CORBA

The OMG identified the need to support wireless access in CORBA and issued a

Request For Information (RFI) in June 1998 [OMG98]. This concluded with a new

adopted standard as of March 2003 [OMG03], which is heavily influenced by the

features of DOLMEN. Its aim is to avoid modification to non-mobile nodes in order

for them to interoperate with objects hosted by mobile terminals. The architecture

consists of three domains. Firstly, the terminal domain is the mobile terminal that

hosts an ORB and a terminal bridge. Secondly, the visited domain hosts one or more

access bridges to which the terminal bridge can connect and communicate. Finally, the

home domain hosts a home location agent that tracks which access bridges the

terminal is currently associated with, ensuring location transparency is maintained in

face of terminal mobility. GIOP messages are sent across the access bridge using a

GIOP tunnelling protocol.

RAPP

The Reactive Adaptive Proxy Placement Architecture (RAPP) [Seitz98] seeks to

improve the performance of CORBA across mobile hosts for mobile multimedia

 31

applications. The approach utilises proxies acting on behalf of mobile hosts; these aim

to reduce the communication requirements over the wireless link. There are two key

components to the architecture, the Proxy Selection Process (PSP) and the Proxy

Installation Process (PIP) The client application provides the PSP with MIME

classifications of each data stream, the PSP then monitors the QoS of every

communication stream and upon decreasing QoS selects proxies either automatically

or based upon user preferences (e.g. the user states to use loss prone compression

techniques). The PIP then installs the selected proxy in the specified location in the

network; the application specifies preferences such as “on server machine” or “in

server machine network domain” that are satisfied if the available hardware, operating

systems and security settings match. A global proxy trading service manages a list of

available proxy factories, which can create the new proxy in place. The final step of

the PIP is to then connect the proxy into the client-server stream. Therefore, RAPP

offers a solution to the problems of low and variable bandwidth. Like previous

solutions RAPP utilises proxies, however it ensures these can be available in the

network, through dynamic proxy installation based upon application preferences.

Embedded ORBs

Due to the limited resources of mobile devices, the large memory footprint size of a

CORBA ORB is a fundamental obstacle. To overcome this, commercially available

ORBs optimised for memory size and performance are available; examples include

e*ORB (vertel.com) and orbix/e (iona.com). However, these provide static

configurations targeted at embedded devices that cannot be changed at run-time. A

mobile device’s memory resources fluctuate. Hence, customisable minimum ORBS

e.g. UIC [Roman01] and Zen [Klefstad03], optimise the memory footprint and also

allow this to be changed over time.

2.2.3 Java RMI Solutions

Background

Java RMI [Sun97] provides a Java distributed object model that integrates into the

programming language and local object model. RMI is based on the separation of

definition of behaviour (within a Java interface) and implementation of that behaviour

(by a Java class). An advantage of RMI over CORBA is that RMI is based entirely on

 32

Java; this means that there is no need to introduce a separate IDL. The overall

implementation of RMI is shown in figure 2.3; it is a classical RPC style architecture,

building on TCP as the transport protocol. Like CORBA, Java RMI offers

synchronous RPC communication whose performance is poor across wireless

networks. However, Java RMI is an important platform in the mobile domain, as Java

mobile agent platform (such as Aglets [Lange98]) and Jini [Arnold99] utilise it as a

communication framework. Two optimised solutions that address protocol

performance and host mobility are examined in turn.

Figure 2.3 The Java RMI architecture

Wireless RMI

Wireless RMI [Campadello00] aims to improve RMI’s poor performance across

wireless networks, caused by high protocol overheads of data traffic and round-trip

time (it does not consider terminal mobility). The invocation itself is only 5% of the

total traffic transmitted and, due to an inefficient implementation of the specification,

6 round trips are required for a single invocation. Their solution is based upon

mediators (performance enhancing proxies) to avoid changes to the RMI standard. An

agent is placed upon the mobile terminal and a proxy executes at the wireless access

point to the fixed network. All communication between client and server objects

traverses this link. Five separate techniques are then used to improve performance: 1)

data is compressed using the standard GZIP file format to reduce data traffic, 2)

protocol acknowledgement is handled by the local mediator, avoiding sending of

protocol headers, 3) dynamic stub downloading when not present at the client side is

avoided; instead a generic stub is generated on the fly, 4) registry lookups are reduced

by caching references locally, and 5) Distributed Garbage Collection invocations are

optimised by decoupling the client and server; the local mediator renews leases on

servers periodically until no more local references exist. Correspondingly, the

 33

opposite mediator retains references of clients. The combination of these

optimizations reports a 365% improvement in invocation time over the wireless link,

demonstrating that the issue of low bandwidth can be solved. However, the other

challenges of mobile computing are not directly tackled.

Mobile RMI

Mobile RMI [Wall01] directly addresses the problem of terminal mobility. Its design

is based upon the generic concepts of the ALICE model [Biegel02] to manage the

movement of mobile hosts. Hence, the same Mobile Gateways are a fundamental

component of the architecture. However, the differences between RMI and CORBA

require changes to the functionality offered. In RMI, once a client has received an

object reference (a stub) it communicates directly with the server using this stub. If

this object moves then the stub is outdated; therefore, Mobile RMI replicates the

object stub at the local gateway, and clients receive a stub that references the gateway

rather than the object. The gateway then redirects all incoming method invocations to

the correct object. However, if the server object moves to another gateway, the client’s

stub cannot change and therefore, the previous gateway relays all requests to the new

gateway and then onto the server object. Like ALICE, all method invocations are

transparently completed in the face of network failure; reconnections are made

transparently and lost data is resent. Hence, it is possible to overcome disconnection

and address migration in Java RMI, although again the use of fixed mobile gateways

is not an optimal solution.

2.2.4 Simple Object Access Protocol (SOAP)

SOAP [Box00] is a lightweight, XML-based protocol for the exchange of information

in a distributed environment. It consists of three parts: an envelope that defines a

framework for describing what is in a message and how to process it, a set of

encoding rules for expressing instances of application-defined data types, and a

convention for representing remote procedure calls and responses. Fundamentally,

SOAP provides a standard way of serializing the information needed to invoke remote

services into a format that can be transported across the wire. It also benefits from

being able to traverse firewalls, as it is HTTP based.

 34

SOAP is in some ways better suited to the mobile environment than CORBA and Java

RMI, because it is simple and extensible; this means that several features of

distributed object systems that cause problems in wireless networks need not be

included e.g. distributed garbage collection and objects-by-reference. Furthermore,

SOAP messages can be used for asynchronous and one-way message passing

schemes, overriding the problems of weak connection. For example, SOAP can be

transported over SMTP rather than HTTP [Cunnings01]. However, SOAP suffers from

being a verbose text-based protocol that consumes bandwidth, compared to efficient

protocols (e.g. IIOP). Lightweight memory footprint implementations that operate

from mobile devices are available to demonstrate SOAP capabilities in this domain

e.g. PocketSOAP [Fell03] and KSOAP (a Java version) [McHugh03]. However, these

solutions are yet to address the problems of terminal mobility, and low and variable

bandwidth.

2.2.5 Analysis of Enhancements to Established Middleware

A significant body of current mobile computing research dismisses established

middleware as unsuitable for supporting mobile applications because of its use of

synchronous communication paradigms and heavyweight implementations.

Nonetheless, they offer advantages to the mobile developer. Distributed object

programming is a well-understood and well-used programming model. A large body

of existing services (within the fixed domain) can be accessed from mobile devices;

hence, users can mirror functionality from their fixed terminal to their mobile. Given

these benefits, it is inevitable that standard middleware (CORBA, RMI, SOAP etc.)

will be used by mobile applications.

Furthermore, the enhancements described in this section demonstrate the feasibility of

using established middleware across wireless networks. The majority of the

challenges documented in section 1.2.5 have been addressed (illustrated in table 2.1).

The CORBA enhancements have tackled more of the challenges than RMI and SOAP;

however, this simply demonstrates that more work has been carried out on this

particular platform. Notably, no enhancement has directly examined how to better

manage battery consumption by these technologies, which is an important issue given

 35

the resources required to transparently maintain synchronous communication in the

face of disconnection.

Mobile Challenge Challenge addressed Examples

Disconnection

Alice, DOLMEN

Low Bandwidth

DOLMEN, Wireless RMI

Variable
Bandwidth

RAPP

Address Migration

ALICE, Mobile RMI, DOLMEN

Low Power

Small Storage
Capacity

Embedded ORBs, Alice

Table 2.1 Challenges of mobile computing met by established middleware

Although these enhancements meet the individual challenges, it can be seen that these

solutions are not optimally suited to the wireless domain. The majority of the

described solutions concentrate on mobile devices roaming between network access

points and therefore require a proxy or a gateway to be available in the environment.

However, connecting to a wireless network with no gateway means that the clients do

not retain the benefits of the enhancements. Notably, RAPP introduces a technique to

dynamically install a proxy at different locations in the network.

2.3 Asynchronous Middleware

2.3.1 Overview

As a direct response to the problems posed by synchronous communication

paradigms, which requires the client and server to be connected at the same time,

asynchronous middleware has been proposed. This approach allows mobile hosts to

communicate while not directly coupled in time and space; hence the problems of

network partitioning and periods of disconnection (e.g. during network handover) are

reduced. This section examines different types of asynchronous communication, from

an early asynchronous RPC middleware to tuple space and publish-subscribe

paradigms. Key platforms within each paradigm are discussed and their benefits to

mobile computing are analysed.

 36

2.3.2 Asynchronous RPC – “An Early Solution”

An early asynchronous middleware platform was the Rover toolkit [Joseph95]. This

was notable because its core technical concepts (e.g. asynchronous communication,

mobile code and data sharing) are utilised by future mobile middleware platforms

documented in this chapter. Rover’s initial aim was to isolate the mobile application

from the limitations of wireless networks, particularly disconnection and poor

bandwidth.

Rover provides a distributed object model to the developer that consists of object

downloading, caching and asynchronous object invocation. Remote objects, called

Relocatable Dynamic Objects (RDOs), are dynamically downloaded into the local

object cache on the mobile device; this reduces object interaction across the wireless

link, an advantage offered by the mobile agent solutions described later. When an

object method is invoked, the local cache is checked and if the object resides locally

the invocation updates the cached object without contacting the server. Different

strategies are then available to maintain consistency of objects in the cache with the

server objects. Rover lazily updates the primary copy by sending the method call in a

Queued Remote Procedure Call (QRPC) to the server. A failure in the delivery of the

invocation, or link unavailability does not cause the RPC to fail; incomplete RPCs are

written to a log that can be replayed when the connection returns.

Rover offers solutions to the majority of mobile computing problems. The

asynchronous communication mechanism addresses both disconnection and address

migration, and minimising network communication using mobile objects overcomes

low bandwidth and reduces power consumption. However, Rover does not conform to

any existing middleware standards, but rather proposes its own standard for mobile

middleware to adhere to. This begins the trend of mobile middleware platforms that

offer their own solution to mobility issues, but clouds the problem of platform and

middleware heterogeneity.

 37

2.3.3 Tuple Spaces

Background

The tuple space is a well-established asynchronous communication model

[Gelernter85] that is effectively a shared distributed memory spread across all

participating hosts. To communicate, hosts submit tuples and anti-tuples to the tuple

space. Tuples are typed data structures and are comparable to objects in languages like

C++; to be altered they must be removed from the space, changed and then re-

inserted. However, anti-tuples capture requests seeking to remove or copy data from a

space; they contain a template against which to match tuples. Anti-tuples can be

regarded as questions and tuples the answers [Wade99]. Tuple spaces provide

temporal and spatial decoupling; hosts communicate through the space without being

online at the same time or attached by an explicit binding, an ideal approach for

mobile computing. Example tuple space implementations designed specifically for

mobile computing are described in turn.

L2imbo

The L2imbo platform [Davies98] is based upon the Linda tuple model architecture, but

adds extensions for operation within a mobile environment. Linda features a single

global tuple space. However, in an environment where communication links are

unreliable and costly all operations being performed on a central space is infeasible,

therefore L2imbo allows multiple tuples spaces to be created across hosts; tuples

propagate between spaces using a bridging agent. Alternatively, an individual tuple

space can span multiple hosts. The consistency between multiple tuple copies is

maintained by a distributed tuple space protocol (that is implemented as a multicast

group). The replication of tuple spaces across multiple hosts enables the tuple space to

remain accessible during disconnection.

Figure 2.4 Filtering tuples from one tuple space to another [Wade99]

 38

Furthermore, QoS attributes can be added to tuples, including delivery deadline, so

that mobile multimedia applications can be supported; this also allows the system to

adapt itself to make best use of network connectivity. System agents monitor QoS and

the propagation of tuples between tuple spaces. The monitoring agents watch

characteristics such as connectivity, communication cost and power and inject tuples

(representing the current system state) into a management tuple space. These are

globally accessible, allowing remote hosts to query current QoS conditions. Filtering

agents, a special type of bridging agent (illustrated in figure 2.4), then allow L2imbo to

adapt its behaviour by performing transformations on the tuples being distributed. For

example, a filtering agent can act between two spaces dealing with MPEG video

frames and only transmit I-frames, or by performing colour reduction on the I-frames

if it detects a drop in bandwidth.

L2Imbo’s implementation of the tuple space paradigm means that disconnection,

address migration and low bandwidth problems are solved. Furthermore, its use of

monitoring and adaptation agents help address variable network conditions, and could

feasibly be used to manage power consumption.

Linda In a Mobile Environment (LIME)

LIME [Murphy01] utilises the concepts of the Linda co-ordination model and

provides additional support to new types of distributed mobile applications. The

underlying core is based upon a global virtual data structure (a tuple space whose

content depends upon the connectivity of mobile hosts). This dynamically changing

global context is accomplished by breaking up the Linda tuple space into many tuple

spaces, each permanently associated to a mobile unit, and by introducing rules for

transient sharing of the individual tuple spaces based on connectivity. The only way to

access the global context from a mobile host is through an Interface Tuple Space

(ITS); this contains the tuples that the host is willing to make available to other mobile

units. The architecture of this model is shown in figure 2.5. Upon arrival of a new

mobile unit, the tuples in its ITS are merged with those already within the global

context and the result is accessible via the ITS. This abstraction provides the mobile

application with the perception of a local tuple space contained within the federated

space.

 39

Figure 2.5 Transiently shared tuple spaces [Murphy01]

LIME also allows the ability to react to changes in context, an important factor in

mobile application design (for example, when a new member node arrives). The Linda

model is extended by the Reaction concept. A reaction R(s, p) is defined by code

fragment s, which specifies the behaviour when a tuple matching the pattern p is

detected within the tuple space. Like L2imbo, the tuple space implementation is

particularly suited to addressing problems of terminal mobility, and the reaction

concept can be utilised to improve operation in varying network conditions and

resource consumption.

Tuples On The Air (TOTA)

TOTA [Mamei03] is a tuple-space middleware designed to support adaptive context-

aware applications in ad-hoc networks. Tuples are used to represent context

information and enable uncoupled interaction between distributed application

components. TOTA differs from previous implementations in that tuples are not

specific to a mobile node; rather a tuple is injected into the network and then

autonomously propagates according to a pattern defined by the application. The

TOTA architecture consists of a peer-to-peer network of mobile nodes, each running a

version of the TOTA middleware; these maintain references to neighbouring nodes. A

TOTA tuple (T) is defined as T= (C, P). The Content C represents the information

carried by the tuple and the propagation rule P determines how the tuple will be

transmitted. Tuples are injected into the system from a particular node and spread hop-

by-hop according to this propagation rule. For example this may state the physical

distance the tuple should travel (e.g. ten metres), or state how transmission is affected

 40

by the presence of other tuples. In addition the rule can also state how the content

changes while moving from host to host.

Other Tuple Spaces

Tuples spaces present powerful communication abstractions with simple programming

interfaces. However, the application of the paradigm to real world systems is a

complex task, requiring a thorough understanding of the process, and hence tuple

spaces are not particularly well used compared to other paradigms. However, there is

evidence that applications inherently matched to tuple spaces are simple to develop

[Murphy01]. Furthermore, commercial tuple space implementations (designed for the

fixed network) including JavaSpaces [Waldo98] and IBM’s T-Spaces [Wyckoff98] are

gaining prominence in the Java community; therefore, these will promote a greater

understanding of the paradigm and better awareness of its benefits. However, only T-

Spaces is currently suited to mobile computing, due to its reduced footprint size; the

reduced Java virtual machines for mobile devices do not yet support the full

JavaSpaces platform.

2.3.4 Publish-Subscribe Middleware

Background

In certain application scenarios, asynchronously occurring events need to trigger an

immediate response. For example, a credit card cancellation operation by a banking

service must invalidate a stolen card immediately and notify all affected services

[Bacon00]. Frequent polling to learn whether events have occurred overloads

communications and infrequent polling delays the response and users perceive the

application as sluggish or insecure. Therefore, asynchronous event notification is an

important communication paradigm for distributed applications. Publish-Subscribe is

a particular implementation of this paradigm. It allows processes to exchange

information based upon message content rather than direct message exchange between

destination addresses. A component subscribes to the event types they are interested

in, and then consumes the notifications when they are published. The decoupled

nature of event-based communication is well suited to mobility; after a mobile host

reconnects it can continue to retrieve the requested notifications.

 41

A number of publish-subscribe middleware now exists, and we examine selected

systems in turn. These consist of the pioneering event platforms that demonstrate the

techniques of publish-subscribe, the enhancements to these to support mobile

computing, and finally publish-subscribe services designed exclusively for wireless

networks.

Cambridge Event Architecture (CEA)

The Cambridge Event Architecture (CEA) [Bacon00] demonstrates how existing

synchronous middleware such as RMI, CORBA and DCOM can be extended to

include asynchronous operation. Objects use an IDL to publish the event types that

clients can subscribe to; hence CEA is language-independent. Each object has a

register method in its interface to allow clients to subscribe for a particular class of

event. Therefore, CEA integrates event functionality into the object interface, as

opposed to alternative independent services, including the OMG Event Service

[OMG98b]. This publish-register-notify paradigm allows a direct source from

subscriber to publisher (seen in figure 2.6a); however, the architecture also consists of

event mediators (event brokers), which are placed between publisher and subscriber

(illustrated in figure 2.6b). These offer the advantage of moving filtering computation

from resource deficient publishers to the broker. Furthermore, these mediators can

register interest on behalf of mobile subscribers and then buffer all notifications (when

the unit is disconnected). It also registers interest in the mobile client’s location, and

notification of an attach event (detecting the mobile user) triggers delivery of the

accumulated events to the user at the new location.

Figure 2.6 Event notification in CEA: a) direct and b) mediated [Bacon00]

 42

Scalable Internet Event Notification Architecture (SIENA)

SIENA [Carzaniga01] is a publish/subscribe service implemented as a distributed

network of servers (within a fixed network). The main aim is to achieve scalability for

large numbers of communicating entities and high volumes of notifications. A SIENA

server acts as both an access point, providing clients with an extended

publish/subscribe interface, and as a store-and-forward network router. Publishers use

the access points to advertise the information about the notifications they generate and

to publish these notifications. Subscribers use the access points to subscribe for

notifications of interest by supplying a predicate, called a filter, to be applied to the

content of notifications. Underlying Siena’s interface is a notification data model that

governs the semantics of the service. A notification in the model is a set of typed

attributes; each individual attribute has a type, a name, and a value. The attribute types

belong to a predefined set of primitive types commonly found in programming

languages and database query languages, and for which a fixed set of operators is

defined. SIENA is an example of a publish-subscribe service not extended to operate

across wireless networks; terminal mobility means that the subscriber will lose events

of interest when the device becomes disconnected.

Scalable Events and Real Time Mobility (STEAM)

STEAM [Meier02] is a publish-subscribe middleware from Trinity College, Dublin

specifically designed to operate in ad-hoc wireless networks. They argue that existing

publish-subscribe services like (SIENA and CEA) use centralised components (to

distribute events) located in the network, either co-located with producers or

consumers or on separate remote machines. However, in many wireless networks the

availability of these cannot be guaranteed. Therefore, STEAM presents an implicit

event model that requires no separate middleware components to offer system wide

services. Instead, group communication is used as a natural method to enforce this

model. Communication groups create a one-to-many pattern that allows publishers to

propagate events to a group of subscribers.

 43

Figure 2.7 Traffic light application demonstrating proximity group [Meier02]

STEAM is influenced by the idea that in mobile application scenarios entities are

likely to interact when they are in close proximity to one another i.e. the closer

consumers are to producers the more likely they are to be interested in receiving their

events. Therefore, proximity groups are the fundamental communication mechanism

in STEAM. Mobile hosts must be in the same geographical area as the group and also

express an interest in order to join and receive events. Figure 2.7 demonstrates an

example application scenario that requires proximity groups; a traffic light publishes

events describing its status and cars within a certain distance of the lights receive these

and react appropriately.

The REBECA Event Based Electronic Commerce Architecture (REBECA)

REBECA [Muhl02] is a content-based notification service. Its architecture is an

acyclic, connected graph of publishers, subscribers and event brokers. The edges are

point-to-point communication links along which message are delivered in FIFO

fashion. Three types of brokers form a broker network. Local brokers are co-located

with the publisher or subscriber and serve as their entry point to the service. These are

connected to at most one border broker that in-turn connects to inner brokers and

other border brokers. Each broker maintains a routing table for notification

forwarding. Elements in the table are a pair (F, L) where F describes the content filter

and L the communication link to forward along if a match is made. This is a scheme

similarly utilised by SIENA.

This architecture is unsuitable for wireless networks and hence REBECA’s brokers

have been extended to deal with the problems of terminal mobility [Fiege03]. Firstly,

they maintain a buffer for all undelivered events over a period of time (to manage

disconnections). When a subscriber reconnects its subscriptions are reissued

 44

automatically, the broker network then reconfigures so that events can be routed to the

new location (while the old route is removed), any messages sent to the old location

are replayed before new ones are sent.

Java Event-Based Distributed Infrastructure (JEDI)

JEDI [Cugola01] is conceptually similar to REBECA. It is an event broker architecture

that has added extensions to support client mobility; this is explicitly controlled by the

subscribing application. Two methods are available to the subscriber: moveIn &

moveOut. The client invokes moveOUT when it is about to disconnect from the

network and this forces messages to be stored. When the client reconnects and invokes

moveIN the old messages are routed to the new location. However, given the nature of

wireless networks, connection loss is unpredictable and calling a method beforehand

is infeasible.

Elvin

The original Elvin [Segall97] architecture proposed an individual server to act as a

notification router between multiple connected clients. Clients can act as producers

and/or consumers of events, and the server is responsible for routing notifications of

interest to consumers. This has been extended to include federations of multiple

servers, but the concept of routing notifications based on content to interested clients

remains the same. Quenching is a unique feature of the Elvin service; producers

receive information about what consumers are expecting of them so that they need

only generate the events that are in demand. This is important for some classes of

producers where the act of producing the event is expensive.

Elvin has been extended to operate in the wireless environment and cope with

disconnections. However, rather than modifying (and possibly encumbering) the Elvin

service, a prototype Elvin proxy has been developed, which can store notifications

while clients are disconnected [Sutton01]. Hence, the proxy remains connected to the

server and can act on the behalf of a mobile client whenever it reconnects.

 45

2.3.5 Analysis of Asynchronous Middleware

Asynchronous middleware is naturally suited to mobile computing applications. Table

2.2 illustrates how effective each of the two asynchronous paradigms are in addressing

the challenges of mobile computing. All solutions decouple the sender and receiver in

time and space, thereby overcoming the problem of weak connection. It can be seen

that tuple spaces are especially well suited to mobile computing; LIME, L2imbo and

TOTA demonstrate that with context support the paradigm can solve the majority of

mobile computing. Although these platforms have the potential to manage power

consumption, none directly tackles this problem.

Mobile

Challenge

Tuple

Spaces

Examples Publish-

Subscribe

Examples

Disconnection

L2Imbo, LIME,
TOTA

All

Low
Bandwidth

L2Imbo, LIME

All

Variable
Bandwidth

L2Imbo, LIME

Address
Migration

L2Imbo, LIME

REBECA,
STEAM, JEDI,
Elvin

Low Power

Small Storage
Capacity

L2Imbo, LIME,
TOTA

REBECA,
STEAM, JEDI,
Elvin

Table 2.2 Challenges of mobile computing met by asynchronous middleware

However, the tuple space it is not a well-understood paradigm. Therefore, event-based

publish-subscribe services offer a different, more accessible programming model.

Again, the described platforms offer good solutions to the problems of disconnection,

terminal mobility, low bandwidth and low memory capacity. However, like

enhancements to synchronous middleware, mediator solutions to terminal mobility

require middleware components to be available in the network (this cannot be

guaranteed), although STEAM offers a notable solution to this. Furthermore, these

solutions do not directly address power consumption or variable bandwidth that would

certainly be an issue for mobile multimedia applications.

 46

2.4 Data Sharing Middleware

2.4.1 Overview

Data sharing is an alternative communication abstraction for distributed systems.

Examples of early data sharing systems for fixed networks are: CODA

[Satyanarayanan90] and Globe [Bakker00]. Typically, these employ a strong

distinction between servers that store central copies of data (as data files, or objects),

and clients that hold personal caches. A client requests a replica of the data, which

can then be updated locally; replication algorithms that enforce strong data

consistency across hosts are then generally employed. However, mobile middleware

researchers have identified that the data sharing abstraction has a number of

advantages in environments where disconnection may be the normal state and network

bandwidth is scarce. This section examines three key data sharing middleware

platforms for mobile applications; the first two, Bayou and Ad-hocFS, share data held

in files, whereas XMIDDLE shares meta-data.

2.4.2 Bayou

Bayou [Demers94] is a data-sharing platform designed to explicitly support mobile

users who wish to share information like appointment calendars, databases, and

meeting notes. The middleware seeks to address the problem of data sharing in

environments with communication outages. Therefore, the architecture focuses on

server machines (laptops, or PDAs) that hold copies of one or more databases; mobile

clients then access data residing on the servers within communication range. This

method has the advantage that devices with limited storage capacity may still

communicate, as they do not need to store large local caches of data. Furthermore,

Bayou employs a read-any/write-any replication strategy to ensure consistency

between all copies of the data; a client can read and write to any copy of the database,

although timeliness in propagation of the updates between replicas cannot be

guaranteed and hence, only weak consistency is achieved. Bayou uses reconciliation

techniques (anti-entropy) to ensure that all copies of a database converge to the same

state and will eventually be identical if there are no new updates (i.e. servers receive

all writes to the replica and order them consistently). Finally, Bayou uses “fluid”

replication strategies that dynamically create new replicas based upon network

 47

characteristics. Therefore, low bandwidth problems are addressed by replicating the

data closer to the client. Notably, Bayou addresses the problems of disconnection and

address migration through database replication. However, a single client out of range

cannot continue operating unless a local server also resides on the device.

2.4.3 AdHocFS

AdHocFs [Boulkenafed03] is a novel middleware platform in that it specifically uses a

data-sharing paradigm to target co-operative shared work applications for mobile

hosts connected across ad-hoc wireless networks. To form a collaborative group, the

peers in wireless range are discovered using the SLP protocol (without directory

agents); members then authenticate themselves using digital certificates obtained from

a trusted third party (not required to be on-line). The group members are then free to

collaborate on the shared data space using an encrypted protocol; members can leave

and new trusted members can join at any time. To maintain data consistency a unique

token is associated with each newly created shared data; each member must obtain the

token in order to modify the data. Update propagation of the modified data is only

executed when a member tries to access the information. This reduces data

communication and hence saves power resources. Furthermore, an adaptive

replication strategy is utilized; storing all shared data upon each host will quickly

consume both energy and storage spaces. However, when a member leaves the data

may be lost. Therefore, an adaptive replication strategy is utilized. A profile for each

host is used by the replication protocol; this states available storage space, whether it

can store replicas and estimated time in the group. This information can then be used

to distribute replicas.

The replication of data at local clients ensures that disconnection problems are

avoided (changes can be made locally until reconnection). Furthermore, AdhocFS

provides good solutions to variable bandwidth, memory capacity and power

constraints. Data is intelligently replicated based upon context information about the

devices in the environment and network conditions.

 48

2.4.4 XMIDDLE

XMIDDLE [Mascolo02b] is a data sharing middleware designed to support mobile

applications that use both replication and reconciliation of data over wireless ad-hoc

networks. Hence, XMIDDLE is well suited to collaborative applications whereby

users exchange or work upon shared information; for example, a collaborative e-

shopping application where multiple users add to a shared shopping list, which is

reconciled before items are purchased. Each mobile device stores its data as an XML

tree; this allows complex data structures to be created using hierarchies of data nodes.

On each device a set of access points for the tree is defined that can be read and

modified by peers. Therefore, a host explicitly links to the access point of the tree to

download the required section. This host can then modify the data and when the two

become connected in the future this information is reconciled. The reconciliation of

XML trees is implemented using tree-differencing techniques.

XMIDDLE offers a powerful technique to share both data and its meaning. For

example, it is well suited to the sharing of context information between mobile users.

However, the tags associated with XML data are an extra overhead compared to

standard file sharing. Therefore, transmitting large XML trees may be expensive over

low bandwidth wireless networks (although it is possible to share sub-trees only).

2.4.5 Analysis of Data Sharing Middleware

Table 2.3 illustrates the effectiveness of data sharing middleware solutions in

overcoming the challenges of mobile computing. It can be seen that each of the

challenges have been addressed; in particular, weak connection and address migration

are addressed by the uncoupled nature of the paradigm. In addition, changing data

replication strategies solves the problems of poor bandwidth and scarce memory

resources. Finally, the adaptive replication strategies proposed in AdhocFS overcomes

both changing network QoS and low power. However, this paradigm is applicable to

only the subset of application classes for which it fits well, e.g. collaborative and

information sharing applications. The alternative paradigms already discussed propose

more natural solutions for different application classes e.g. information dissemination.

Therefore, it is likely that data-sharing systems will be confined to use by specialised

applications.

 49

Mobile Challenge Challenge

Addressed

Examples

Disconnection

Bayou, AdhocFS, XMIDDLE

Low Bandwidth

Bayou, AdhocFS

Variable Bandwidth

Bayou, AdhocFS

Address Migration

Bayou, AdhocFS, XMIDDLE

Low Power

AdHocFS

Small Storage Capacity

Bayou, AdhocFS

Table 2.3 Challenges of mobile computing met by data-sharing middleware

2.5 Mobile Agents

2.5.1 Overview

Agents can be described as “software entities”, which can be either stationary or

mobile. A Stationery agent resides on the same host throughout its lifetime, working

on behalf of the user, e.g. connecting to ftp sites or browsing through URLs.

Conversely, a mobile agent transfers executable code (behaviour) and state from

machine to machine. The mobile agent paradigm is well suited to supporting

distributed applications within the mobile environment. Firstly, the agent acting on

behalf of the client can move to the server and perform all communication locally

before returning; this limits the interaction over the wireless link, saving bandwidth

consumption and hence power. Furthermore, this reduction in communication limits

the possibility of failure due to partition or disconnection; the agent may monitor the

network status and control its mobility between hosts. Finally, moving the logic

processing to a more powerful server host overcomes the problems of limited

resources on the client. In this section, we examine typical Java-based agent solutions,

and also a system designed specifically for mobile hosts.

2.5.2 Java-based Mobile Agents

Mobile agents are now a popular technique to create distributed applications across

the Internet and a large number of systems are now available to do this. Examples are

 50

AgentSpace [Silva97], Aglets [Lange98], Concordia [Wong97] and Jumping Beans

(www.jumpingbeans.com). Agent systems are normally implemented in Java because

of the portability benefits offered by the Java Virtual Machine. Therefore, these

systems have very similar capabilities. For example, Aglets [Lange98] are Java-based

autonomous software agents that extend the model of network-mobile code, as used

by Java applets. Like an applet, the class files can migrate across a network. But

unlike applets, when an aglet migrates it also carries its state. An aglet is therefore a

running Java program (code and state) that can move from one host to another on a

network. These solutions are well suited to overcoming some of the challenges of

mobile computing e.g. disconnection, variable bandwidth and limited power.

However, their reliance on Java Virtual Machines and heavyweight implementations

makes these platforms unsuitable for the majority of mobile devices. This had led to

the emergence of agent platforms, with similar capabilities that execute on lightweight

Java Virtual Machines e.g. the Grasshopper platform [IKV99].

Furthermore, agents do not have to be Java-based, and other solutions are now

emerging; the .NET framework [Microsoft00] contains a Common Language Runtime

(CLR) that agents are able to execute upon. For example, µCode is a Java agent

solution that has been ported to .Net [Delamaro02].

2.5.3 Tacoma and Tacoma Lite

The Tacoma model [Johansen95] focuses on how agents can be used to solve

problems traditionally addressed by other distributed computing paradigms. The agent

is a process (code and state), with mobility as its primary characteristic. In order to

maintain state, the agents must manipulate data, i.e. leave data at a site and carry data

when it moves. For example, an agent visiting multiple sites, with each site

completing part of an overall computation needs to carry the sub results along with it

when it leaves. To support this, Tacoma introduces the concept of folders, briefcases

and cabinets, shown in figure 2.8. Folders contain data and code (including the source

code of the agent) relevant to different computations. A collection of folders

associated with an agent is known as a briefcase. Furthermore, stationary folders are

needed for permanent data repository purposes; therefore, file cabinets hold folders at

individual nodes. The fundamental property of the architecture is the meet abstraction;

 51

agents do not communicate by exchanging messages they simply meet at the same

location and exchange briefcases. For example, a client may request a service from a

system agent by passing it a briefcase containing a service specification; the system

agent then returns the service result in another folder.

Figure 2.8 Maintaining state in Tacoma using folders, briefcases and file cabinets

To explore the benefits of mobile agents within the domain of mobile computing, the

Tacoma Lite system [Jacobsen99] was developed. Tacoma Lite adds an extra layer to

the initial TACOMA architecture, which consists of an entity called the hostel that

acts as a network proxy for the mobile device. This is required because applications

assume the presence of a host that mobile agents cannot reach if the mobile device is

disconnected. To illustrate its capabilities a number of applications were developed,

including a weather alarm (to alert users when certain conditions arose) and a stock

ticker, which periodically checks stock prices for the users. Tacoma Lite offers two

benefits. Firstly, the system can overcome periods of disconnection without loss of

information. Secondly, the amount of data transferred to and from device is reduced

through the intelligent use of agents (rather than downloading all stock prices, the

agent finds only those required).

2.5.4 Analysis of Mobile Agents

Mobile agents are well suited to overcoming the challenges of mobility, as illustrated

in table 2.4. They overcome weak connection by moving from host to host when the

connection becomes available again. Communicating with the agent to inform it of the

new network address solves address migration. Furthermore, mobile code improves

power consumption and limited processing capabilities by moving the computation

away from the mobile device and onto more powerful machines. Agents can also

monitor QoS to effectively overcome varying levels of bandwidth. However, agent

1Site 1 2Site 2

File Cabinet
Folder Briefcase

 52

solutions remain resource heavy and rely upon virtual machines to allow portable

execution. Furthermore, agent traversal across the network is not suited to low

bandwidth networks (as the code must also be transmitted); in such environments the

agent can utilise alternative communication styles e.g. Remote Procedure Call and

asynchronous messaging.

Mobile Challenge Challenge

Addressed?

Examples

Disconnection

Java agents, Tacoma
Lite

Low Bandwidth

Variable Bandwidth

Tacoma Lite

Address Migration

Tacoma Lite

Low Power

Java agents, Tacoma
Lite

Small Storage Capacity

Tacoma Lite,
Grasshopper

Table 2.4 Challenges of mobile computing met by agent-based middleware

2.6 Service Discovery

2.6.1 Overview

A key characteristic of mobile computing is the mobile host’s interaction with

location-based services (as described in section 1.2.2). Hence, the ability to discover

what services are available at a particular location is especially important. An

illustration of this is a smart room, which contains a music player that can be

controlled by a mobile device. A user enters the room, discovers the available service

and then controls the service using their portable device. Only the music player at the

current location is of interest to the user. Therefore, technologies known as service

discovery protocols have emerged, which provide functionality to support dynamic

scenarios of this type.

At present there are four key service discovery protocols in the commercial realm:

Jini, Service Location Protocol, Universal Plug and Play, and Salutation, which are

 53

described in turn in the following sections. However, many aspects of their

implementations are not ideally suited to the domains of mobile computing. Particular

concerns are that their implementations are often heavyweight and contain centralised

network components, and their descriptive protocols are overly verbose. In the mobile

computing domain these are unacceptable. Hence, this section also describes current

research solutions that attempt to answer these criticisms.

2.6.2 Jini

Jini [Arnold99] is a Java based service discovery platform that provides an

infrastructure for delivering services and creating spontaneous interactions between

clients and services regardless of their hardware or software implementation. New

services can be added to the network, old services removed and clients can discover

available services all without external network administration.

The Jini architecture centres on central federated lookup services that physically exist

on remote machines in the network domain; clients and services first discover lookup

services in their vicinity before utilising them. The lookup service consists of a

directory of service items, which are made up of three elements: 1) its service

interface (defined as a Java Interface), 2) a Java object (service proxy) on which calls

to use the service can be made, and 3) a set of service attributes that describe the

service. In order to be discovered, new services register this information to one or

more lookup services. Furthermore, Jini employs the concept of leasing; a service

registers itself for a given time period, called a lease. When the lease expires the

service is no longer advertised.

When an application discovers the required service, the service proxy is downloaded

to their virtual machine so that it can then use this service. A proxy may take a number

of forms:

• The proxy object may encapsulate the entire service. This strategy is useful for

software services requiring no external resources.

• The downloaded object is a Java RMI stub, for invoking methods on the

remote service.

 54

• The proxy uses a private communication protocol to interact with the service’s

functionality.

Therefore, the Jini architecture allows applications to use services in the network

without knowing anything about the wire protocol that the service uses or how the

service is implemented; one implementation of a service might be RMI-based, and

another CORBA-based. This offers one particular solution to the problem of

middleware heterogeneity through the use of mobile code to manage interactions. This

property will be discussed further in chapter 3.

The Jini architecture is in general not well suited to the mobile computing domain.

Jini depends upon centralised middleware elements e.g. lookup directories, which

cannot be guaranteed to be available in all wireless networks. Furthermore, Java

virtual machines that include a full Jini implementation consume a large memory

footprint.

2.6.3 Service Location Protocol (SLP)

The Service Location Protocol [Veizades97] has been specified by the Internet

Engineering Task Force (IETF) and aims to provide a vendor independent standard for

service discovery. Three key parts compose the core architecture: 1) user agents that

perform discovery on behalf of the user or application, 2) service agents that advertise

the location and characteristics of a service, and 3) directory agents that collect

service addresses from service agents and responds to user agents. The operation of

these agents is illustrated in figure 2.9.

The Directory Agent is a fixed centralised element that operates in a similar manner to

a Jini Lookup Service. Hence, user agents and service agents first attempt to find the

local directory agent in their domain. However, unlike Jini, if none are found then user

agents and service agents can interact directly. A service agent can receive a lookup

request; if its service matches it can send a response. Therefore, SLP has a flexible

and scalable architecture that is suitable for different network types i.e. it can be used

in both wireless and fixed enterprise networks, as illustrated by figure 2.9.

 55

Figure 2.9 Service discovery in SLP: (a) using a directory agent and (b) without using a

directory agent

2.6.4 Universal Plug and Play (UPnP)

Universal Plug and Play [Microsoft00b] is a platform and language independent

discovery architecture designed to connect devices in unmanaged or ad-hoc networks.

Internet technologies including: IP, TCP, UDP, HTTP and XML form the core of the

architecture. When a new UPnP device is added to the network, the UPnP discovery

protocol allows a device to advertise its service to UPnP control points (users of

devices or services) on the network, using a multicast protocol i.e. all control points

listen to the same group address. Similarly, control points multicast discovery

messages searching for services that match their requirements. All UPnP devices

listen on the standard multicast address (239.255.255.250:1900) and respond to

requests that match their service. These service discovery messages are broadcast

using the Simple Service Discovery Protocol (SSDP) [Goland99]. Another key feature

of UPnP is device description. After discovering a device, the control point downloads

an XML description of that device; this holds information including: manufacturer,

model and serial number, as well as a list of the embedded services that provide its

functionality. Finally, the SOAP protocol [Box00] is used to control (invoke) services

once they have been discovered.

The discovery architecture of UPnP is well suited to mobile computing, as it is largely

multicast based and requires no central components. However, the use of XML, HTTP

(a) (b)

 56

and SOAP to manage description and control are less effective as these are

synchronous and verbose protocols whose performances suffer over bandwidth

limited wireless networks. The graph in figure 2.10 illustrates that the significant

number of messages of this type used for UPnP discovery consumes more bandwidth

than alternative technologies e.g. SLP and MARE.

2.6.5 Salutation

An open industry consortium (www.salutation.org) is developing the Salutation

architecture [Salutation98]; this consists of Salutation Managers (SLMs) and

Transport Managers (TMs) that together perform the role of service brokers. An SLM

provides a transport independent interface where services can register their

capabilities and clients can query the SLM to lookup services. Transport Managers are

transport dependent elements that discovers other Salutation Managers and form the

network of brokers over which discovery takes place. They use different discovery

techniques dependent on the underlying transport, including: checking a static table of

known Salutation Managers, contacting a central element or broadcasting a query.

Like Jini and UPnP, Salutation includes capabilities to use a service after discovery;

for this it utilises the Sun Microsystems’ Open Networking Computing Remote

Procedure Call protocol [Srinivasan95].

The developers of Salutation have identified its weaknesses in supporting mobile and

ubiquitous computing and have produced Salutation Lite [Salutation00] to overcome

these. The protocol operates over IRDA [IrDA01] and the amount of data exchanged

during service discovery has been reduced. Furthermore, the implementation provides

only discovery capabilities not session management; hence the footprint is reduced to

better suit mobile devices.

2.6.6 Service Discovery Protocol (SDP)

The Bluetooth protocol stack contains the Service Discovery Protocol (SDP)

[Bluetooth99b], which is used to locate services provided by or available from a

Bluetooth device. It has been modified to suit the dynamic nature of ad-hoc

communications and addresses service discovery over the Bluetooth protocol and

 57

hence it is network dependent. The following inquiries are available for service

discovery: search for services by service type (e.g. a printer service), search for

services by service attributes (e.g. a printer service with colour printing) and service

browsing without a priori knowledge of the service characteristics. SDP does not

include functionality for accessing services. Once services are discovered with SDP,

they can be selected, accessed, and used by mechanisms outside of the scope of SDP.

228

16
4

0

50

100

150

200

250

UPnP SLP Mare

Discovery Protocol

M
es

sa
g

es

Figure 2.10 Number of messages to discover four services in different protocols

2.6.7 MARE

MARE [Storey02] is a research based resource discovery platform for operation across

wireless ad-hoc networks (it was designed to support applications for teams of

mountain rescue workers). The main aim is to minimise the network traffic created for

discovery compared to the high protocol overhead of the previously described

discovery protocols. The two key aspects of the implementation are tuple spaces and

mobile code. Tuple spaces are the communication mechanism to transmit resource

information, messages and importantly mobile agents. MARE uses the L2imbo

implementation [Davies98], hence participating nodes in the distributed tuple space

form a multicast group; each machine transmits a beacon to this group containing all

resources present in its MARE instance. MARE then uses mobile agents to move

operations closer to the data source and hence reduce bandwidth use. The graph in

figure 2.10 demonstrates that MARE uses fewer messages than both SLP and UPnP to

support service discovery.

 58

2.6.8 The Java Enhanced Service Architecture (JESA)

JESA [Preuss02] is a lightweight, Java-based service platform for devices with limited

resources that communicate across ad-hoc networks. At the core of this architecture is

the JESA Service Discovery Protocol (JSDP), which is a lightweight protocol offering

similar functionality to Jini: locating services, retrieving service proxies and querying

service attributes. The major goal of JSDP is to work transparently if there is a central

broker available or not. When a broker is available, providers register their service

here and stop responding to requests. A client requests service information and a

provider announces its presence and capabilities using messages delivered atop UDP

multicast (responses are sent by UDP unicast). Therefore, this approach utilises

elements of both Jini and SLP to produce a Java protocol well suited for discovery in

ad-hoc networks.

2.6.9 Centaurus

Centaurus [Kagal01] is an example of an intelligent service platform designed

specifically for environments such as SmartHomes and SmartOffices. For this, it

introduces its own service discovery platform. A Centaurus System is a fixed

architecture localised to a particular space e.g. a room; clients can then access the

services of a Centaurus system by connecting to it. A room is equipped with a

Centaurus Communication Manager, whose client can be downloaded onto mobile

devices to allow users to interact with it directly. When a user enters the room for the

first time they have the option to install this software on their portable device; once

installed, it continuously reads the updated list of registered services. A user is then

able to choose a service and execute selected functions. This is an example of user

driven service discovery and interaction using a generic proxy; however, this has the

disadvantage that automated software agents are unable to perform discovery.

Centaurus is an example of a growing trend of service platforms for smart spaces and

ubiquitous computing scenarios that generally include their own proprietary discovery

mechanisms. Another example is the Gaia middleware infrastructure [Roman02],

which supports similar smart spaces.

 59

2.6.10 Analysis of Discovery Protocols

The four established discovery protocols (SLP, Jini, UPnP and Salutation) offer

varying levels of suitability for wireless networks. Jini and Salutation are large

implementations not suited to limited memory capacity (although Salutation Lite

attempts to address this). Furthermore, Jini relies upon centralised network

components to be available to connect to. SLP, UPnP, and MARE address this

problem by using multicast communication to remove reliance on centralised

elements. Hence, elements may become disconnected, and services can be found as

the user changes location. However, SLP and UPnP utilise verbose text-based

protocols that in turn consume limited bandwidth and power.

Mobile Challenge Challenge

Addressed?

Examples

Disconnection

UPnP, SLP, MARE,
JESA

Low Bandwidth

MARE

Variable Bandwidth

Address Migration

UPnP, SLP, MARE,
JESA

Low Power

MARE

Small Storage Capacity

Salutation Lite,
MARE, JESA,

Table 2.5 Challenges of mobile computing met by service discovery middleware

Given these constraints, new discovery protocols especially designed for wireless

networks have been developed. For example, JESA enhances the Jini architecture to

operate across wireless networks without centralised entities and using a lightweight

implementation. Furthermore, the MARE platform promotes an efficient discovery

protocol that does not waste network and device resources. Table 2.5 illustrates that

service discovery protocols have emerged to meet the challenges of mobile computing

(variable bandwidth has not been addressed, as this is not a significant issue in service

discovery).

 60

2.7 Adaptive Middleware

2.7.1 Overview

The previous middleware implementations in general offer fixed platforms; that is,

they do not support the level of reconfiguration required to accommodate mobile

computing in the face of wide ranging context changes. The mobile environment is

dynamic in nature; the environmental context changes (e.g. network bandwidth) and

the end system resources fluctuate. Therefore, solutions have emerged that adapt

middleware behaviour to ensure that an application maintains the best level of service

in the face of these changes. Many techniques have been used to dynamically adapt

software; in this section we examine two complementary mechanisms that have been

applied in the middleware domain, namely reflection (which offers open access to

system inspection and reconfiguration) and policies (which support mechanisms to

control dynamic changes). Other adaptive middleware, e.g. reconfigurable protocol

stacks, are not considered in order to limit the scope of this section.

2.7.2 Reflective Middleware

Overview

A reflective system maintains a representation (the meta-space) of its own behaviour

that is available for introspection and adaptation. Fundamentally, this meta

representation is causally connected to the underlying behaviour it describes. This

causal connection ensures that changes made to the self-representation are mirrored in

the underlying system’s state and behaviour, and vice-versa. This technique has been

used in language design, for example the Java Core Reflection API [Sun02], operating

system design [Yokote92] and concurrent languages [Watanabe87]. However, in this

section we focus on the use of reflection in middleware.

The reflective middleware community identified that well-established middleware like

CORBA, EJB and DCOM maintain a black-box philosophy, whereby a fixed service

is available to users, and it is typically impossible to view or alter this implementation.

Hence, [Blair01] propose that the next generation of middleware platforms should be

configurable, to meet the needs of a given application domain, dynamically

reconfigurable to enable the platforms to respond to changes in their environment, and

 61

evolvable to meet the needs of changing platform design. This openness is achieved

by applying reflection to middleware.

The key to the reflective approach is to offer a meta-interface, or meta-object protocol

(MOP), supporting access to the engineering of the underlying platform. This MOP

provides operations to inspect the internal details of a middleware (introspection), and

by exposing the underlying implementation it is also possible to insert behaviour, e.g.

quality of service monitors. In addition, the MOP typically provides operations to alter

the underlying middleware (adaptation), e.g. changing the implementation of the

underlying transport protocol to operate efficiently over a wireless link or inserting a

filter to reduce the bandwidth requirements of a media stream. Reflective middleware

platforms typically offer two styles of reflection:

• Structural reflection supports introspection of the underlying system structure,

often in terms of the set of interfaces supported. Also supported is the adapting

of system behaviour; the MOP provides access to make changes to the

architecture of the system, e.g. in terms of components and connectors.

• Behavioural reflection is concerned with introspection and adaptation of

activity in the underlying system, e.g. in terms of the arrival of invocations.

Typical mechanisms include interceptors and dynamic proxies.

A significant number of reflective middleware platforms have emerged, including:

OpenORB [Blair01], Dynamic TAO [Kon00], Flexinet [Hayton98], K-ORB [TCD00]

and MULTE-ORB [Kristensen00], which are described in turn. Notably, UIC

[Roman01] is a reflective middleware designed to tackle middleware heterogeneity in

mobile environments, and is hence investigated in chapter 3 of this thesis.

OpenORB

The OpenORB [Blair01] design philosophy promotes a marriage of reflection,

component technologies and component frameworks, to create families of reflective

middleware. Components are the building blocks of the middleware, where a

component is “a unit of composition with contractually specified interfaces, which can

be deployed independently and is subject to third party creation” [Szyperski98]. This

technique promotes configurability, re-configurability and re-use at the middleware

level. Reflection is used to provide a principled mechanism to inspect and

 62

dynamically adapt the component structure. Finally, component frameworks constrain

the design space and the scope for evolution, where a component framework (CF) is

defined as a collection of rules and contracts that govern the interaction of a set of

components [Szyperski98].

Figure 2.11 The Meta-Space structure of OpenORB

Figure 2.11 illustrates the meta-space model that forms the basis of the OpenORB

design. Every component offers a meta-interface allowing access to an underlying

meta-space. Four distinct meta-models represent the meta-space: the interface,

architecture, interception and resource meta-models. Where the interface and

architecture meta-models support structural reflection, and the interception and

resource meta-models support behavioural reflection.

The interface meta-model provides access to the external representation of a

component in terms of the set of provided and required interfaces. Furthermore, the

architecture meta-model accesses the software architecture of a component

represented by two elements: a component graph and a set of architectural

constraints. The component graph is represented by a set of connected components,

where a connection maps between a required and provided interface in the same

address space. Hence, the architecture meta-model can be used to both discover and

make changes to this structure at run-time.

The interception meta-model enables the dynamic insertion of interceptors, which

enable the insertion of pre- and post- behaviour onto interfaces. In contrast, the

 63

resources meta-model offers access to underlying resources and resource management

[Duran00], and is based upon the abstractions of resources and tasks. Resources can

be either primitive (e.g. raw memory or OS threads) or complex (e.g. buffers or user-

level threads multiplexed on to kernel-level threads). Tasks are the logical unit of

activity in the system, which have a pool of resources that support their execution. As

with other meta-models, it is then possible to either inspect or adapt activity associated

with resources.

BT implementations

Binding
Layer

Comms
Layer

Resource
Layer

Binding
CF

Protocol
CF

Buffer
Mgt. CF

Thread
Mgt. CF

Multimedia
Streaming
CF

Protocols

Filters

Buffer policies

Transport
Mgt. CF

SchedulersTransports
Figure 2.12 The component frameworks of Open ORB

Figure 2.12 illustrates the architecture of the OpenORB middleware decomposed into

an extensible set of component frameworks, such as buffer management and binding

establishment. Hence, OpenORB is structured as a set of configurable and

reconfigurable component frameworks, and reflection is then used to discover the

current structure and behaviour, and to enable selected changes at run-time. The end

result is a flexible middleware technology that has been specialised to domains

including multimedia and real-time systems.

DynamicTAO

DynamicTAO [Kon00] is a reflective CORBA ORB built as an extension of TAO

[Schmidt99]. Where TAO is a portable, flexible, extensible, and configurable ORB

that conforms to the CORBA standard and utilises the Strategy design pattern

[Gamma95] to encapsulate different aspects of the ORB internal engine. TAO

contains a configuration file that specifies the strategies the ORB uses to implement

aspects like concurrency, request de-multiplexing, scheduling, and connection

 64

management. When the ORB is initiated, the configuration file is parsed and the

selected strategies are loaded. TAO is used in static real-time applications.

DynamicTAO extends TAO to support on-the-fly reconfiguration; this is achieved by

keeping an explicit representation of the ORB internal components, and of the

dynamic interactions among them. The ORB is then able to change specific strategies

without having to restart its execution; this process is managed by component

configurators [Kon00b]. A component configurator maintains the dependencies

between a component and other system components. The process running a

dynamicTAO ORB contains a configurator called the DomainConfigurator, which is

responsible for maintaining references to instances of the ORB and to servants

running in that process. In addition, each instance of the ORB contains a customized

configurator called the TAOConfigurator that contains hooks to which

implementations of dynamicTAO strategies are attached. Figure 2.13 illustrates these

features within a process containing a single instance of the ORB.

Figure 2.13 Reifying the dynamicTAO structure [Roman01]

This reflective mechanism supports inspection and reconfiguration of the ORB. This

is achieved by exporting an interface for (1) transferring components across the

distributed system, (2) loading and unloading modules into the ORB runtime, and (3)

inspecting and modifying the ORB configuration state.

 65

Figure 2.14 dynamicTAO Components [Roman01]

The dynamicTAO architectural framework is depicted in Figure 2.14. The Persistent

Repository stores category implementations in the local file system. Once a

component implementation is stored in the local repository, it can be dynamically

loaded into the process runtime. A Network Broker receives reconfiguration requests

from the network and forwards them to the Dynamic Service Configurator. The latter

contains the DomainConfigurator (shown in Figure 2.13) and supplies common

operations for dynamic configuration of components at runtime.

Flexinet

The FlexiNet platform [Hayton98] is a component-based Java based middleware

platform that emphasises the use of reflection within the protocol stack. There are four

key elements of the FlexiNet architecture: software components, transparent

component binding, policy definition, and automated deployment.

The component model is based upon bindings between components, so that a

programmer may locate one from another. Components may pass references between

each other in a transparent way; in these circumstances, FlexiNet associates the

implicit binding request with the relevant policies and ensures that the constructed

binding respects these policies. Notably, a reflective protocol stack is related to the

binding to carry out the call process. FlexiNet provides a layered protocol stack, in

which the layers can be viewed as reflective meta-objects that manipulate an

invocation using Java Core Reflection [Sun02]. Reflection allows the component to

 66

have an open implementation; depending on what is required, the component can

adapt itself by adding or removing sub-components that provide a degree of

functionality. This means that rather than altering a stack of micro-protocols, the more

complex layers of the FlexiNet architecture adapt themselves to changes in the

environment.

K-ORB

K-ORBs [TCD00] are instantiations of the minimumCORBA framework (a subset of

OMG's CORBA 2.2 specification that is targeted at resource constrained

environments) that allows developers to build ORBs for domains such as embedded

systems, PDAs, intelligent devices and real-time systems. The K-ORB framework is

an extension of the Mobile IIOP Engine developed in the Alice Project [Haahr00].

The K-ORB framework allows developers to build ORBs where the environment and

set of resources available to the ORB are subject to change at runtime. Mobile

devices, for example, use the dynamic reconfiguration of the network protocol to

select the most appropriate underlying network transport at runtime. For example,

when a PDA with a GSM modem disconnects from the fixed network (an Ethernet or

Wireless Ethernet connection), its transport protocol is dynamically reconfigured to

Mobile IIOP (TCP/IP over GSM) to enable CORBA clients and servers on the PDA to

recommence communication with hosts on the fixed network. Similarly, when a PDA

with a GSM modem connects from the fixed network, its transport protocol is

dynamically reconfigured from Mobile IIOP to IIOP to provide higher bandwidth

connections for CORBA clients and servers on the PDA. Hence, the K-ORB

framework uses dynamic reconfiguration to tackle many of the challenges of mobile

computing e.g. disconnection, address migration, low bandwidth, small memory

capacity and variable bandwidth.

MULTE-ORB

MULTE-ORB [Kristensen00] is a reflective multimedia object request broker. The

main programming models behind MULTE-ORB are explicit stream bindings, stream

interfaces and flows. A binding type identifies the type of stream interfaces that

participate in the binding, where a stream interface consists of source and sink media

 67

flows. Reflection is provided through reification of the composition of the binding,

making it available for inspection and adaptation through meta-object protocols.

Furthermore, Quality of Service management is supported by a set of components

monitoring the behaviour of the system and binding controllers that encapsulate user

policies for reconfiguration and adaptation.

2.7.3 Policy based Adaptive Middleware

Overview

Rather than perform transparent adaptation of middleware behaviour (e.g. as

performed by Ad-hocFS [Boulkenafed03] and CODA [Satyanarayanan90]), the

application is in a better position to determine how to adapt to context changes.

Hence, systems promoting application-aware adaptation have emerged

[Satyanarayanan96]. These generally allow the application to state its rules for

adaptation as a policy that can be interpreted by the underlying middleware. For each

particular condition the matching rule is applied to change the middleware behaviour.

Four example systems that promote this technique are described in turn.

Odyssey

Odyssey [Satyanarayanan96] is an extension to the file sharing system CODA,

designed to support access to shared information from mobile hosts. Information is

stored on remote, reliable and centralised servers and Odyssey supports the access to

this by mobile clients. The application specifies the policies to adapt the behaviour of

the platform in terms of utilisation of system resources. Interest is registered in

particular resources, and for each resource an application resource handler is also

created. A Viceroy component then monitors the resources being utilised by the

applications; when the resource availability drops below a set value, the resource

handler of the application is invoked. This notifies the application that it needs to

adapt its behaviour to cope with the change.

Puppeteer

Puppeteer [Flinn01] is an adaptive component based middleware system to explicitly

manage the energy consumption of mobile devices. It concentrates on the distribution

and presentation of media and documents, for example Microsoft Powerpoint

 68

presentations, and reduces their energy resource use. By utilising the exported APIs of

each application and the structured nature of the documents Puppeteer modifies the

behaviour of the application without access to source code.

The Puppeteer architecture consists of four tiers: the applications to be adapted,

Puppeteer local proxies, Puppeteer remote proxies and data servers. The applications

and data servers send all communication through the Puppeteer local and remote

proxies, who are responsible for performing adaptation. The remote proxy parses

requested documents, exposes their component structure (as a tree) and associates the

data with each node. This skeletal structure is then returned to the local proxy, which

based upon the application specific policy, fetches sets of elements from within the

skeleton at a specified fidelity. The application is then updated with this newly fetched

data. Hence, Puppeteer supports two forms of policy-based adaptation: 1) sub setting

adaptation, where only parts of the document are presented to the application, and 2)

versioning adaptation where a different version of a document is presented e.g. a low-

resolution image.

The Lancaster Context Architecture

Applications need to adapt to multiple contexts; however, adaptive behaviour

triggered by one attribute can cause side effects for other attributes. These can in turn

create conflicting actions e.g. a request to reduce power consumption enforces

applications using the network to postpone their activities, as a consequence the

network bandwidth increases and this could trigger a request to applications to utilise

the spare bandwidth (i.e. the two are in conflict). Therefore, as well as supporting

multiple context types co-ordination between adapting mechanisms is also needed

[Efstratiou02].

Researchers at Lancaster University have presented an architecture that provides a

common space for co-ordinated system wide interaction between adaptive

applications and a complete set of context attributes. The system they present

decouples adaptation policies and mechanisms (illustrated in figure 2.15). The context

space acts as a repository for context information, storing information from the device

monitors, applications and middleware for use by adaptation strategies. The

adaptation control module is a key component of the architecture driven by a set of

 69

adaptation policies; it is responsible for co-ordinating adaptations and resolving

potential conflicts. Furthermore, it is identified that the decoupling property of the

architecture allows it to be integrated with a range of existing platforms such as the

event-based, tuple spaces and object-based middleware described earlier.

It is clear that multiple context information must be supported for mobile applications

and that the resolution of conflicts is an important research issue. However, the

proposed architecture presents additional overhead that may not be suitable for all

mobile devices. Devices that only execute a single application (e.g. Palm OS) do not

need to resolve conflict; therefore, the architecture may waste valuable resources.

Figure 2.15 Architecture to support adaptive applications

CHARISMA

The CHARISMA platform [Capra01] developed at University College London is a

reflective policy-based framework for adapting the behaviour and operation of an

underlying middleware platform. In their case they utilise the XMIDDLE data-sharing

platform (see section 2.4.4), although the generic features of the framework make it

applicable to other middleware solutions [Capra02]. The work concentrates

specifically on the important issue of how context information (e.g. device context e.g.

power, memory, etc and external context e.g. network connection, bandwidth, location

etc.) affects the performance of a mobile application and how middleware adaptation

Adaptation
Control

Context
Space Middleware

Application
Adaptation policies

Adaptation mechanism

Context Sensor

Context Sensor

 70

can be performed to maintain the best level of performance in the face of these

changes.

Figure 2.16 A CHARISMA application profile [Capra02]

In a specific context, an application may require the middleware to behave in a

particular way e.g. an image processing application may ask to display pictures in

black and white rather than colour when the battery power is low. Each application

describes their adaptation requirements in an application profile. This contains

associations between the services that the middleware delivers, the policies that can be

applied to deliver the services, and the context configurations that must hold in order

for a policy to be applied. An example policy is illustrated in figure 2.16. Hence, for

the previously described example the middleware service ‘DisplayPicture’ may have

two policies: the ‘Black&White’ policy with a context of ‘Battery Power low’, and a

‘Colour’ policy with context ‘battery power high’. Each time the application invokes

DisplayPicture the middleware consults the required profile and then selects the

appropriate policy based upon the current context.

Every application submits its policy to the middleware upon initialization, however,

given the dynamic nature of mobile applications it is expected that the policies

themselves need to be changed dynamically. Therefore CHARISMA provides a

reflective API that allows introspection and dynamic reconfiguration of this policy.

CHARISMA also manages the end-system resources of the mobile device being

utilised by competing mobile applications. Different policies have different non-

functional requirements e.g. the present Quality of Service is different, and they also

utilise different amounts of resources. The resolution of these conflicts is resolved by

an auction protocol [Capra02b]. Each application submits a bid for resource use citing

 71

non-functional concerns e.g. security, performance, availability etc. The resource goes

to the highest bidder. In a similar fashion, reflection allows the application to

dynamically change the non-functional properties of its bid if its requirements

dynamically change.

This is a loosely coupled framework supporting behavioural reflection; the meta-level

provides a description of the middleware’s operation under certain conditions, and for

individual applications, rather than the actual platform structure. The policies act as

the middleware meta-level and any changes to these documents create an implicit

change in the middleware’s behaviour rather than the platform structure. CHARISMA

cannot be singularly classified as either a reflective middleware or a policy based

adaptive middleware; rather it bridges the two and provides a generic higher-level

framework.

2.7.4 Analysis of Adaptive Middleware

The previous sections of this chapter demonstrated that fixed middleware overcomes

the individual problems of mobile computing e.g. weak connection, address migration

and poor bandwidth. However, these fixed solutions do not support well the

challenges of changing user and environmental context, fluctuating network

conditions and inconsistent device resources. Hence, adaptive middleware has been

developed to best support individual mobile applications to react to changes in the

environment, and continue to provide the best operation. Table 2.6 describes how

adaptive middleware addresses the challenges of mobility. This shows that these

solutions aim to solve the problems of variable network QoS and variable end-system

resources. The frameworks generally do not examine disconnection and address

migration, which are the responsibility of core middleware implementation (K-ORB is

the notable exception).

With the exception of K-ORB and UIC (see section 3.7), the reflective middleware

platforms were not designed explicitly for mobility and therefore suffer from the

problems of exhausting resources through their implementation. Hence, this poses the

question as to whether the resource heavy technique of reflection is suited to the

mobile domain.

 72

Mobile

Challenge

Challenge

addressed

Example

Disconnection

K-ORB

Low
Bandwidth

OpenORB, DynamicTAO, K-ORB, Puppeteer,
CHARISMA, Odyssey

Variable
Bandwidth

OpenORB, DynamicTAO, K-ORB, Puppeteer,
CHARISMA, Odyssey

Address
Migration

K-ORB

Low Power

Puppeteer, CHARISMA, Odyssey

Small Storage
Capacity

K-ORB, CHARISMA, Puppeteer, Odyssey

Table 2.6 Challenges of mobile computing addressed by adaptive middleware

Policy driven mechanisms can be seen as a higher-level framework for adaptation i.e.

they sit above reflective middleware, which concentrates on low-level middleware

change. They offer the key benefit of supporting reaction to given context changes and

events, ensuring the correct policy is executed. Therefore, a policy framework when

applied in the domain of mobile computing would better serve the changes made by

reflective middleware e.g. OpenORB and DynamicTAO.

2.8 Conclusions

This chapter has illustrated the many middleware solutions that are now available to

mobile application developers. These offer a spectrum of middleware styles e.g.

remote method invocation, publish-subscribe, tuple spaces, data sharing, agents,

service discovery and adaptive middleware. There are many challenges within the

mobile domain, and advancements have been made to meet these problems, for

example publish-subscribe paradigms to solve weak connection. In addition,

combinations of these technologies (hybrid architectures) can improve system

operation e.g. a CORBA enhancement combined with an adaptive framework to

support changing QoS.

However, in general most of these solutions are not standards based. Each presents its

own standard for application developers to adopt. This creates a domain populated

 73

with heterogeneous middleware platforms that are inoperable with one another. There

is heterogeneity between middleware styles, e.g. publish-subscribe, RMI, agents and

data-sharing, and these cannot interoperate with one another. Furthermore, there are

heterogeneous implementations of each paradigm e.g. SOAP and CORBA for remote

method invocation, SLP, UPnP and Jini for service discovery, and CEA and Siena for

publish-subscribe; again, the different implementations cannot interoperate because

they do not conform to a common standard within that paradigm.

This middleware heterogeneity problem is likely to get significantly worse with the

emergence of proprietary middleware solutions for the domain of ubiquitous

computing (cf. Gaia and Centaurus). No single middleware solution will “win”

because: 1) different styles of middleware are better suited to different classes of

application, 2) one middleware is better than another at dealing with a specific

mobility problem, 3) these middleware are already well used and understood by

developers, and 4) legacy applications and implementation that use them are already

in place.

The issue of tackling middleware heterogeneity is investigated in the following

chapter. In particular, the author believes that mobile computing requires higher-level

middleware frameworks that are able to deal in an integrated manner with the

multitude of service implementations that a client may encounter as it moves from

location to location. Hence, adaptive middleware has the potential to support such

behaviour, however it has yet to be fully investigated as a solution to this problem

(The UIC middleware platform [Roman01], which presents an initial solution is

investigated in detail in section 3.7).

 74

3Chapter 3 Tackling Middleware Heterogeneity

3.1 Introduction

As described in the previous chapter, a range of middleware solutions have been

developed to tackle the challenges of mobile computing. However, these solutions add

to the escalating problem of middleware heterogeneity. The different styles of

middleware (e.g. RMI, tuple space, publish-subscribe etc.) do not interoperate with

one another. In addition, individual implementations of middleware paradigms e.g.

CORBA and SOAP (for RMI), and LIME and L2imbo (for tuple space) cannot

interact. Chapter 2 concluded that this is an important problem in the mobile domain.

The next generation of mobile applications will operate across multiple locations

consisting of unknown and heterogeneous middleware implementation. Hence, it is

not sufficient to develop client applications upon a single platform type. The

middleware heterogeneity problem must be tackled to provide the support to interact

with newly discovered services.

This chapter examines and evaluates the state of the art in tackling middleware

heterogeneity. The problem of middleware heterogeneity in the fixed network is now

well documented, and a number of contrasting solutions have emerged. These range

from: new higher-level interoperation architectures, solutions based upon software

bridges between middleware domains, and the exchange of mobile code. Notably, one

platform has examined the problem in the mobile domain. The Universal

Interoperable Core is a reflective middleware that uses dynamic adaptation to address

the problem. In the following sections, each of these will be analysed in turn.

3.2 Web Services Architecture

3.2.1 Overview

The Web Services Architecture (WSA) [Booth03] is an evolving open standard whose

goal is to ensure interoperability between software applications running on a variety of

platforms and/or frameworks by utilising the technologies of the World Wide Web.

WSA is a Service Oriented Architecture, where a service is a software agent that

provides functionality on behalf of its owner through well-defined operations.

 75

Requesters (client applications or other Web Services) make use of these services

through the exchange of XML messages. The Web Services standard is rapidly

expanding, and this description captures the essence of its core features; future

extensions, including semantic based service agreement, can be followed in the work

of the Web Services Architecture Working Group (www.w3.org/2002/ws/arch/).

Figure 3.1. The elements of WSDL [Newcomer02]

A Web Service is an abstract entity, whose service description (interface) is

documented using the XML based Web Service Description Language (WSDL)

[Chinnici03]. WSDL is made up of three parts, as illustrated in figure 3.1. Firstly, a

standard method for describing the data types passed in messages; using XML

provides a standard, flexible and extensible data format, which overcomes the

difficulties of different platform’s type systems. Secondly, the abstract definitions of

the service’s operations; these are described in terms of a loosely coupled message

exchange between requestor and provider. Four styles of abstract operation are

available; hence, Web Services can abstractly describe RPC, publish-subscribe and

asynchronous messaging:

• Request-Response (input message followed by an output message), a service

receives a request of its functionality and responds to it.

• Solicit-Response (an output message followed by an input message), a service

provider acts as a service requestor.

• One-Way (an input message), a service receives a notification message.

• Notification (an output message), a service outputs a notification message.

 76

The WSDL specification is a work in progress, and its development can be followed

on the Web Services activity page (http://www.w3.org/2002/ws/).

Thirdly, a service binding describes the network transport protocol that will carry

messages between interacting agents. A concrete agent that physically sends and

receives these messages then implements the WSDL interface. Therefore, the power

to overcome middleware heterogeneity with Web Services emerges from the

separation of an abstract definition of a communication endpoint from its concrete

implementation (or data format binding). A particular Web Service may be

implemented by a SOAP based agent one day, and by a CORBA based agent the

following day; the service or client application using the operations of this service

continues interacting transparently.

WSDL is a primitive language for describing distributed systems; it does not include

the description of non-functional characteristics e.g. QoS, cost, sequencing of

operations and security properties. Extensions of the specifications to encompass these

are likely to appear in the future; the Web Services Endpoint Language (WSEL)

[Hung02] is an example of a language for describing non-functional properties.

Furthermore, WSDL provides only simple interactions; for example, choreographing a

collection of web services to achieve a particular application goal is not possible.

Hence existing languages, e.g. Web Services Flow Language (WSFL) [Leyman01],

XLANG [Thatte01], DAML-S [Ankolekar01], RDF [W3C99] propose complex

interaction patterns and further extensions to Web Services description.

Figure 3.2 illustrates the technologies that underlie the Web Services Architecture.

The abstract messages, described in WSDL, are encapsulated into SOAP messages

(although the concept of Web Services does not discount other message formats),

which may then bound to different transport protocols (e.g. HTTP, FTP, IIOP, JMS);

specifications for SOAP to HTTP [Box00] and SMTP [Cunnings01] bindings have

been defined. SOAP provides a protocol neutral format for secure, reliable, multi-

party messaging; the information needed to invoke remote services can be serialised

and transported across the wire and interpreted by the remote service regardless of its

platform.

 77

Figure 3.2 Web Services Technologies [Booth03]

An important role in Web Services is discovery; through open publication, software

processes are available to use by a wide audience. Before a service requestor and

provider can interact, the correspondents must agree on the service description and

semantics of the interaction. Discovery can be performed with or without human

intervention; a user can use a suitable discovery tool (c.f. Jini browser), or an

autonomous agent can select a suitable service. The Web Services architecture does

not specify how the discovery process is to be carried out; it may be a search engine

process or a discovery protocol like Jini. However, in practice only the Universal

Description, Discovery and Integration (UDDI) mechanism [Oasis02], a centralised

registry architecture for WSDL interfaces, has been applied.

3.2.2 Analysis of Web Services

Web Services have been used as a distributed systems solution to expose new services

across the Web, and hence to a wider audience; many technologies including:

Microsoft’s .NET platform [Microsoft00], IBM’s Web Services Toolkit [IBM00], and

Apache Axis [Apache03] are available for this. Furthermore, it is becoming well used

as a tool for integrating existing middleware solutions, due to its loosely coupled

 78

nature and reliance on XML messaging [Vinoski02]. For example, EJB and CORBA

components can interact after being wrapped as Web Services.

The separation of abstract services from the concrete middleware implementation is

potentially the key to overcoming heterogeneity. At present, Web Services

technologies rely solely upon SOAP and do not consider different message bindings;

new specifications as extensions to WSDL would be needed for each. However, using

SOAP messaging and bindings means that existing service implementations must be

re-implemented (or wrapped) as Web Services. Given the diversity of middleware

available to mobile application developers this is unlikely to occur. Furthermore, the

choice of an XML message format in both discovery and message exchange is more

expensive than alternative protocols. Several studies have shown that SOAP and XML

incur a substantial overhead compared to binary protocols [Bustamante00] [Davis02]

[Govindaraju02]. These results show that SOAP is up to ten orders of magnitude

slower than Java RMI when transmitting large data arrays, and that XML marshalling,

un-marshalling and communication costs are between two and four orders of

magnitude slower than IIOP. In addition XML message size is typically between six

and eight times larger than the corresponding binary representation [Bustamante00].

The independence from specific discovery mechanisms (e.g. CORBA Naming

Service, or Jini) overcomes the problems associated with heterogeneous discovery

protocols. The architecture’s discovery process requires that both interacting parties

obtain the WSDL service description; however the majority of service discovery

protocols provide their own service description, and/or have no mechanism to

distribute an XML file (e.g. SLP and Salutation). Therefore, only certain discovery

solutions are suitable for Web Services; this is why only UDDI has been applied in

practice.

3.3 Web Services Invocation Framework (WSIF)

3.3.1 Overview

The Web Service Invocation Framework (WSIF) [Duftler01] is a Java API, originating

at IBM and now an Apache release, for invoking Web Services irrespective of how

 79

and where these services are provided. Its fundamental goal is to achieve a solution to

better client and Web Service interoperability by freeing the Web Services

Architecture from the restrictions of the SOAP messaging format. WSIF utilises the

benefits of discovery and description of services in WSDL, but applied to a wider

domain of middleware, not just SOAP and XML messages.

The structure of WSDL allows the same abstract interface to be implemented by

multiple message binding formats, e.g. IIOP and SOAP; to support this, the WSDL

schema needs to be extended to understand each format. Figure 3.3 illustrates an

example of a WSDL binding statement for executing an operation upon an EJB

component. Similar extensions are available for JMS and local Java classes. Hence,

the same WSIF client code can, in theory, interact across any available binding. WSIF

is a client side framework, none of its implementation resides at the service side, and

therefore existing middleware solutions can be used in place. For example, a CORBA

service can be exposed as a Web Service by creating and then advertising a WSDL

description of the service.

<binding name="EJBBinding" type="tns:AddressBook">
 <ejb:binding/>
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="typens:address"
 formatType=”addressbook.wsiftypes.Address” />
 <format:typeMap typeName=”xsd:string” formatType=”java.lang.String” />
 </format:typeMapping>
 <operation name=”addEntry”>
 <ejb:operation
 methodName=”addEntry” parameterOrder=”name address”
 interface=”remote” />
 <input name=”AddEntryWholeNameRequest”/>
 </operation>
</binding>

Figure 3.3 Example EJB binding in WSDL

The core of the framework is a pluggable architecture into which providers can be

placed. A provider is a piece of code that supports each specific binding extension to

the WSDL description, i.e. the provider uses the specification to map an invoked

abstract operation to the correct message format for the underlying middleware.

Figure 3.4 illustrates the operation of WSIF. A remote service is represented by its

WSDL description. The client does not care how this is implemented; it simply needs

to obtain the description dynamically, using a discovery process (typically UDDI).

The client then loads and parses this to create its representation of the service, which

 80

is responsible for generating the abstract operations for the client to invoke. When

such an abstract operation is invoked, the WSIF provider takes this information and

produces messages through serialisation; these correspond to the described binding

mechanism, interact with the remote service and respond with the abstract results.

Figure 3.4. The WSIF Client Framework

Like Web Services, and CORBA before it, WSIF allows for both static and dynamic

invocation. For static invocation, the stub is generated from the WSDL description

and operations are invoked upon that stub. The Dynamic Invocation Interface follows

the WSDL schema closely; the abstract input and output messages are constructed

dynamically and then used to execute the operation. Furthermore, the API allows

abstract operations to be invoked synchronously (executeRequestResponce) or

asynchronously (executeAsyncRequestResponse) depending upon the developer’s

preference in how they want to receive results.

3.3.2 Analysis of WSIF

WSIF relies upon service developers exposing implementation as Web Services. The

method of wrapping heterogeneous middleware services as web services has been

criticised because the choreography of individual middleware platforms are not the

same as the choreography of Web Services [Vinoski03]. For example, CORBA is both

Service Oriented and Session Oriented. Exposing a session oriented CORBA object

would cause specific CORBA implementation details, like remote object references,

to appear in the abstract description; this is against the Web Services philosophy of

separation. However, WSIF provides specified extensions to follow for each binding;

hence, it disallows such details, enforcing the abstract Service Oriented Architecture

 81

over that particular binding type. Hence, service providers must sensibly expose

existing implementation, wrapping any binding specific interfaces to hide their details

(without using a SOAP endpoint).

WSIF provides a remote method invocation programming style; the developer invokes

abstract operations and receives their results (although the user can choose for this to

be asynchronous). However, this does not take into account the different programming

models of the various underlying middleware it abstracts from. The performance of

executeRequestResponse over IIOP, SOAP, EJB and local Java classes will be

predictable (a result or fault will be returned), as these follow the RMI paradigm.

However, with event based middleware a request may be unanswered for some time,

although this does not indicate an error has occurred. Therefore, developing in this

style would lead to varied performance of the application depending upon the

computational model of the current underlying paradigm.

WSIF follows the discovery model of web services, and requires new and existing

services to be available through advertising of the WSDL file (e.g. in a UDDI

registry). Like Web Services, the performance of the WSIF platform will suffer due to

its reliance on XML in discovery. This doesn’t account for heterogeneous discovery

mechanisms and downloading the service description consumes bandwidth; for

example, simple WSIF description files offering only one or two abstract operations

are between 2Kbytes and 4Kbytes. Furthermore, services will be implemented and

advertised without exposing a WSDL file; these cannot be interacted with, as the

message exchange format cannot be determined. Hence, the technique requires that all

providers follow this solution, which cannot be guaranteed.

To add a new provider type in WSIF (i.e. new binding format), a new binding

extension to WSDL must be defined, and the serialisers and deserialisers for these

elements must be created. These are then registered with a central registry; when an

unknown binding type is encountered the information and implementation can be

obtained from here. However, the reliance on a centralised architecture does not map

well to mobile computing; it would require an accessible registry in every wireless

network. Furthermore, new WSDL extensions are not open standards; therefore,

 82

providers may implement multiple specifications of the same binding type introducing

new interoperability problems.

3.4 Model Driven Architecture

3.4.1 Overview

The Model Driven Architecture (MDA) [Miller01] is an OMG specification that aims

to support interoperability and integration throughout the systems lifecycle. The MDA

defines how to specify an IT system in terms of system functionality, separated from

its implementation on a particular platform. To perform this, the MDA is separated

into key models, which are shown in figure 3.5. For creating MDA-based applications,

the first step is to create a Platform Independent Model (PIM), which is expressed in

UML. The PIM provides a formal specification of both the structure and function of

the system, which is abstract from any technical details. Similarly, the Platform

Specific Model (PSM) defines in UML how a PIM is realised on a particular platform

e.g. EJB/CORBA, as shown in figure 3.5. This mapping of PIM to PSM UML

descriptions can be automated for standard mappings (Each platform specific model is

then physically implemented). Finally, the integration between alternative PSM

implementations can be overcome by the automated insertion of a suitable bridging

solution.

Figure 3.5 OMG’s Model Driven Archtecture [Miller01]

 83

3.4.2 Analysis of Model Driven Architecture

The MDA is a powerful tool for specifying systems that may be composed of

heterogeneous elements. The complete architecture can be designed at the abstract

level and this viewpoint does not consider heterogeneity problems. Rather the

automation of platform specific implementation (e.g. integrated through bridges)

carries this out. As with web services, the solution to overcome heterogeneity is to

provide a higher-level abstraction. However, the model is suited to system design and

initial configuration; it does not deal with unforeseen changes in heterogeneity during

the lifecycle. Therefore, while good for integrating systems in fixed networks, further

research into how to specify and cope for dynamic change must be executed to

support interoperability in the mobile computing domain.

3.5 Middleware Bridges

3.5.1 Overview

A software bridge is a process that enables communication between different

middleware environments. Hence, clients in one middleware domain can interoperate

with servers in another middleware domain. The bridge will take messages from a

client in one format and then marshal this to the format of the server middleware; the

response is then mapped to the original message format. Bridges can be static or

dynamic. A static bridge requires a stub implementation to perform marshalling

between endpoints, but must be recompiled if the interface of the service changes. A

dynamic bridge provides a generic proxy that can be placed between endpoints and

doesn’t require recompilation if service interface changes.

Many Bridging solutions have been produced between established commercial

platforms e.g. DCOM/CORBA and CORBA/SOAP; they are also used to connect

proprietary middleware. However, this section seeks to illustrate the technique rather

than exhaustively survey the state of the art, hence some examples are illustrated. For

example, the OMG has created the DCOM/CORBA Inter-working specification

[OMG97] that defines the bi-directional mapping between DCOM and CORBA and

the locations of the bridge in the process. OrbixCOMet [IONA99] are implementations

of the DCOM-CORBA bridge. SOAP2CORBA (http://soap2corba.sourceforge.net) is

 84

an open source implementation of a fully functional bi-directional SOAP to CORBA

bridge.

Bridging offers a solution to connect heterogeneous middleware, however it is a low

level mechanism that must be supported by a higher-level abstraction (cf. Web

Services and MDA) to fully support the integration of multiple platform types. The

following section describes such a framework, with software bridges at the core of the

architecture.

3.5.2 Unified Component Meta Model Framework (UNIFrame)

The UNIFrame approach [Shah03] attempts to unify distributed component models

under a common meta-model to allow discovery, interoperability and collaboration

between components using generative programming techniques. The key parts of the

framework are: the Unified Meta Model (UMM), the Unified Component

Interoperability framework (UCI) and automated system generation. The UCI

framework is the technology involved in overcoming heterogeneity, so is described in

further detail.

The UCI allows for the static and dynamic assembly of heterogeneous components.

The architecture, described in figure 3.6, consists of platform independent formal

specifications and a heterogeneous component integrator. The formal specification

contains both the functionality and QoS contracts of the component. The component

integrator is made up of a translator, an internal representation and the Middleware

Bridge Generation Engine (MBGE). The translator takes the platform specific

component specification and creates a platform independent specification. Then as

seen in figure 3.6, the abstract representations of two components can be supplied to

the MBGE to automatically produce a bridge between them to allow them to

interoperate.

UNIFrame is similar to the MDA. However it differs in that the independent model is

generated from the specific model (rather than the other way round). Furthermore, the

architecture allows for the dynamic creation and insertion of bridges to overcome

heterogeneity. This is a more suitable method for mobile computing and has been

 85

applied in the domain. However, generating a bridge for each interoperation between

components is an expensive operation that must be executed for each change in

heterogeneity context. Given the dynamic nature of mobile environments it is likely

that a new bridge would have to be generated frequently.

Figure 3.6 Architecture of the Unified Component Interoperability framework

3.5.3 Analysis of Middleware Bridges

There are two types of middleware bridge: static and dynamic. The static bridge is

used in fixed networks to connect two fixed domains of middleware implementation,

and consists of a complete mapping between two middleware implementations. Static

bridging is not well suited to interoperation with multiple middleware types.

Furthermore, static bridges are not suited to the mobile environment because they are

a fixed component, which must reside in the network and clearly cannot be maintained

in dynamically changing wireless networks. Dynamic bridges offer a specific mapping

between two service implementations, and hence the technique can be used to support

higher-level middleware abstractions (c.f. UNIFrame). This insertion of dynamic

bridges is suited to the domain of mobile computing; however, the generation and

insertion of bridges is an expensive operation that will occur frequently as the user

moves.

 86

3.6 Logical Mobility

3.6.1 Overview

The properties of logical mobility (mobile code) offer potential solutions to the

problem of middleware heterogeneity. Service discovery and service interaction can

be combined into a process whereby the client obtains both information about the

service and the code directly to interact with the service. We examine two platforms in

turn, one designed specifically to overcome heterogeneity (SATIN), and one whose

properties offer a potential solution (Jini).

3.6.2 SATIN

SATIN [Zachariadis03] is a low footprint component based middleware, which aims

to address the problem of heterogeneous service implementations in dynamically

changing mobile environments. It argues that the use of logical mobility (code

mobility) is limited within current mobile middleware platforms, but offers genuine

benefits for interoperability.

In a scenario where a mobile host is able to access the local services of an ad-hoc

network, the peer should be able to obtain code to discover its required services using

the discovery mechanism in place and then use it. To do this, the SATIN architecture

composes applications and the middleware itself into a set of capabilities (a unit of

functionality), for example, a discovery mechanism or compression algorithm.

Capabilities are registered with the host’s core, which can be statically or dynamically

configured. At the heart of SATIN is the ability to advertise and discover service

implementations that may be advertised using different techniques; each discovery

mechanism is represented by a different capability that can be added to the host when

needed in the environment. SATIN then utilises its own “higher level” XML based

discovery mechanism for initialisation; that is, the advertising mechanisms currently

in use can be discovered. For example, a host uses SATIN to find the discovery

capabilities being used and then downloads these. The required application services

are looked up and their interaction capabilities are downloaded to complete the cycle.

 87

Figure 3.7 Capabilities in a SATIN application

Figure 3.7 illustrates example SATIN capabilities in an application scenario. A

conference offers a media stream that the mobile phone wishes to play on its media

player. The phone discovers that MULTICASTADV is the discovery technology

(using the abstract discovery protocol) and so downloads this capability. The

remaining capabilities (a codec) to allow interoperation with the service can then be

discovered and downloaded.

3.6.3 Jini

As described in section 2.5, applications download a Jini proxy as part of service

discovery. This proxy interacts directly with the remote service, and although

generally implemented as RMI, any middleware implementation could be used.

Hence, the solution to heterogeneity is to wrap all code to access the service and the

middleware into an agent that can then be downloaded and used by any device.

Although a natural and elegant solution to the problem, it does not fully address the

problems of heterogeneity. Firstly, Jini acts as a single discovery mechanism and any

competing discovery technologies would be unusable. Furthermore, proxies are

implemented in different styles; in some cases a complete application with a user

interface will be available, in others a remote interface must be invoked by the

discovering application. Therefore, developing applications to react to these

differences would be a complex process. Finally, Jini relies on all parties

understanding its architecture; however, as illustrated in chapter two different

middleware implementations co-exist.

3.6.4 Analysis of Logical Mobility

The use of logical mobility provides an elegant solution to the problem of

heterogeneity; applications do not need to know in advance the implementation details

 88

of the services they will interoperate with, rather they simply use code that is

dynamically available to them at run-time. SATIN offers an improved solution over

Jini in that the problem of heterogeneous discovery mechanisms is addressed and

resolved by a higher-level, albeit non-standardised, abstraction. Furthermore, it

concentrates on a dynamic client-side architecture; hence services implemented

independently of SATIN, can in theory still be utilised. However, both techniques are

limited in fully addressing heterogeneity. Both Jini and SATIN rely on participants

conforming to a least part of their architecture i.e. servers and clients both understand

a Jini proxy, or the SATIN abstract discovery mechanism. Therefore, the solutions do

not scale to include application services not implemented with knowledge of these

techniques.

3.7 Universal Interoperable Core

3.7.1 Overview

The Universally Interoperable Core (UIC) [Roman01] is a reflective middleware,

whose design is based upon the reflective architecture of DynamicTAO. The goal of

the middleware is to support interactions with multiple service platforms from a

mobile device in ubiquitous environments. UIC provides the capability to interact with

a service implemented in CORBA, and also with the same service type implemented

in Java RMI and SOAP.

UIC, like other reflective platforms, is implemented as a collection of components.

Fundamentally, it provides a skeleton of abstract components that form the base

architecture. To enable the system to have the properties of particular middleware

platforms (e.g. CORBA), components are dynamically added to specialise the abstract

components. A UIC personality is a particular instance of the UIC obtained after the

specialization, as illustrated in figure 3.8. Personalities can be classified as client-side,

server-side or both. UIC can also be classified as single-personality or multi-

personality. A single-personality interacts with a single middleware platform, while a

multi-personality UIC can interact with more than one platform at the same time.

 89

The design of the platform is driven by the principle of What You Need Is What You

Get. UIC identifies that existing middleware platforms contain all possible

functionality, even if the application only uses a subset; this is not suitable for devices

with limited resources. Therefore, UIC provides only the minimum required

functionality to guarantee interoperability with existing middleware platforms.

UIC personalities can be configured either statically or dynamically. In static

configurations, personalities are built at compile time by statically assembling all the

components together. The result is a single personality that cannot be dynamically

reconfigured, although it has a smaller memory footprint. In dynamic configurations,

personalities are a collection of dynamically loadable libraries that can be fully

reconfigured at run time. The main benefit of the dynamic configuration is the ability

to modify the architecture of the personalities dynamically without affecting the

applications (hence overcoming heterogeneity); however the size of the core

increases, because tools for loading and unloading components are required.

Figure 3.8 UIC Personalities [Roman01]

3.7.2 Analysis of Universal Interoperable Core

UIC uses dynamic adaptation to directly tackle the problem of heterogeneous

middleware in mobile environments. This technique has the potential to address the

changing middleware heterogeneity as the user moves location. However, the design

of the platform defines a standard skeleton structure targeted to only object-oriented

request brokers (CORBA, Java RMI, and DCOM); it offers no solution to the different

UIC

CORBA
personality

CORBA/Java
RMI personality

CORBA Server Java RMI Server

Abstract Core

Specialisation

CORBA/Java
RMI personality

 90

paradigms of mobile middleware (e.g. publish-subscribe, data-sharing etc.). In

addition, UIC offers no higher-level abstraction to invoke heterogeneous services. The

platform will operate for all RMI based implementations, but it cannot be extended to

include contrasting communication paradigms. Furthermore, UIC does not address

heterogeneous service discovery. It is utilised within a framework that offers a single

discovery mechanism.

3.8 Conclusions

The solutions presented in this section demonstrate that the following key conclusions

can be drawn about tackling middleware heterogeneity in the mobile domain.

• A higher-level abstraction as proposed by Web Services, MDA and UNIFrame is

required to develop systems in which heterogeneous middleware components may

interact. Requiring developers to conform to a higher-level abstraction rather than

an individual discovery mechanism (e.g. SATIN, Jini) or middleware binding

increases the chances that heterogeneity will be addressed.

• All of the described solutions depend upon a single style of discovery mechanism

(fixed point for discovery). However, as seen in chapter 2 many discovery

protocols are used in wireless networks and a single protocol cannot always be

guaranteed to be available.

• Current implementations of the Web Services Architecture, WSIF, MDA and

middleware bridges are designed for fixed networks. Hence, they consider

interoperation between fixed endpoints and can solve the static heterogeneity in

these scenarios. However, as mobile users change locations they will encounter

changing heterogeneity. The stated platforms offer no support to detect or react to

this changing context.

• To support mobile client interoperability, the implementation must not assume

capabilities between communicating endpoints. Rather it is natural for one

endpoint to discover the capabilities of the other and then dynamically adapt itself

to mirror the implementation. Hence, adaptive middleware service binding (as

seen in UIC) and adaptive service discovery offers an interesting approach to

overcoming middleware heterogeneity.

 91

4Chapter 4 Technologies for Building a Reflective Framework

4.1 Introduction

The previous chapters of this thesis have identified the problem of middleware

heterogeneity, and the particular difficulties it poses to new classes of mobile

applications. Current mobile middleware solutions escalate the problem, promoting

their own standard and offering no support to address heterogeneity at the middleware

level. Hence, mobile application services (for example, a tourist guide service) can be

designed and implemented on a single middleware implementation, but these are then

not open for use by applications and devices utilising a contrasting middleware

implementation. The next generation of mobile applications envisage users being able

to enter a new location and re-use their existing applications in this setting, making

use of the available application services. In order to support this the client side

middleware must maintain continuous interoperation with application services at new

locations, which have been implemented upon heterogeneous middleware

implementations.

The author argues that such a middleware must be an adaptive, abstract framework.

With such an approach, no particular concrete middleware paradigm or standard is

promoted; rather, the middleware adapts its underlying implementation to mirror the

current environmental settings. For example, a tourist guide client application

implemented upon the STEAM publish/subscribe middleware only operates in

locations where the tourist service is implemented upon STEAM; however the same

client developed upon an abstract middleware may interoperate with tourist services

implemented on any middleware type (e.g. SOAP, CORBA, JEDI, STEAM…) and

discovery protocol (SLP, UPnP); the abstract middleware then adapts to select the

right protocols to match the environment. As an analogy, different screwdrivers are

used for screws of different sizes; rather than attempt to create a screwdriver that

works for every screw, you select the correct individual screwdriver for the task.

Therefore, there are two key requirements of an abstract middleware for mobile

computing client applications:

 92

1) An application can find the required application service functionality

irrespective of the discovery protocol or discovery mechanism advertising it.

2) An application can interact with the found service irrespective of the

middleware it is implemented upon and the messaging format it uses.

The author argues that reflection is the most suitable method for developing such a

configurable and dynamically reconfigurable middleware; it provides a principled, as

opposed to ad-hoc technique to make changes to the middleware implementation on

the fly. Through inspection and adaptation the platform is dynamically evolvable.

Therefore, there is scope to perform fine-grained changes to behaviour, e.g. change

the current protocols, and also longer-lasting evolutions can be made, e.g. adding new

functionality to the middleware framework.

The remainder of this thesis focuses on the design, implementation and evaluation of

ReMMoC (Reflective Middleware for Mobile Computing), the middleware

framework that meets these required characteristics. The approach taken in designing

ReMMoC follows the OpenORB [Blair01] philosophy of using components, reflection

and component frameworks (see section 2.7.2) to create a configurable and

dynamically reconfigurable middleware. This is a scalable approach across application

domains, hence it is suited to mobile computing and also allows the work to be

applied to different domains in the future. Furthermore, the use of components and

component frameworks provides platform extensibility. New functionality to improve

the platform performance, or alter it per application domain can be added at a later

date.

The chosen component model is described and compared against alternatives in

section 4.2. Available component framework solutions are described in section 4.3,

including the design of a new component framework model especially for ReMMoC.

The remaining sections of this chapter then concentrate on the design and

implementation of the core reflective architecture of ReMMoC. In particular, the

following are described in detail: component configurations, algorithms for

reconfiguration, and integrity maintenance mechanisms.

 93

4.2 Components in ReMMoC

4.2.1 Overview of Components

A component is defined as: “a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties” [Szyperski98].

Interfaces are used to connect components, where each interface lists the operations

that can be invoked by a client. Hence, the interface provides a contract between the

client and provider. Component programming at the middleware level has the

advantage of enhancing configuration, reconfiguration and re-use. Therefore,

components become the middleware building blocks, acting as both units of

composition and reconfiguration.

The ReMMoC middleware framework operates on mobile devices, which typically

have limited end-system resources. That is, they are restricted by available memory

and processor performance. The component model must address these concerns and

operate in such an environment. Rather than implement a new component model

suitable for this task, a set of available platforms were investigated (see below) as

potential development environments, using the following requirements:

1. A Lightweight implementation. The static memory footprint must be suitable for

limited end systems, e.g. PDAs, Smartphones and wearable computers.

2. Offer underlying support for openness and adaptation. Hence, a reflective

middleware can be built upon these foundations.

3. Efficient performance. The extra cost incurred from using components is reduced

to a minimum.

4.2.2 Investigation of Available Component Models

A number of both commercial and research based component models are now

available; these offer potential solutions for a reflective middleware to be developed

upon. Enterprise architectures including Enterprise Java Beans [Monson-Haefel00] and

the CORBA Component Model [OMG02] are discounted, as they are heavyweight

implementations that focus on service side implementation and do not meet the

requirements of ReMMoC. The following is a description of component solutions that

 94

were evaluated for this thesis (it does not aim to be an thorough overview of the state

of the art in component technology):

• Component Object Model (Microsoft COM) [COM95] is built upon three

concepts: unique interface specifications, unique components that implement

multiple interfaces and dynamically discoverable interfaces (through the base

IUnknown interface). Also, the COM standard defines the way components

interoperate at the binary level in terms of a vtable (a table of function pointers

based on C++ call conventions). COM can be used on mobile devices that run

Windows CE 3.0 and above, and it performs efficiently, however there is no

provision of reflective capabilities.

• Java Beans [Sun97b] is the component architecture of the Java language. Java

classes are made into components (re-usable and composable elements) by

implementing the serializable interface. Beans are linked together through events;

each bean declares the events that it generates and the component users register for

these. Attributes can be assigned to Beans, which can then be introspected along

with the available events. Java Beans offer an interesting approach with provided

support for reflection. However, its performance is less efficient compared to

COM.

• .NET is an alternative component model from Microsoft [Microsoft00] that aims

to simplify the software development process by reducing the complexity offered

by COM. .NET components are built on a platform independent runtime called the

Common Language Runtime (CLR). Assemblies are used to support sharing and

reuse of code, where an Assembly contain the classes that implement the

component functionality and metadata to describe the component. Reflective

capabilities are available to fully introspect the metadata and component

capabilities. CE.NET [Microsoft01] the version for Windows CE devices is only

just emerging and was therefore unsuitable as a design choice.

• THINK [Fassino02] is one of many research based component models. THINK is

designed for use in the domain of operating system kernels, and hence offers a

highly efficient component solution. Furthermore, it is implemented as a Java

component model and can operate on mobile and resource limited devices. A

component is a run-time structure that encapsulates data and behaviour. An

interface is the named interaction point, which can be of client type (operations

 95

invoked from it) or server type (operations invoked on it). A component interacts

with its environment only through interfaces. Notably, THINK also supports the

binding between components in both a local and distributed fashion. However,

THINK does not offer reflective support at the base component level.

• OpenCOM [Clarke01] is a lightweight, efficient and reflective component model

that uses the core features of Microsoft COM to underpin its implementation;

these include the binary level interoperability standard, Microsoft’s IDL, COM’s

globally unique identifiers and the IUnknown interface. The higher-level features

of COM, including distribution, persistence, transactions and security are not used.

Notably, it was designed specifically for the implementation of an efficient version

of the OpenORB reflective middleware [Blair01], hence offers support for

building reflection functionality. The addition of reflective capabilities to the prior

benefits of COM mean OpenCOM is ideally suited for reflective middleware

development on mobile devices.

OpenCOM meets the three requirements of the component model; therefore it was

chosen as the development platform for ReMMoC. The following section describes

the OpenCOM architecture in more detail.

4.2.3 Background on OpenCOM

The key concepts of OpenCOM [Clarke01] are interfaces, receptacles and

connections. Each component implements a set of custom interfaces and receptacles,

as shown in figure 4.1. An interface expresses a unit of service provision, a receptacle

describes a unit of service requirement and a connection is the binding between an

interface and a receptacle of the same type. OpenCOM deploys a standard runtime

substrate per address space (illustrated in figure 4.1) that manages the creation and

deletion of components, acts upon requests to connect/disconnect components and

provides service interfaces for reflective operations. The runtime substrate

dynamically maintains a system graph of the components currently in use. The

explicit maintenance of dynamic dependencies between components provides the

support for introspection and reconfiguration of component configurations. The

reflective interfaces of OpenCOM follow the meta-models proposed by OpenORB i.e.

 96

the Interface meta-model (IMetaInterface), the Architecture meta-model

(IMetaArchitecture) and the Behaviour meta-model (IMetaInterception).

Figure 4.1 The OpenCOM architecture

In the first version of OpenCOM [Clarke01], every component implemented five

standard interfaces: two component management interfaces (ILifeCycle and

IReceptacle) and three meta-interfaces (IMetaInterception, IMetaArchitecture and

IMetaInterface). However, the implementation of each interface increases the memory

footprint size of a component, and in many cases this functionality is unused.

Therefore, the newest version of OpenCOM (version 2) now requires only three

interfaces to be implemented by each component, with the remaining reflective

operations available from the runtime interfaces. The three base interfaces of a

component are as follows:

• ILifeCycle provides operations called startup and shutdown that are called

when a component is created or destroyed.

• IConnections (previously IReceptacles) offers methods to modify the

interfaces connected to a component’s receptacles. These are only called by

the OpenCOM runtime component.

Custom interface

Custom service
Implementation

IMetaArchitecture

OpenCOM
Runtime

IUnknown

System Graph

IOpenCOM

IMetaInterception

Custom
receptacles

IMetaInterface

IConnections

ILifeCycle

MetaInterface

IUnknown

Type Library

 97

• IMetaInterface supports inspection of the types of interfaces and receptacles

declared by the component. The meta information to support these operations

is stored in the type library of each component.

In addition, the OpenCOM runtime provides a meta-interception (IMetaInterception)

and a meta-architecture (IMetaArchitecture) interface. Interception enables pre and

post methods to be associated with a given interface on a component; these are then

invoked before or after every method invocation on that interface. The meta-

architecture interface allows the programmer to obtain information about the

underlying component architecture i.e. information about connections made to other

components.

OpenCOM aims to be platform independent, and at present has been implemented on

the Windows 32 bit, Windows Compact Edition (CE) and Linux operating systems.

Notably, the minimal memory footprint of the Windows CE version (27.5 Kilobytes

for devices with StrongARM processors) is ideally suited to ReMMoC’s

requirements.

4.3 Component Frameworks

4.3.1 Overview of Component Frameworks

Component frameworks are defined by Szyperski as “a collection of rules and

contracts that govern the interaction of a set of components” [Szyperski98]. Therefore,

a component framework enforces architectural principles on the components it

supports; this is especially important in reflective architectures that dynamically

change, and whose changes must be verified. The motivation behind component

frameworks is to constrain the design space and the scope for evolution. Moreover,

they simplify component assembly and increase the understanding and maintainability

of the system. A component framework maintains an architecture consisting of a

component graph and its constraints. Users interact with CFs for services through

interfaces that encompass the operations of the CF’s constituent components.

The component framework model used by ReMMoC is constrained by the choice of

OpenCOM as the component model. However, the following section examines

alternative existing component frameworks (to illustrate their functionality), as well as

 98

a component framework model available to OpenCOM developers. The latter is

investigated and identified as insufficient to meet the needs of ReMMoC. Therefore,

section 4.3.3 documents the design and implementation of a generic component

framework model that was created as part of the ReMMoC design.

4.3.2 Existing Component framework Models

The number of component framework models that are commercially available is

limited, and often products that claim to be component frameworks do not match the

requirements described above (e.g. JavaBeans and OLE/ActiveX) [Szyperski98]. This

section therefore describes three component framework models in turn: OpenDOC,

BlackBox and the OpenORB method.

• OpenDOC [Apple94] was a multi-platform, document-centric component

framework developed initially by Apple in the mid-1990s. The core concept of

OpenDOC is that of a document part. Every part can contain other parts and itself

belongs to a compound document. Furthermore, every part has an associated part

editor that can be used to edit that document part. Communication between the

frameworks and components used SystemObjectModel (SOM), or a CORBA

ORB. OpenDOC offers a flexible, generic component framework but does not

promote reflective operations on contained document parts.

• The BlackBox [Oberon97] Component Framework (BCF) focuses on visual

components (i.e. these concentrate on visual appearance and interaction with

contained and containing components). BCF defines a general abstraction for

containers, designed in a way that user interface details are hidden (the blackbox

abstraction). Blackbox is not a generic architecture that is flexible to other

domains, and like OpenDOC does not promote inspection and dynamic adaptation

of contained elements.

• OpenORB [Blair01] is implemented using OpenCOM, and therefore promotes its

own component framework model atop OpenCOM. A component framework is

represented by a single component instance, known as a Component Framework

Representative (CFR). This CFR defines a set of receptacles that define the

components that can be plugged into the framework. The CFR is then

implemented as a management element, ensuring that adaptation of its plug-ins

 99

occurs on appropriate events. Hence, a framework of CFRs is used to impose the

architecture of OpenORB, as illustrated in figure 2.12.

Due to the choice of OpenCOM as the component platform, the OpenORB solution is

the only viable alternative for ReMMoC; however it has a number of limitations. A

CFR implements a fixed set of interfaces that cannot be dynamically changed.

However, in dynamic scenarios, the change of a component framework configuration

may present new functionality that can be accessed through a new or different

interface. Furthermore, the CFR only has knowledge of direct connections (plug-ins),

allowing only architectures that conform to strict hierarchical trees to be maintained.

This does not allow for other types of software architectures or patterns to be

dynamically changed and maintained. Finally, a limited model of reflection is

implemented to inspect and change CFR architectures, making reconfiguration code

difficult to program and overly repetitive. Therefore, a new component model for

OpenCOM is described in the following section that aims to address these issues and

provide a generic model of component frameworks for OpenCOM.

4.3.3 ReMMoC’s Component Framework Model

Overview

OpenCOM provides no base support for creating composite components (the key

constituent of a component framework); only ad-hoc “architectures” of connected,

primitive components can be created per OpenCOM runtime instance. Rather than a

disadvantage, this allows specialised component frameworks per application domain

to be developed atop. Furthermore, OpenCOM’s reflective capabilities are limited to

simple operations; therefore code to dynamically view and make elaborate changes to

the system graph is repetitive and difficult to program. Therefore, this section

documents the author’s design and implementation of a component framework model

suitable for both ReMMoC and other application domains, which aims to simplify the

process of developing and maintaining architectures of components.

The design of this component framework model is based upon the concept of

composite components proposed by OpenORB [Blair01] and promotes the following

key properties:

 100

1. A component framework in OpenCOM is a composite OpenCOM component.

2. A component framework provides an additional meta-interface for inspection

and dynamic adaptation of the local architecture of the composite component.

3. The integrity of each component framework is maintained in the face of

dynamic change, using developer specified architectural rules plugged into the

component framework.

Figure 4.2 An OpenCOM component framework.

Therefore, component frameworks in OpenCOM are implemented as OpenCOM

components; that is, they implement the same base interfaces (IMetaInterface,

ILifeCycle and IConnections), custom service interfaces and receptacles. However, a

CF contains its own internal structure (a configuration of components) that

implements its functional capabilities, together with an additional meta-interface

(ICFMetaArchitecture) to manipulate it. The diagram in figure 4.2 demonstrates the

general architecture of a CF. The benefit of this design is that an OpenCOM CF can

be treated as an OpenCOM component, simplifying the composition of hierarchical

architectures and promoting re-use.

The Component Framework as a composite component

To be subject to introspection and dynamic reconfiguration, each component

framework maintains a local graph of its internal structure. To reduce data duplication,

this is simply a view of the information held in the OpenCOM system graph.

Therefore, each CF maintains a list of Component Identifiers that point to their

corresponding position in the system graph.

CF Service Interfaces

(Can be exposed
interfaces of internal
components)

IMetaInterface
ILifeCycle

IConnections

OpenCOM component
framework

CF receptacles
 (Can be exposed)

ICFMetaArchitecture

Lock
Interceptor

IAccept
Graph of internal
components

 101

This local graph can be used for integrity checking of the framework after each

reconfiguration, by ensuring that it meets the criteria for the particular domain of

concern. Given that integrity checks apply per component framework the following

rule for component composition must be followed: “No individual component

instance may exist in more than one component framework instance”; if a

component were to be changed in one framework it would also be changed in the

other. The second framework has no knowledge of the change; hence its integrity

would be compromised. However, the component framework model allows

composition of component frameworks; therefore, hierarchical component structures

can be created to resolve dependencies of this type. This is illustrated in figure 4.3.

Component frameworks B and C both require component A; rather than place A into

both B and C, the higher-level component framework D manages the two

dependencies to the single instance.

Figure 4.3 Composition of Component Frameworks

Reflection Operations on Component Frameworks

Every component framework is subject to the same reflective operations as a standard

OpenCOM component (because a CF is an extended component). For example, the

runtime IMetaArchitecture interface provides dynamic inspection of the external

structure of a CF (i.e. what it is connected to), and the local IMetaInterface interface

lists the interfaces and receptacles available from the CF. However, no OpenCOM

interface supports inspection or dynamic adaptation of the internal structure of a

component framework. Therefore, every CF implements its own additional meta-

interface, named the ICFMetaArchitecture interface that consists of methods for

introspection (table 4.1) and reconfiguration (table 4.2); the complete syntax of these

Component Framework D

Component
Framework B

Component A

Component
Framework C

 102

operations is listed in Appendix A. The implementation of these operations then relies

upon the local graph meta-representation.

Operation Name Description

get_internal_components Returns a list of the components that make up the current
component framework configuration.

get_Bound_Components Returns a list of all components bound to a particular
component.

get_internal_bindings Returns a list of all connections within the current
component framework configuration.

Table 4.1 Operations for inspection of the internal CF structure

Given that the component model offers a hierarchy of encapsulated (possibly

unconnected) graph structures, the corresponding meta-model must allow recursive

unfolding of these structures by introspection to allow reconfiguration to be applied at

the correct level. Therefore, meta space is unfolded using the introspection methods of

the ICFMetaArchitecture to find the components and configurations within a

component, and IMetaInterface to view the interfaces and receptacles. Notably,

primitive components only implement IMetaInterface, therefore the base of recursion

is the querying of the ICFMetaArchitecture interface.

Operation Name Description

insert_component Create and insert a new component into this CF
configuration.

remove_component Delete a component from the configuration.
Replace_component Replace an instance of one component with another,

ensuring connections reconnected.
local_bind Establish a local binding between two components from

interface to receptacle.
break_local_bind Break a local binding between two Components in the

framework.
Expose_interface Map the interface of an internal component as a new

external interface of the CF.
unexpose_interface Remove an exposed external interface.
Expose_receptacle Map the receptacle of an internal component as a new

receptacle of
unexpose_receptacle Remove an exposed Receptacle.
Replace_configuration Replace the current graph of components with a new

component configuration.
init_arch_transaction Initiate a transaction for architecture reconfiguration.
commit_arch_transaction Completes the reconfiguration.
Rollback_arch_transaction Rolls back changes made during a transaction.

Table 4.2 Operations for dynamic reconfiguration

 103

An additional feature of the meta object protocol for component frameworks is the

expose_interface and expose_receptacle operations; these allow inner component

functionality to be dynamically exported to create the component framework’s service

provision and requirements. Therefore, a CF becomes a dynamic entity, unlike the

fixed primitive components; this is especially important for frameworks that can cover

different styles of functionality, which may change over time (see the binding

framework in section 4.6). However, the ability to change both the component

configuration and the functionality offered by a component framework means that

integrity maintenance of frameworks is an important issue.

Integrity Maintenance of Component Frameworks

A component framework must constrain the configuration of components to a valid

implementation within its domain. Therefore, after a CF is configured or reconfigured

it must be checked to ensure that it provides the correct functionality. To do this, each

component framework provides a receptacle named IAccept into which developers

can plug their own checking implementation. Figure 4.4 illustrates the interface of this

receptacle; this consists of a single operation that takes as parameters the local graph

of the component framework and the list of interfaces that expose the structure’s

functionality. When executed it returns a Boolean value to indicate if the structure is

valid; if true, the component framework continues its operation. Otherwise, if false,

the component framework rolls back to the previous known good configuration

(stored prior to the change) and generates a message to indicate a failed

reconfiguration. The complexity of checking depends upon the implementation of the

Accept component, which can be dynamically changed by plugging in a new

component.

Interface IAccept : Iunknown {
 ///
 // Method: isValid
 // Parameters: [in] Iunknown* list[] – Local graph
 // [in] IID intf[] – List of exposed interfaces
 // [in] int cComps – Number of components in graph
 // [in] int cIntfs – Number of Interfaces
 // Return: Boolean – Yes/No if graph is valid
 ///
 Boolean isValid(Iunknown* list[], IID intf[], int cComps, int cIntfs);
}

Figure 4.4 The IAccept Interface

 104

The Component Framework Lock

The previous section demonstrates how the structure of a component framework is

checked for validity. However, it does not ensure that reconfigurations are made at an

appropriate time. If a change to the configuration was made while one or more service

calls of the component framework were executing, then the results of these

invocations could be compromised or lost. Therefore, each component framework

provides a readers/writers lock to access the local CF graph. Each service call through

any of the interfaces other than ICFMetaInterface accesses the lock as a reader (there

can be n readers using the lock at any time). Any call to change the configuration of

the CF, accesses the lock as a writer (a single writer can access the lock when there

are no readers). The algorithm to implement this property is a standard readers/writers

solution with priority for readers.

Interceptors are used to ensure that all exposed configurations access the lock as a

reader before a service call is executed. Each interface exposed by a CF automatically

has an interceptor attached with pre and post method behaviour to implement the

reader role of a readers/writers solution. That is, the pre method accesses the lock and

increments the readers count, while the post method decrements the count and if it is

the last reader the lock is released for writers.

Implementing a Component Framework

The implementation of the component framework model ensures that development of

composite components is similar to primitive components. The ICFMetaArchitecture

interface is implemented as a C++ class that can be re-used in every new component

framework, i.e. an object to implement the interface can be created through a factory

when the CF is initiated. This technique is illustrated in figure 4.5. and it is identical to

the technique employed in OpenCOM to implement the IMetaInterface interface.

Figure 4.5 Implementation of an OpenCOM component framework

Custom service
Implementation

IMetaInterface

IConnections

ILifeCycle

MetaInterface

CFMetaInterface

ICFMetaArchitecture

Custom/ Exposed interface
Custom/ Exposed
Receptacles

 105

The functionality of the component that implements the IAccept interface to be

plugged into the framework is chosen by the framework developer, who is then not

constrained by architectural rules enforced by the designers of the component

framework model. Rather they are free to define their own integrity checks. Example

implementations include: no checking (no component connected), a simple topology

check matching the graph against an XML description of legal configurations (an

example configuration is described by figure 4.6 with the full configuration in

appendix B), or alternatively incorporate the architectural style rules proposed by

[Moreira01].

…
<Component>

 <Name>ReMMoC_GIOP</Name>
 <ID>{14C7E7CF-5750-46de-9924-D219DED7CB2A}</ID>
 <Connections>
 <Interface>{D892611A-F14B-4f27-9646-07A6E7EC013A}</Interface>
 <Interface>{ABFC5317-BF1D-4644-A19C-1A6766AA8349}</Interface>
 </Connections>
 </Component>
 …

Figure 4.6 XML description of a component configuration

4.4 Reflective Middleware for Mobile Computing (ReMMoC)

4.4.1 Requirements for the ReMMoC Middleware Framework

The goal of the ReMMoC middleware framework is to provide the following

capability to mobile client application developers. A single client application can be

developed independently of concrete middleware implementations and discovery

mechanisms to allow it to continue operating across environments consisting of

heterogeneous middleware implementation. To provide this property, the following

three requirements have been identified:

• The middleware must provide a reconfigurable service discovery mechanism.

Application developers can then find matching service types irrespective of

advertisement implementations. The mechanism must mirror the environment

and perform lookup using the discovery protocols in use.

• The middleware must provide a reconfigurable service binding mechanism.

The framework can then bind to a discovered application service using the

type of middleware the service is implemented upon.

 106

• The programming model of the middleware must be abstract from concrete

implementation details. The application developer can then perform lookup,

binding and invocation of application services independently of individual

middleware. The dynamic nature of the binding and discovery mechanism

makes concrete middleware programming models infeasible.

Furthermore, the platform must operate in an environment with two fundamental

characteristics: 1) the mobile device has limited end system resources (e.g. memory

and battery power), and 2) the wireless network provides poor quality of service

characteristics (e.g. throughput). Given these properties the design of ReMMoC must

address the following additional requirements:

• The reflective framework, into which the currently required functionality is

dynamically plugged, must be of minimum footprint size.

• All middleware functionality (components) need not reside locally on the

device and can therefore be downloaded across the wireless network on

demand.

• All components and component frameworks must be lightweight

implementations, reducing memory consumption and allowing transmission

across the network.

4.4.2 The Reflective Framework

The overall architecture of ReMMoC consists of a reflective framework that can

reside upon a mobile device, and into which a concrete middleware implementation is

configured and dynamically reconfigured. This architecture is designed as a collection

of OpenCOM component frameworks that can be extended at a later date to add new

functionality. Using many component frameworks in a middleware design (cf.

OpenORB [Blair01], and demonstrated in figure 2.12) increases the size of the

implementation in terms of memory footprint; the extra management functionality

exhausts the constrained resources of a mobile device. Similarly, the additional

overhead of indirection will reduce platform performance on devices with limited

computational power. Therefore, the architecture of ReMMoC (illustrated in figure

4.7) provides a minimal two-tier architecture consisting of a top-level component

 107

framework into which a set of components and component frameworks are plugged.

There are three sections of the top-level component framework:

1. The concrete middleware section, which is composed of two key component

frameworks: (1) a binding framework for interoperation with mobile services

implemented upon different middleware types, and (2) a service discovery

framework for discovering services advertised by a range of service discovery

protocols. The binding framework is configured by plugging in different binding

type implementations e.g. IIOP Client, Publisher, SOAP client etc. and the service

discovery framework is similarly configured by plugging in different service

discovery protocols. A detailed description of the services provided by the two

frameworks and their properties for reconfiguration are discussed in the following

sections.

2. The Abstract middleware-programming model, which implements an API for

performing service discovery and service interaction independent of middleware

implementation.

3. The abstract to concrete mapping section, which consists of components to map

abstract service requests to the current binding and discovery implementations in

place.

Figure 4.7 The top level architecture of ReMMoC

Binding CF

Binding type implementations

Service Discovery CF

Service Discovery protocols

Top-level ReMMoC CF

ReMMoC Abstract programming Model
Implementation

Binding mapping
implementations

Discovery mapping
implementations

Concrete
Middleware

Abstract to
Concrete

Abstract
Middleware

 108

The framework itself is configurable to meet the application developer’s requirements.

For example, the platform can be configured to just the concrete section, or indeed one

of the two component frameworks. This may be required for applications using fixed

types of middleware (needing no abstraction) on low resource embedded devices (e.g.

wearable computers); memory footprint size is significantly less and the indirection

and extra processing overhead is avoided. Similarly, the platform is extensible to

allow more component frameworks for other non-functional properties such as

security and resource management to be added.

This remainder of this chapter concentrates on the concrete middleware section of this

framework, with the services provided by the two frameworks discussed in detail. The

abstract programming model and mapping components are discussed further in

chapter 5.

4.5 The Service Discovery Framework

4.5.1 Overview

The principal function of the service discovery framework is to provide a

reconfigurable service discovery mechanism that can perform lookup operations

across a set of different discovery protocols. Hence, the service discovery framework

provides the base of the implementation-independent discovery service that forms the

core of the ReMMoC platform. An application developer can discover the application

service that matches their requirements, based upon matching service type and

attributes, irrespective of the discovery mechanism that is advertising it. Hence, in one

location a tourist guide service advertised using SLP is found and in the next location

the same service type is found advertised using UPnP. To meet this goal, the service

discovery framework has the following key characteristics.

• The framework automatically initialises itself to a configuration of components to

mirror the current environmental conditions, i.e. depending on what type of

discovery technologies are currently used in the environment.

• The framework dynamically reconfigures itself when the environmental context

changes e.g. when the discovery mechanisms used in the environment change.

This is most likely to occur when the mobile user changes location.

 109

• When a single discovery protocol is used in the network environment, e.g. SLP is

in use at a particular location, the framework takes the role of a single lookup

personality (e.g. an SLP lookup configuration is created).

• When multiple protocols are in use in the local network, the framework takes the

role of a multiple lookup personality. For example, if SLP and UPnP are both

being utilised at a location then the framework configures itself to contain lookup

implementations for both types. A single lookup request can then be

simultaneously executed over each discovery type.

4.5.2 The “Cycle and See” Philosophy

To mirror the current environment, the framework must discover discovery protocols

in use. However, the author believes that no solution will completely solve the

problem of heterogeneous discovery mechanisms, i.e. how you discover all the

discovery protocols. In order to discover a service you must have knowledge of the

discovery mechanism used to advertise it; if the discoverer does not know that

mechanism it cannot find the services. Solutions promoting a fixed point of

agreement, e.g. an agreed higher-level discovery mechanism for finding discovery

protocols, are infeasible because: 1) not all elements can be guaranteed to use this

technology, and 2) the higher-level mechanism itself may change (this simply moves

the problem to a higher level). Therefore, the design of the service discovery

framework follows a “Cycle and See” philosophy. This entails that the framework

execute discovery of discovery protocols by cycling through a set of tests for each

individual discovery protocol it is aware of (see section 4.5.5). The probability of all

services being found increases as the number of tests to cycle through increases.

“Cycle and See” does not rely on agreement between participating elements, and is

evolvable to include future discovery mechanisms. Therefore, the author argues that

“Cycle and See” is a natural approach to solving discovery protocol heterogeneity.

However, the “Cycle and See” approach is limited in two respects: 1) cycling through

discovery protocol tests is both time and resource consuming, and 2) as the number of

tests increase the performance of the platform degrades. However, tests can be

performed in parallel to reduce time, and the author believes that the use of knowledge

based context information will dramatically reduce this particular resource use. For

 110

example, if you know the types of discovery protocol used in an environment (from a

previous visit, or through shared knowledge) you can test for only these. Furthermore,

depending upon the mobile device, the developer may select to reduce the number of

tests carried out when resource consumption is critical.

Figure 4.8 The Service Discovery Component Framework Architecture

4.5.3 The Architecture of the Service Discovery Framework

The architecture of the service discovery framework follows the concepts of

component frameworks described in section 4.3. There are five key parts to this

architecture (which is illustrated in figure 4.8):

• The core functionality of the discovery framework is maintained in the local graph

of the framework as a configuration of OpenCOM components. For example, this

may be a single lookup personality, e.g. SLP lookup (figure 4.9) or UPnP lookup

(figure 4.11), or a multiple lookup personality, e.g. SLP & UPnP lookup (figure

4.12).

• The custom interfaces of each personality are exposed as interfaces of the

component framework to be used directly by ReMMoC’s mapping components.

When an SLP lookup personality is configured, the service functionality of the

framework is accessed through an ISLPServiceFind interface, whereas IUPnP is

exposed when an UPnP configuration is in place. Furthermore, both interfaces

would be exposed for the corresponding multi-personality configuration.

IAccept IDiscoverDiscovery

Service Discovery CF

Service
Discovery CF

implementation

CF Graph

IUnknown

CFMetaArchitecture
IMetaInterface

MetaInterface

ILifeCycle

IConnections

ICFMetaArchitecture
Exposed custom
interface

IServiceDiscoveryAdmin

 111

• The ICFMetaArchitecture interface provides reflective operations to allow the

programmer to make dynamic fine-grained or coarse-grained changes to the

internal composition of the discovery of the personality at any time.

• The IAccept receptacle offers a plug-in to maintain the integrity of the discovery

framework.

• The IDiscoverDiscovery receptacle provides for a component to be plugged into

the framework, which monitors the environment and automatically reconfigures

the framework based upon its findings. This component provides parts of the

functionality to implement the “Cycle and See” philosophy.

4.5.4 Service Lookup Personalities

Overview

Component based implementations of individual service discovery protocols (service

lookup personalities) form the core functionality of the discovery framework. These

ensure that the physically communicated network messages for service lookup can

interoperate with the discovery protocols used by services in the environment. A

service lookup personality is either a single or multiple personality. A single lookup

personality executes service lookup using a single discovery protocol e.g. Service

Location Protocol messages are exchanged across the network. The multiple service

lookup personality simultaneously executes service discovery over two or more

discovery protocols. For example, a discovery of service A, with attributes B and C

can be performed across both Universal Plug and Play and SLP. The following

sections discuss the design and OpenCOM based implementation of two discovery

protocols (UPnP & SLP) that can be plugged into the framework.

Design & Implementation of Lookup Personalities

Each individual lookup personality is designed as a reconfigurable configuration of

OpenCOM components that implements the functionality of an individual service

discovery protocol. This allows for future research into fine-grained changes in

ReMMoC’s operation e.g. the multicast protocol can be changed when the device

moves from an infrastructure based network to an ad-hoc network. Personalities also

exhibit the capability to be utilised as stand-alone protocols. Furthermore, each

personality implements its own lookup interface, rather than mapping to a fixed,

 112

common lookup interface; additional functionality specific to each personality is then

directly available to the developer and discovery framework. Mapping to a fixed,

overarching abstract discovery interface is left to the abstract to concrete section of the

ReMMoC Architecture. This technique ensures that the discovery framework is

evolvable over time; additional functionality may be added through extension of the

component configuration. For example, service advertisement or security features

could be added to service lookup. The implementation of SLP and UPnP personalities

are now examined in turn.

Service Location Protocol (SLP)

The operation of SLP was described in detail in section 2.6.3. This SLP personality

implements the client side portion of the protocol. Hence, when a central directory

agent is available lookup messages are directly sent to it, otherwise lookup requests

are multicast across the network for service agents to respond to (the implementation

specifically concentrates on the second part because it is well suited to wireless

networks). Table 4.3 illustrates the six components that compose the Service Location

Protocol lookup personality.

Component Name Description
Socket Wraps the socket API, to provide an operating system

independent interface for network programming.
SLPMessage Creates and reads SLP messages that conform to SLP standard

[Veizades97]. Operations to multicast SLP messages to service
agents.

DADiscovery Operations to discover and communicate with Directory Agents
when these are available in the network.

SLPServiceFind Programmer operations to perform SLP lookup.
Table 4.3 Components of the SLP Lookup Personality

Figure 4.9 shows the complete configuration of the four components for the SLP

personality. However, the configuration can be minimised by removing the directory

agent component (DADiscovery) when only service agent interaction is required.

Notably, the lookup operations provided by the SLPServiceFind interface return their

results asynchronously. Therefore, the user of the personality must pass handler

functions to manage the returned results of both service lookup and attribute lookup.

The four components were implemented based upon the Open Source OpenSLP

(www.openslp.org) C++ implementation of the SLP standard. Therefore, the

 113

implementation consisted of separating the functionality into individual, replaceable

OpenCOM components, recreating the appropriate network communication

implementations, and porting the message formats to the Windows CE operating

system.

Figure 4.9 OpenCOM configuration for SLP lookup personality

Universal Plug and Play (UPnP)
The UPnP standard is based upon UPnP devices whose functionality is offered

through a set of services. The description of these services is advertised by XML

documents, which can be downloaded by the client. Hence, the UPnP personality is

implemented to lookup services, download the corresponding XML description, and

then parse this file to find service attributes. The operations of the personality are

described in the IDL definition of the IUPnP interface, illustrated in figure 4.10. This

illustrates a minimum UPnP personality that concentrates solely on the service lookup

features of UPnP, it does not take into account UPnP device lifetime management that

uses the General Event Notification Architecture to signal state changes between

services. Although, it is feasible for this capability to be added later using additional

components.

ISocket

SLPServiceFind

SLPMessage

Socket

ISocket

ISLPMessage

INetReplyCallback

2.2 I2.3 ISLP

ISLPServiceFind

2.4 IDAD

2.5 IDAN

DADiscovery

IDADiscovery
IDANet

INetReplyCallback

ISocket

ISLPMCastNet

INetReplyCallback

IMCastNet ISLPMessage

IDADiscovery

IDANet

IMCastNet

ISLPMessage

 114

In UPnP, lookup is performed by the Simple Service Discovery Protocol (SSDP),

which operates by multicasting HTTP messages using the User Datagram Protocol. A

Client (Control point) multicasts SSDP messages to the SSDP multicast address

(239.255.255.250:1900) and receives one or more unicast response messages for each

matching service. Whatever is requested, e.g. all root devices, a service or a specific

device, only the identifier of the UPnP device is retrieved (a URL). The client then

uses this URL to obtain XML descriptions of the device, service and attributes using a

standard HTTP over TCP approach. Therefore, the implementation of the UPnP

personality is made up of the five components described in table 4.4; these can be

connected as shown in figure 4.11 to create a full UPnP personality. Like SLP, a

Client function is registered to be called back when matching services are found. The

SSDP component creates HTTP messages using functions from the HTTP component

but doesn’t use the HTTP transport methods, instead it sends and receives the UDP

messages (unicast and multicast) using the Socket component. The personality is also

dynamically configurable; separate personalties for individual service lookup and

XML downloading can be configured.

 int UpnpSearch (UpnpClient_Handle Hnd, int MaxRetry, const char * ServiceType, const

void *Cookie);
 IXMLDoc* UpnpDownloadXml (const char *url_const);
 ServiceList* UpnpListServices(char* xmlDoc);
 ActionList* UpnpListActions(char* xmlDoc);

Figure 4.10 The IUPnP Interface

Component Name Description
Socket Wraps the socket API, to provide an operating system

independent interface for network programming.
TCP Wraps TCP socket functionality
HTPP Creates HTTP headers.
SSDP Implements the SSDP protocol. Lookup commands are wrapped

in HTTP messages and then multicast over UDP. Unicast
responses are received, which generates a service found event.

UpnP UPnP functionality. Wraps SSDP lookup and offers extra
services of XML downloading and attribute discovery

Table 4.4 UPnP components

Three of the components: HTTP, TCP and Socket were developed from scratch to

match their protocol specification. However, the UPnP and SSDP components were

ported from the UPnP Linux development kit (upnp.sourceforge.net) from Intel to

 115

IUPnP

IHTTP

UPnP

HTTP

Socket

ISocket
ITCP

2.6 ISLP

2.7 IDAD

2.8 IDAN

SSDP

ISSDPCallback

ISocket

ISSDP

ISSDPCallback

TCP

IHTTP

ISocket

ISocket

create two separate OpenCOM C++ components. The majority of this task involved

porting the code to the windows CE operating system and then integrating it with the

three existing communication components.

Figure 4.11 UPnP lookup component personality.

UPnP & SLP Multi-personality

In order to implement a multiple service lookup personality the two individual SLP

and UPnP personalities are combined. Hence, the diagrams in figure 4.9 and 4.11 are

joined, whereby they share the common component Socket; however, it is feasible for

separated personalities (there is no direct connection between the personalities) to

implement a multi-personality. A multi-personality simply exports one interface per

individual lookup personality e.g. ISLPServiceFind and IUPnP; this allows service

lookup operations to be executed simultaneously across each protocol.

4.5.5 Mirroring the Network Environment

Overview

The initial configuration and further dynamic reconfiguration of the service discovery

framework is driven by the current context of the mobile device. The functionality

provided by the framework must mirror the current environmental conditions. Hence,

 116

if N discovery mechanisms are being utilised across the current wireless network then

the service discovery personality should simultaneously implement each of the N

lookup mechanisms. When the framework is initiated it must obtain context

information about the discovery mechanisms currently in use and create a

corresponding configuration. Furthermore, as the framework continues operation it

must monitor context information about discovery protocols in order to dynamically

respond to any changes. In this section, the algorithms for initial configuration and

dynamic reconfiguration are described. The required context information about

discovery protocols in the environment is obtained using the component plugged into

the DiscoverDiscovery receptacle of the framework. A description of the

implementation of this component is provided in this section.

interface IDiscoverDiscovery: IUnknown {
HRESULT AsynchronousDiscoveryProtocolSearch([in] ServiceDiscoveryType list[],
 [in] int TimeToSearch, [in] ReMMoCServiceFindHandler cback);
 HRESULT SynchronousDiscoveryProtocolSearch([in] ServiceDiscoveryType sdt);
}

Figure 4.12 IDiscoveryDiscovery Interface

The DiscoverDiscovery Component

In order to perform configuration and reconfiguration, the framework must be aware

of environmental context information i.e. the set of protocols currently used to

advertise services. It is the task of the DiscoverDiscovery component to perform

individual tests for each known protocol (the framework maintains a list of discovery

protocols that it is aware of). The service discovery framework then manages the

execution of individual tests for each of the protocols. The interface

IDiscoveryDiscovery illustrated in figure 4.12, documents how these operations are

called. There are two styles of operation: synchronous and asynchronous. The

synchronous operation (SynchronousDiscoveryProtocolSearch) takes a protocol

type as parameter (e.g. SLP or UPnP) and performs a single test for this, the result is a

synchronous Boolean response indicating if that protocol is in use. The asynchronous

operation takes a list of protocol types to test for (e.g. SLP and UPnP) and the time to

search as parameters. Environmental monitors are then initiated for each; the test

continuosly polls the environment. If a detection is made an event is generated

through the callback method passed by the framework, which can then reconfigure on

 117

this trigger. Notably, continuous monitoring is an expensive operation that quickly

consumes resources (e.g. battery power and bandwidth); therefore, this operation is

utilised sparingly by ReMMoC.

Implementation of the DiscoverDiscovery Component

The service discovery framework currently knows of two protocol types, namely SLP

and UPnP (these were the implemented lookup personalities). Therefore, the

DiscoverDiscovery component was implemented to perform synchronous and

asynchronous tests for both of these. The philosophy behind the implementation was

to create a single, lightweight component with no dependencies on other components.

The diagram in figure 4.13 illustrates how the individual tests were implemented. For

SLP you can test the environment for either a directory agent or service agents,

although in a mobile setting service agents are more likely; if neither exist it is not

possible to advertise SLP services. Therefore, the DiscoverDiscovery component

creates an SLP header containing the lookup request “service:service-agents”, which

is then multicast to the SLP multicast address 239.255.255.253:427. Any service

agents return a response directly on the requesting socket. Therefore, any response is

an indication SLP is in use. Similarly, for UPnP a HTTP/SSDP header as shown in the

diagram is created and multicast to 239.255.255.250:1900; if a response is returned

from a UPnP device then UPnP is used in the environment.

Figure 4.13 Discovery protocol tests

XML configuration

The discovery framework automatically creates component personalities based upon

the context information it receives (i.e. the results of DiscoverDiscovery). Along with

the list of discovery protocols that are known, an XML description of the component

architecture is maintained; XML is utilised to simplify the definition of component

M-SEARCH * HTTP/1.1
HOST
239.255.255.250:1900
MAN: “ssdp:discover”
MX: 3
ST: upnp:rootdevice

Discover
Discovery
component

Service:ServiceAgent

239.255.255.250:1900

239.255.255.253:427

SSDP Message

SLP Message

SSDP multicast
address

SLP multicast
address

 118

framework personalities by middleware developers. This XML document lists the

components in a particular personality and how they are connected together. An

example XML architecture description (part of the SLP personality) is illustrated in

figure 4.14; this consists of a set of components and interfaces. The list of interfaces

identify the personality e.g. SLP, UPnP, SLP&UPnP. Through reflection this can be

used to identify if parts of the personality are already in use before reconfiguration is

attempted. The list of components documents all components in the personality; each

component describes its name and unique identifier (this information is then used to

create a new instance of the component in the framework using the insert_component

method), along with a set of connections describing the interfaces it is connected to.

<ReMMoC_Configuration>
 <Interfaces>
 <Interface>{BC906B4C-9902-48ed-8449-8C82C85EBB11}</Interface>
 </Interfaces>
 <Components>
 <Component>
 <Name> UPnP</Name>
 <ID>{32DBE3A3-23CB-408e-BB9F-DDCCBE9F0DAD}</ID>
 <Connections>
 <Interface>{50B10B7D-10CD-4465-B830-DA91BEC2530B}</Interface>
 <Interface>{1A0E8B36-8857-11d3-9448-00A024B801B7}</Interface>
 <Interface>{D993631C-FD4C-4f27-9646-07E6E7EC098A}</Interface>
 </Connections>
 </Component>
 <Component>
 <Name> SSDP</Name>
 <ID>{90572423-3E65-42a6-8C86-97A6517A5B83}</ID>
 <Connections>
 <Interface>{70E545C4-FF5A-4851-8646-E301EB22654A}</Interface>
 <Interface>{1A0E8B36-8857-11d3-9448-00A024B801B7}</Interface>
 <Interface>{D993631C-FD4C-4f27-9646-07E6E7EC098A}</Interface>
 </Connections>
 </Component>
 …
 </Components>
</ReMMoC_Configuration>

Figure 4.14 Part of the XML description for the SLP personality

The algorithm for reconfiguration is illustrated by pseudocode in figure 4.15. This is

implemented as a combination of XML parsing and reflective operations on the

component framework. For example, the list of interfaces are parsed and then checked

against those in place using enumIntfs of the CF. If different, reconfiguration is

started; each component description is parsed to obtain the information required to

insert a new instance of the component into the graph (insert_component). Each of the

 119

connection statements is then parsed and the corresponding components are bound

together (local_bind).

Initial configuration

The service discovery framework is initiated through its ILifecycle interface; hence,

the startup method is invoked. This method implements the initiation algorithm of the

framework; this involves reading the current known discovery protocols and for each

create a thread that invokes the discoverdiscovery’s synchronous discovery method

e.g. SynchronousDiscoveryProtocolSearch(SLP) will run the test for SLP in the

environment. The result of these tests returns a Boolean value; if true is the response,

the XMLConfigure operation is invoked passing the XML description of the lookup

personality.

Find corresponding XML personality description;
LOAD XML description into parser;
For index = 1 to number of <component> tags
 Read componentID and componentName;
 meta operation: Insert_component(componentID, componentName);
Endfor;
For index = 0 to number of <component> tags

Read CompID

For index 2 = 0 to number of <connection> tags

 Read Source Interface Identifier IntfID;
 Find Sink Component in local graph: Iunk1= GetPIUknown (CompID);
 Find Source Component:
 meta operation: get_internal_components(Clist, Num);
 For index 3 = 0 to Num
 EnumIntfs(Clist[index3], IntfList, Num2);
 For index 4 = 0 to Num2
 If IntfList[Index4]== IntfID;
 Iunk2= GetPIUknown (Clist[index3]);
 meta operation: Local_bind (Iunk1, Iunk2, IntfID);
 Endfor;
 Endfor;
 Endfor;
Endfor;

Figure 4.15 Pseudo code for XML based configuration of personalities

Environment Monitoring

The service discovery framework also implements a method for continuous

monitoring of discovery protocols in the environment; this is named ConMonitor.

 120

When this method is invoked, each known discovery protocol is read and a thread that

calls asynchronousDiscovery for each is spawned. The discoverdiscovery tests will

then monitor the environment; when a protocol is discovered it calls back a handler

that contains the code to invoke the XMLConigure method for the corresponding

protocol, and hence change the configuration based on an event trigger.

Integrity maintenance

The final task of the discovery framework is to maintain integrity in the face of

dynamic changes. Two requirements are placed on integrity checking 1) only valid,

complete lookup protocols are allowed to compose the framework’s functionality, and

2) changes to the framework cannot be made until all existing lookup requests have

completed. These are enforced by the framework implementation and IAccept

component that were described in section 4.3.3. The readers/writers lock of the

framework is accessed as a reader for the lookup operations of the exposed lookup

interfaces e.g. ISLPServiceFind and IUPnP, and as a writer for ICFMetaArchitecture

change operations. Therefore, changes to the component configuration are blocked

until invocations of the exposed interfaces are complete. The Accept component stores

XML descriptions of single and multi-personalities in the format illustrated in figure

4.14. Therefore, for the implementation of the framework three descriptions are

maintained (SLP, UPnP and UPnP&SLP). When a change is made, the framework

invokes isValid passing the local graph as a parameter. The Accept component then

checks this graph against each description it currently stores. Only when there is a

complete match between components, connections and exposed interfaces is a

Boolean true response returned.

4.5.6 New Discovery Protocols

A key aim of the discovery framework is to be extensible to dynamically incorporate

new discovery protocols as they become available. We have implemented

personalities for SLP and UPnP; however, in the future it must be possible to extend

the framework to allow it to discover services using new discovery mechanisms. This

is especially important in the domain of mobile computing, where much work on

creating new discovery solutions for ad-hoc wireless networks and ubiquitous

applications is being carried out.

 121

To add a new discovery protocol to the framework, three tasks must be carried out:

• Make the framework aware of the new protocol type, and the component

personality required to perform service lookup.

• Add synchronous and asynchronous tests to the DiscoverdDiscovery

component that will detect if the new protocol is in use in the local

environment.

• Add the XML description of component personality to the Accept component

in order for the component configuration to be verified correctly when it is

created.

interface IServiceDiscoveryCFAdmin: IUnknown {
 HRESULT AddNewProtocol(char * ServiceDiscoveryType, char* XML);

}

Figure 4.16 IDL definition of IServiceDiscoveryCFAdmin interface

To add a new protocol, an administrator or application obtains a reference to the

interface IServiceDiscoveryCFAdmin (described in figure 4.16) available from the

framework. They may then invoke the AddNewProtocol operation passing two strings

1) the name of the type of discovery protocol, and 2) the XML description of the

component configuration as exemplified in figure 4.14. They must then implement a

new version of the DiscoverDiscovery component, which will add a synchronous and

asynchronous test for the newly created type. The old version of the

DiscoverDiscovery component can then be disconnected and dynamically replaced by

the newer version. Note that the discovery framework must be shutdown before this

process is initiated and then re-started at completion otherwise the monitoring

operations, which detect when a discovery protocol begins to be used in the

environment, will fail.

4.6 The Binding Framework

4.6.1 Overview

The principal function of the binding framework is to provide a configurable and

dynamically reconfigurable binding mechanism that allows mobile clients to bind and

 122

interoperate with application services implemented upon particular implementations

of middleware paradigms (e.g. Remote Method Invocation, Publish-Subscribe,

Asynchronous Messaging). Furthermore, the binding framework allows two-way

interoperation with services, i.e. as well as client binding, the service itself is able to

bind back to the client and communicate across its own style of binding. Hence, the

binding framework provides the base for the implementation-independent binding

mechanism that forms part of the core of the ReMMoC platform. To interoperate with

a discovered service, the binding framework dynamically reconfigures itself to an

identical binding mechanism e.g. if a CORBA service is found the framework

becomes a CORBA client side personality; similarly if a STEAM publisher is found

the framework configures to a STEAM subscriber. This allows service interoperation

to become independent of heterogeneous binding mechanisms, as is described in more

detail in chapter 5.

 To meet this goal, the binding framework has the following key characteristics:

• A configurable and dynamically reconfigurable client side binding personality, i.e.

this configuration performs client style binding operations (e.g. service requests,

message sends). This is a single personality that can execute a single operation and

then reconfigure to a new personality. For example, a mobile jukebox player

application can send a SOAP request to play a song in one location, while at

another the list of available songs can be read using a publish-subscribe

implementation.

• A configurable and dynamically reconfigurable service side binding personality,

i.e. the framework is able to host service implementations that respond to requests

of this service and messages sent to the service. This allows for the same

application service to be hosted upon heterogeneous implementations. For

example, a chat service can be hosted upon IIOP to interoperate with a CORBA

client, and later when a SOAP client attempts to interoperate with the hosted

service the personality can change its base binding to SOAP.

• Configuration and dynamic reconfiguration of the framework is controlled by

higher-level elements. In ReMMoC’s case the top level ReMMoC CF receives

information from the service discovery framework to drive the correct

configuration i.e. it finds a SOAP service therefore reconfigures to SOAP.

However, the framework is also an independent element that can be used

 123

individually by clients that can use the meta-interfaces to make their required

changes.

4.6.2 The Architecture of the Binding Framework

The architecture of the binding framework follows the concepts of component

frameworks described in section 4.3. There are five key parts to this architecture

(which is illustrated in figure 4.17):

• The core functionality of the framework is maintained within the local graph. This

multi-personality maintains component configurations for just a client personality,

just a server personality or a client and server personality. For example, the local

graph could contain an IIOP client, an IIOP server or both an IIOP client and

server.

• Individual custom interfaces of the client and server are exposed as interfaces of

the component framework. It is feasible that the binding framework can contain

multiple clients and server personalities operating in parallel, however, this

capability is not considered (due to the complexity of implementation involved) in

the implementation described by this thesis.

• The ICFMetaArchitecture interface provides reflective operations to allow the

programmer to make dynamic fine-grained or coarse-grained changes to the local

graph of components. Coarse-grained changes include changing a complete

personality. Fine-grained changes can be made in face of changing network

conditions e.g. when the device encounters frequent disconnection a SOAP

personality can switch its transport to SMTP rather than HTTP.

• The IAccept receptacle offers a plug-in to maintain the integrity of the discovery

framework. Like the service discovery framework, this performs topology checks

of the local graph against known XML component configurations.

 124

Figure 4.17 The binding component framework architecture

4.6.3 Binding Personalities

Overview

The requirement of binding personalities is to interoperate directly with application

services over the matching underlying binding implementation. Generally, these

personalities specifically fit one of the roles of a client or server personality. For

example, an IIOP client performs a complete remote method invocation or sends a

one-way message to a server; whereas the IIOP server responds to RMI invocations

and receives one-way messages. Similarly, the client side subscribe personality

receives published events; whereas the server side publisher only forwards these

events. This section examines in turn the design and implementation of client and

server binding personalities that have been developed for the ReMMoC project,

namely an IIOP client, an IIOP server, a SOAP client, a publish-subscribe subscriber

and a publish-subscribe publisher.

IIOP Client

Like the ALICE project [Haahr00], IIOP is used as the minimum implementation of a

CORBA ORB to address the memory restrictions of the mobile device. The

implementation is based upon the IIOP personality from the Universal Interoperable

Core implementation [Roman01], hence only the Dynamic Invocation Interface is

implemented to invoke remote operations. The goal of the personality is to

ICFMetaArchitecture

IAccept

Binding CF

Binding
implementation

CF Graph

IUnknown

CFMetaArchitecture
IMetaInterface

MetaInterface

ILifeCycle

IConnections

Exposed custom client
interface

IBindingAdmin

Exposed custom server
interface

 125

interoperate with established CORBA ORB implementations (e.g. ORBACUS) and

the IIOP server personality described later. The components that make up this

configuration are described in table 4.5.

Component Name Description
Socket Wraps the socket API, to provide an operating system

independent interface for network programming.
TCP Wraps TCP socket functionality
GIOP GIOP operations (send/receive GIOP messages)
IIOP Map GIOP to TCP/IP. Implementation of the IIOP

programming interface e.g. IORs and objects.
CORBAMarshalling Marshalling and demarshaling of primitive CORBA type as

defined in GIOP CDR.
Table 4.5 Component elements of the IIOP client personality

The individual components are designed for particular dynamic changes e.g. the

transport protocol can be replaced e.g. TCP with UDP. The marshalling component

can be replaced by a version for marshalling and demarshalling of more elaborate

types (the current version manages primitive CORBA types and arrays, while structs

could be a future extension). The configuration of components is illustrated in figure

4.18.

Figure 4.18 IIOP client binding personality

3ISocket

5ITPProtocol

IIOP

7IIIOP

9ICORBAMarshaling

CORBAMarshaling

GIOP

Socket

11ITPProtocol

13ICORBAMarshaling

TCP

15IGIOP

 126

The implementation of this personality utilises the socket and TCP components that

have already been described; the remaining three components were implemented

using the Universal Interoperable Core open source implementation for Windows CE

devices. This code was first converted to OpenCOM components, and then the

network programming was replaced by the existing TCP and Socket components.

IIOP Server

The role of the IIOP server personality is to host objects whose operations can be

invoked remotely. Like the client side personality, the implementation is based upon

the UIC model of a minimum CORBA ORB implementing only the dynamic

invocation interface (to reduce memory consumption). The configuration of

components for the server side personality is illustrated in figure 4.19. It can be seen,

that three components of the client side personality can be re-used (Socket, TCP and

Marshalling), and two new components described in table 4.6 are introduced.

Component Name Description
GIOPServer GIOP operations (send/receive GIOP messages)
IIOPServer Map GIOP to TCP/IP. Implementation of the IIOP

programming interface e.g. IORs and objects.

Table 4.6 Additional IIOP server components

Figure 4.19 IIOP Server side binding personality

17ISocket

19ITPProtocol

IIOPServer

21IIIOP

23ICORBAMarshaling

CORBAMarshaling

GIOPServer

Socket

25ITPProtocol

27ICORBAMarshaling

TCP

29IGIOPServer

 127

SOAP (RPC) Client

In SOAP, two styles of communication are possible: 1) a synchronous request

response exchange of XML messages between a SOAP client and server, typically

used to invoke a remote procedure, and 2) asynchronous messaging passing, whereby

an XML message is sent and its content must be parsed by the receiver. This

personality concentrates on the first role (although the second style is used by the

subscriber implementation later). The design of the SOAP RPC client concentrates on

a minimum implementation of the SOAP specification, and unlike the previous

personalities was implemented from scratch. The components that make up the

personality are described in table 4.7, and the configuration is illustrated in figure

4.20. The SOAP marshalling component, like IIOP concentrates on primitive SOAP

types and arrays, and in the future could be extended to include struct definitions,

base64 encoding and MIME types.

Component Name Description
SOAP Provides SOAP programming interface to send SOAP RPC request

and receive response
SOAPtoHTTP Maps the SOAP operations onto the current transport – HTTP.
HTTP Implements HTTP 1.1 specification. Methods to create and read

HTTP headers, and transmit HTTP data.
SOAPMarshall Marshalls and demarshalls
TCP Wraps TCP sockets for HTTP to be layered over. Replaceable by

UDP and other transports.
Socket Wraps platform dependent network socket implementation.

Table 4.7 Components of SOAP RPC client personality

Figure 4.20 Component configuration for SOAP RPC client personality

ISOAP

SOAPtoHTTP

HTTP

TCP

SOAP RPC

ISOAPTransport

Socket

ISOAPMarshalling

ISocket

IHTTP

SOAP

Marshalling

ITPProtocol

 128

Publish-Subscribe Subscriber

A publish-subscribe personality was designed and implemented to demonstrate that

fundamentally different communication paradigms to remote procedure call or remote

method invocation can operate within the binding framework. The STEAM model for

publish-subscribe (section 2.3.4) across wireless networks using group communication

was followed. An IP multicast address is used to create a particular channel to

disseminate events upon e.g. one publisher uses one address, while another may have

a different channel. XML messages contain the physical content of the message and

are transmitted as asynchronous SOAP messages. Finally, a filter language is used to

describe the event types the client wishes to subscribe to (i.e. the filtering takes place

at the client); in this case they can filter by the subject of the message or by the

content of the message. Further information about the implementation of the filter

language can be found in [Sivaharan02]. The list of components that compose a

subscriber personality are shown in table 4.8.

Component Name Description
Subscribe Provides API to subscribe to events of particular types.
SOAPMessaging Creates and transmits asynchronous SOAP messages.
SOAPtoMulticast Maps SOAP messages onto a multicast transport interface.
Filter Creates content and subject event filters.
Multicast Implements IP multicast operations for Windows CE platform.

Table 4.8 Component descriptions for subscriber personality

Figure 4.21 Component configuration of subscriber personality

Subscribe

SOAP

Messaging
Filter

SOAPtoMulticast

Multicast

IFilter

IMulticast

ISOAPMessaging

ISubscribe

ISOAPTransport

 129

The configuration of components for the subscriber personality is shown in figure

4.21. The personality can be dynamically changed to deal with both environmental

change and evolutionary requirements. Upon a change in network type (for example, a

change from IEEE 802.11b in infrastructure mode to ad-hoc mode) the IP multicast

component can be replaced by an implementation of Application Level Multicast

(ALM) [Sivaharan04]. Furthermore, the filter component can be replaced with more

elaborate mechanisms such as filtering by context information, e.g. only receive

events that come from publishers within ten metres (see [Sivaharan02]).

Publish-Subscribe Publisher

The role of the Publisher is to implement the publishing of events based upon the

STEAM model, in order for the previous subscriber to interoperate correctly. The

implementation of the component configuration for this task (illustrated in figure 4.22)

closely follows the model used by the subscriber. The only change is that the publish

component, which provides the API to create new event channels and send messages

of particular types upon, replaces the subscribe component.

Figure 4.22 Component configuration of publisher

4.6.4 Integrity Maintenance

The integrity of the binding framework is managed in identical fashion to the

discovery framework. The accept component stores a list of possible client and server

configurations that may correctly compose the framework. These can consist of a

single client type, a single server type or a combined server and client. For example,

Publish

SOAP

Messaging
Filter

SOAPtoMulticast

Multicast

IFilter

IMulticast

ISOAPMessaging

IPublish

ISOAPTransport

 130

IIOP client, IIOP server or IIOP client and server; similarly, contrasting styles e.g.

publisher and IIOP client are still valid configurations. Rules allowing these

combinations are defined within the binding framework implementation. These state

that two types of exposed interfaces are allowed, one of a server type and the other of

a client type. These must then be implemented by the corresponding component

configurations.

4.6.5 New binding types

The binding framework only addresses two communication paradigms, and only a few

individual implementations of these at present. Given the heterogeneous nature of the

mobile environment, as documented in chapter 2, it is likely that new binding

implementations will be required across different locations. Therefore, these must be

dynamically added to the framework. Adding a new binding protocol is a much

simpler task than adding a new discovery protocol and requires only the following

steps from the ReMMoC administrator:

• The binding type (personality) must be implemented as a set of OpenCOM

components.

• The component configuration must be described in XML and added to the

implementation of the Accept component.

• The higher-level mechanism controlling the binding framework must be made

aware of this new binding type (its type name, and the XML description of

how to configure it). Therefore, when it discovers a service implemented upon

this new binding type it is able to take appropriate action.

4.7 Summary

This chapter has presented the ReMMoC architecture, a middleware framework to

support interaction with both heterogeneous discovery protocols and core middleware

binding implementations. The core underlying elements of this framework are:

• OpenCOM components are used as the building block of the frameworks;

these act as the units of configuration and composition.

• A new component framework model for OpenCOM has been designed to

specifically support ReMMoC. The model promotes the use of composite

 131

components to build particular functionality, along with an enhanced meta-

object protocol to simplify reflective programming in OpenCOM.

• ReMMoC is based upon a concrete middleware section composed of a service

discovery framework and binding framework

• The service discovery framework tackles two specific problems. Firstly, the

problem of discovering what discovery mechanism is in use at a particular

location, and then performing lookup requests over the one or more discovery

protocols that have been found.

• The binding framework supports interoperation with contrasting middleware

implementations e.g. different RMI (SOAP and IIOP) and different publish-

subscribe implementations.

The next chapter of this thesis examines how the core elements are put together to

create an adaptive middleware framework that solves the problem of heterogeneous

middleware implementation. Furthermore, it elaborates on the higher-level abstraction

and abstract to concrete mapping mechanisms that have been introduced here.

 132

5Chapter 5 The Abstract Service Programming Model

5.1 Introduction

The primary focus of this thesis is tackling middleware heterogeneity in the mobile

computing environment. The previous chapter promoted the concept of matching the

correct middleware behaviour to individual tasks to solve this problem, e.g. using

discovery protocols currently in use in the environment, and matching the client

binding protocol to the type used by the found service. Dynamic reconfiguration of

middleware behaviour demonstrated how the interoperation problems between

heterogeneous middleware implementations are then overcome. However, this alone

does not provide a complete solution. A programmer using this technology would

need to explicitly program each dynamic change, e.g. when the discovered service is

of type SOAP, a series of reflective operations to configure the SOAP components

must be programmed before the service is invoked. Similarly, at a new location the

found service is of type CORBA, hence this time a series of reflective operations for

reconfiguration must be programmed. Program code of this nature is inevitably

repetitive, overly long (unnecessarily consuming memory resources) and detracts from

the application logic. Furthermore, it is impossible to predict in advance the course of

a mobile user; they are unlikely to encounter predictable middleware implementation,

especially in newly entered locations.

This thesis argues that to address middleware heterogeneity in the mobile environment

the following proposed approach is required. First, the choice of a higher-level

middleware abstraction that is independent from both concrete service discovery

protocols and middleware bindings, as described previously (section 4.4.2). Second,

the definition of mappings of abstract operations (service invocation and service

lookup) to concrete operations across the underlying protocols. Mapping is a well-

identified solution to the problem of middleware heterogeneity [Vinoski03]; normally

direct mappings are made between contrasting middleware types. However, this

chapter demonstrates how the technique of mapping from the abstract level to the

concrete level provides a flexible and dynamic programming environment in the face

of changing middleware heterogeneity. With this approach there is the danger that yet

another middleware is produced and the heterogeneity problem moves up a level. In

this chapter we analyse the likelihood of this happening with ReMMoC.

 133

5.2 The Overall ReMMoC Abstraction Architecture

There are two fundamental requirements of the abstract programming model:

1) The application developer must be able to perform generic service lookup,

stating the service type with attributes that they wish to discover. Hence, matching

services advertised by different discovery mechanisms can be found.

2) The application developer must interoperate with services using abstract

operations. The developer is then unaware of the individual communication paradigm

(e.g. RMI, Send/Receive) or middleware implementation (e.g. SOAP, CORBA) that

the operation is executed across. Hence, the API must provide middleware

transparency. The application developer need not concern themselves with dynamic

reconfigurations between different middleware behaviours (however, ReMMoC is an

open platform, therefore the developer can manage adaptation if they wish).

Figure 5.1 The ReMMoC programming model

ReMMoC’s abstract programming model is separated into two distinct parts: 1) an

abstract service invocation model (which can be mapped to the binding framework),

and 2) an abstract service discovery model (that is mapped to the service discovery

framework). The combination of these two complementary models provides an

overriding abstraction for service use in mobile environments. ReMMoC’s role in this

abstraction is implemented by the architectural elements illustrated in figure 5.1; a

single component (ReMMoC_Abstract) provides the abstraction API through the

IReMMoC interface, and furthermore manages the underlying adaptation of concrete

middleware to provide middleware transparency. Two separate mapping components

are plugged into the ReMMoC_Abstract component, i.e. a mapping to the binding

framework and a mapping to the service discovery framework. These form the

abstract to concrete section of the ReMMoC architecture.

ReMMoC_Abstract

Binding
mappings Abstract to

Concrete

Abstract
Middleware

Service Discovery
mappings

IReMMoC

 134

ReMMoC’s abstraction, unlike other higher-level abstractions, considers abstract

service discovery (rather than a single discovery mechanism). Section 5.3 describes

the design of this new abstract service discovery model, which relies on the common

features of individual discovery protocols. Furthermore, the service invocation

abstraction is based upon core elements of the Web Services Architecture (it does not

utilise the full specification). Section 5.4 describes the choice of Web Services as

opposed to alternative abstractions. In addition, the techniques used to map from Web

Services to the dynamically changing concrete binding implementations are specified.

5.3 The Service Discovery Abstraction

5.3.1 Overview

The key property of the abstract service discovery model is to provide a generic

service lookup interface that hides the details of heterogeneous service discovery

protocols from the application programmer. For example, when the user wishes to find

services offering share service functionality, the generic lookup operation returns

matches of all share services irrespective of the advertising technique (e.g. Jini, SLP,

UPnP and Salutation).

The solution employed by ReMMoC is to provide a higher-level abstraction of

discovery. This takes the form of a custom API, which is based upon the generic

features of the majority of service discovery protocols. This API is then mapped by

individual mapping components onto the implemented interfaces exported from the

service discovery framework. This thesis concentrates on service lookup as part of a

generic service discovery framework; other common features including leasing and

service events are not considered because they are not available in all protocol

implementations.

This section first examines the common features of discovery protocols, which leads

to a specification of the service discovery abstraction. The architecture for abstract to

concrete mapping is then defined, along with example implementations of mapping

components.

 135

5.3.2 The Service Discovery Abstraction

The IReMMoC interface provides the developer with a generic lookup API, as

described by the interface in figure 5.2. This consists of two methods: Servicelookup

and GetAttributes. The required service type and list of attributes are passed to the

ServiceLookup operation together with a handler to receive a returned event and an

integer stating the time to search for. The information returned in this event is

described by the data structure in figure 5.3. The key items of information returned are

the ServiceType, the URL (used to identify the service location), and the Attribute list.

ReMMoC uses this information to map subsequent abstract invocations to a particular

service; hence, the data type is ReMMoC’s service identifier. The GetAttributes

operation returns all attributes for the identified service.

interface IServiceLookup : IUnknown {
 HRESULT ServicesLookup([char* ServiceType, Attributes[] attrs,

 int TimeToSearch, ReMMoCServiceFindHandler cback,);
 HRESULT GetAttributes(ServiceReturnEvent ServiceID, AttributeList* list);
}

Figure 5.2 IDL definition of IServiceDiscovery interface

typedef struct _Attribute{
 char* Name;
 char* XMLValue;
}Attribute;

typedef Attribute AttributeList[MAX_ATTRIBUTES];

typedef struct _ServiceReturnEvent{
 char* ServiceURL;
 char* ServiceType;
 AttributeList List;
}ServiceReturnEvent;

Figure 5.3 The ServiceReturnEvent data structure

For example, finding weather services using the ServiceLookup operation across two

discovery configurations, e.g. UPnP and SLP, returns a list of matched services from

both types, i.e. multiple ServiceDiscoveryEvents. However, the developer does not

know which protocol returned the event.

The design of the generic lookup API is based upon the similarities in

implementations of each individual discovery mechanism. The abstraction relies on

each protocol advertising a service by a single string element describing the service

 136

type (e.g. Printer Service, Stock Quote Service). Furthermore, this technique relies

upon the assumption that all services of the same service type provide the same

service functionality. The abstract service binding (described later) utilises WSDL

abstract service descriptions; hence, services with the same description (service type)

offer the same type. In addition, the discovery abstraction relies on each discovery

protocol describing service attributes (properties of the service) as a name value pair.

The following sections now describe how the four major discovery protocols meet

these requirements.

Service Location Protocol

The Service Location Protocol standard [Veizades97] advertises services through

URLs. The URL has the form: “service:<abstract-type>:<concrete-type>” followed by

a list of attributes, where an attribute is a name-value pair. Services are found using

the service request message (SrvRqst). The service type string "service:<abstract-

type>" matches all services of that abstract type. If the concrete type is also included

only the specific service is found. For example: a SrvRqst that specifies

"service:printer" as the Service Type will match the URL

service:printer:lpr://hostname and service:printer:http://hostname. If the requests

specified "service:printer:http" they would match only the latter URL.

Universal Plug and Play

Two complementary techniques combine in UPnP to provide the service type and

attribute details of a service. The Simple Service Discovery Protocol (SSDP) is used

to find services of a particular type. In UPnP devices host other devices and individual

services. The service request operation allows devices and services to be searched for

by device type or service type (of the format “service:servicetype”). The resulting

device location is returned, from which the URL of the service (similar to SLP) is

obtained to determine the service location. Attribute information (available operations

and/or device information) is stored in XML documents that must be downloaded

from the device after a service match. The XML base of these descriptions provides

attribute information in the required name-value pair format.

Jini

 137

In Jini, services are discovered through matching Java class definitions. Normal

operation requires that the complete class name and implemented methods match.

However, this would not match the “ServiceType” as a string requirement; instead it is

also possible to search by class name alone. Therefore, generation of an empty class

from the ServiceType string is required to achieve this. Furthermore, attributes are

attached to each service in the form of an attribute bean and it is possible to match

information based upon these. The beans store information in name-value format;

therefore it matches with the generic attribute properties.

Salutation

Salutation advertises services based upon a function ID that matches its behaviour

(e.g. printer) along with a set of attribute values. Hence, the function ID matches

directly to service type and the Salutation attributes map directly to the generic

attributes. Notably, Salutation is the closest discovery protocol to the proposed generic

abstraction.

5.3.3 Abstract to Concrete Mappings

The role of the abstract to concrete mapping section of ReMMoC’s generic service

discovery architecture is to take the abstract lookup information passed by the

application and map it onto the lookup APIs of each and every protocol currently

configured in the service discovery framework. The architecture for doing this is

illustrated in figure 5.4. A multi-receptacle is implemented by the ReMMoC_Abstract

component; a multi-receptacle allows more than one component to be connected to the

same receptacle at the same time. Therefore, multiple mapping components can exist

between the abstraction and the concrete discovery components whose behaviour is

exported by the discovery framework. A mapping component implements the

ILookup interface that contains methods to pass information (including the event

return handler) from service lookup operations through to the component. Each

component then implements a receptacle to connect it to the discovery protocol (e.g.

ISLP for Service Location Protocol). When the ServiceLookup operation is called by

the application the muti-receptacle lookup method is invoked; this forces all of the

connected mapping components to be called simultaneously (i.e. if three are

 138

connected all three will be invoked). It is this design that allows discovery across

heterogeneous protocols to be implemented in parallel.

Figure 5.4 Abstract to concrete service discovery architecture

5.3.4 Proof of Concept (Implementation of Mapping Components)

Two mapping components were implemented in order for the two implemented

discovery configurations (SLP and UPnP) to be used within the ReMMoC framework.

As described previously, the properties of the SLP and UPnP APIs are fundamentally

similar to the proposed generic API. Therefore, the lookup mappings are direct in

nature.

For SLP, the generic service type is mapped to an SLP abstract type and the service

request is made. For additional attribute matches, each passed attribute is mapped to

the SLP attribute format. SLP returns its results in the format of a URL and a separate

attribute list. Therefore, this information is placed directly into the data structure

ServiceReturnEvent (seen in figure 5.3).

For UPnP, the generic service type is mapped to an SSDP service request in the

format “service:ServiceType” (device lookup is not utilised). However, in UPnP the

URL of the device hosting the service is returned (not the service) for matching

services. Therefore, the mapping component downloads the list of services on that

device and extracts the URL of the matching service, which can then be passed back

as the result. The mapping component also performs additional functionality for

ReMMoC_Abstract

DiscoveryA
Map

DiscoveryB
Map

DisocveryC
Map

ILookup

IDiscoveryA IDiscoveryB IDiscoveryC

 139

attribute matching. When a service is matched it downloads the attribute list and

checks that the requested attributes match the XML defined attributes, before

returning the result to the application.

5.4 The Abstract Service Binding Model

5.4.1 Overview

The key requirement of the abstract service binding model is to hide binding

heterogeneity from the developer. Therefore, the invocation of a particular abstract

service will be executed irrespective of the middleware implementation. For example,

a user wishes to find out about latest share prices. Different share services may be

implemented on heterogeneous middleware; for example a SOAP shares service, a

CORBA shares service, a Java RMI shares service, a shares event publishing service,

and so on. However, when the abstract operation getQuote is invoked the same

information is returned whichever of the previous implementations actually executed

the service.

In order to successfully tackle heterogeneity of this type another level of indirection is

required (namely a service abstraction layer). Abstraction is a well-used solution for

different types of heterogeneity (e.g. middleware originally addressed platform and

operating system heterogeneity). In this case, a well-established, extensible open

standard is required for interoperating parties to agree upon. This section first

documents the reasons behind the choice of Web Services as the model for the higher-

level binding abstraction. The remainder of the section then focuses on the mapping of

abstract Web Service operations to individual communication paradigms, i.e. remote

method invocations and publish-subscribe.

5.4.2 Abstract Web Services

Why Web Services?

Chapter 3 discussed current solutions to middleware heterogeneity, where only three

described a higher-level, open interoperability standard. Web Services are described

by abstract XML descriptions. The Model Driven Architecture models systems in

 140

terms of Platform Independent Models. Similarly, UniFrame promotes its own

language to model services abstractly.

The Web Service abstraction was chosen for the abstract binding model of ReMMoC

for the following reasons:

• Web Services are already being heavy utilised as the key technology in integrating

existing heterogeneous middleware platforms [Vinoski02].

• Web Services are simple, compared to complex modelling tools and languages

(e.g. MDA and UNIFrame). The simplicity of the technique has driven the current

interest in Web Services. Furthermore, it is interesting to compare Web Services

with the World Wide Web; the Web is not the most sophisticated hypertext system

but it is the largest and most used.

Therefore, the potential benefit of Web Services is that they will be the most

frequently used technology for middleware interoperability, which is the most

important factor when attempting to tackle heterogeneity. However, there remains the

possibility that Web Services will become one of many competing open standards

(this section has already discussed two competitors) to follow the predictable trends of

previous middleware standards. Andrew S. Tanenbaum said, “The nice thing about

standards is that there are so many to choose from”, which is especially true of the

middleware domain. Hence, middleware hasn’t solved the interoperation problem,

rather it has been moved up a level. However, with Web Services there is not the

company driven competing standards (there is already worldwide agreement on

technologies like XML), rather these companies are collaborating on these meta-

standards. Hence, by complying with Web Service standards ReMMoC is less likely

to become simply another middleware.

However, in the event of new meta-standards ReMMoC is extensible to incorporate a

new higher-level abstraction. For example, the technologies of the reflective

architecture described in chapter 4 can be applied within the Model Driven

Architecture. For a new abstraction, the abstract and abstract-to-concrete sections of

the ReMMoC architecture would need to be designed and implemented.

 141

The Web Services Architecture

The intended goal of Web Services [W3C99] is to allow different service providers to

implement centrally defined service interfaces using their chosen concrete middleware

binding. For example, a news service may be implemented using SOAP by one

vendor while another may use publish-subscribe. Client applications can then be

developed to interoperate with either service upon dynamic discovery. The key to this

technique is the concept of abstract Web Services; the Web Services Description

Language (WSDL) [Chinnici03] separates abstract service definitions from definitions

of concrete middleware binding messages. Therefore, WSDL, through abstract service

descriptions, offers a higher-level abstraction for interoperation in a service-oriented

architecture. An example of a WSDL described abstract service (in this case a Sport

News service) is illustrated in figure 5.6. One or more port types describe each

service; these are equivalent to interfaces as they describe units of service provision.

Like an interface, each port type contains one or more operations (there are four types

of operation, as described in section 3.2). Operations are defined by Input and Output

messages, which are composed by a list of types defined in XML; the example shows

an input message containing a single input parameter of type string.

Figure 5.5 ReMMoC’s role in the Web Services Architecture

The Web Services Architecture (see section 3.2) consists of three key roles: a service

provider, a service requestor and the discovery agency, which the requestor uses to

find the service description. Figure 5.5 illustrates ReMMoC’s role in this architecture.

Web Services are implemented upon any chosen concrete middleware, and advertised

using any discovery protocol. The mobile client application (implemented atop

Client
Application

ReMMoC

Abstract WSDL
Service Description

Concrete Service

Concrete
Middleware

PDA

IBM Compatible

 142

ReMMoC) is programmed against the abstract service description portion of the

WSDL file. Firstly, the client application performs service lookup for the service type

described in the abstract description. Secondly, the client invokes abstract operations

described by the abstract description. The abstract operations are mapped to the

corresponding messages of the underlying middleware binding (not just the SOAP

protocol).

<?xml version="1.0"?>
<definitions name="SportNews">

<types>
 <element name="LatestStoryRequest">
 <complexType>
 <all><element name="topic" type="string"/></all>
 </complexType>
 </element>
 <element name="LatestStory">
 <complexType>
 <all><element name="story" type="string"/></all>
 </complexType>
 </element>

</types>
<message name="GetLastestStoryInput">

 <part name="body" element=" LatestStoryRequest "/>
</message>
<message name=" GetLastestStoryOutput ">

 <part name="body" element=" LatestStory "/>
</message>
<portType name=" SportNewsPort ">
 <operation name=" GetLastestStory ">

 <input message=" GetLastestStoryInput "/>
 <output message=" GetLastestStoryOutput "/>
 </operation>

</portType>
<service name="SportNewsService">
 <port name="SportNewsPort" ></port>
</service>

</definitions>
Figure 5.6 An abstract WSDL description for a sport news service

5.4.3 The Abstract Binding API

The abstraction section of the ReMMoC architecture (the ReMMoC_Abstract

component) implements the IReMMoC interface that application developers use to

find and invoke services. The operations from this APIare now discussed in turn. The

syntax of these methods is stated and their behaviour is specified. The first three

methods parse and manipulate WSDL service descriptions, and the remainder invoke

abstract service operations. Notably, the API is event-based. This is because different

middleware types provide different models of computation e.g. synchronous styles are

opposite to asynchronous styles, and therefore they differ in how information flows to

 143

and from the application. Therefore, using an event-based programming model for

every abstract operation ensures information flow is consistent to the application.

1. HRESULT WSDLGet(WSDLService* servDesc, char* XML);

WSDLGet parses an XML WSDL description passed to the method as a string; a data

structure of type WSDLService (illustrated in figure 5.8) is then created to hold this

information. Figure 5.7 demonstrates the processes involved in invoking abstract

services. An event handler is registered to receive the result of the operation.

Therefore, when an abstract operation is invoked its corresponding abstract data

structure is mapped to the current binding interface (IIIOP in the diagram), the

concrete operation is called, and when the result is returned it is mapped into the data

structure and the event handler is up called.

Figure 5.7 Invoking remote WSDL operations (RequestResponse and OneWay)

At the heart of this process is the WSDL Operation data structure; Figure 5.8

documents the layout of this important data type. WSDL elements including:

Operation name, messages and type elements are stored. Furthermore, two additional

pieces of information are maintained per operation; firstly, the event handler that will

be called when the result of an operation returns (this is also the remote operation

invoked by other services, described later by CreateOperation), and secondly it stores

the number of times the operation must be executed.

Application ReMMoC

Event Handler

Callback
Operation

Information
{Data, Event

Handler pointer}

CORBA Map

IMap

IServiceCallback

IIIOP

Invoke
Abstract
Operation

WSDL Operation
Data Structure

 144

2. HRESULT AddMessageValue(WSDLOperation *Operation, char*

ElementName, VARIANT value, WSDL_TYPE type);

AddMessageValue allows the programmer to set values for the input message e.g.

setting a ticker symbol to “IBM” before invoking a getQuote operation. The operation

data structure, element name and then the type and value to be set (to create the

parameter) are passed. The operation data structure is then updated with this

information.

typedef enum {
 RequestResponse, OneWay, Notification, SolicitResponse
} WSDLTransmissionType;

typedef struct _WSDLMessageElement{
 char* Name;
 Parameter Param;
} WSDLMessageElement;

typedef struct _WSDLMessage{
 char* Name;
 int ElementCount;
 WSDLMessageElement Body;
} WSDLMessage;

typedef struct _WSDLOperation{
 char* OperationName;
 WSDLMessage Output;
 WSDLMessage Input;
 WSDLMessage Fault;
 void* Handler;
 int Evts;
 WSDLTransmissionType Type;
} WSDLOperation;

typedef struct _WSDLPort{
 char* PortType;
 char* Binding;
 WSDLOperation* OperationList;
} WSDLPort;

typedef struct _WSDLService{
 char* ServiceType;
 WSDLPort* PortList;
} WSDLService;

Figure 5.8. The WSDL data structure

3. HRESULT GetMessageValue(WSDLOperation *operation, char*

ElementName, char* MessageName, VARIANT *value);

 145

GetMessageValue allows the programmer to retrieve values from the abstract output

message e.g. retrieving the returned float value of a stock request. The element name

is passed to find the position in the WSDLOperation data structure, and the value is

returned to the caller as a VARIANT type.

4. HRESULT KnownOperationCall(ServiceReturnEvent* LookupEvent,

WSDLOperation* ServiceDescription, int Iterations, OperationHandler*

Handler);

KnownOperationCall performs the invocation of abstract operations (of the type

Request-Response and One-Way). The location of the service must be known;

therefore the ServiceReturnEvent generated from the ServiceLookup method is passed

to the operation so the invocation is directed to the concrete service. The operation

data structure, the number of times the operation should be executed (if the application

requires multiple results) and finally, the event handler that will receive the operation

results is passed.

5. OperationCall(char* ServiceType, WSDLOperation* ServiceDescription,

int Iterations, OperationHandler* Handler);

OperationCall provides the same operation as KnownOperationCall, however it is not

directed at a specific service endpoint. Instead, service lookup is performed first and

the abstract operation is performed on the first instance of a found service.

6. HRESULT CreateOperation(ServiceReturnEvent* LookupEvent,

WSDLOperation* ServiceDescription, int Iterations,

CreateOperationHandler* Handler);

CreateOperation allows the programmer to specify a local operation that can be

invoked remotely by other services. Other services describe their service requirements

in SolicitResponse and Notification operations. Hence, the application programmer

uses CreateOperation to create services to match these requirements. Again, the

service description and operation name to create is passed. In addition, the handler this

time is the service behaviour, rather than a result handler; therefore, a C method that

will be invoked remotely is passed. The iterations parameter specifies the number of

times the operation is expected to be invoked, typically once or infinitely (-1). Note

that the lookup event is also passed to determine the binding to host the operation on.

 146

ReMMoC is a client side framework that mirrors the binding of the current service it

is interacting with. Therefore, when interacting with a CORBA service, abstract

operations are created as CORBA services, and when interacting with a publish-

subscribe service, the abstract operations are hosted upon a publisher. Figure 5.9

shows the layout of a CreateOperation call. The binding will receive incoming

requests and these will then be mapped by the mapping component to the

corresponding handler for the abstract operation.

Figure 5.9 Creating operations (Solicit-Response and Notification)

7. HRESULT Receive();

After initialising one or more operations through the CreateOperation method, calling

Receive() configures ReMMoC to begin receiving remote invocations. That is, the

operations previously registered become available to use by remote services.

8. HRESULT EndReceive();

EndReceive() is an important operation that stops incoming messages and also

releases the lease (seen in figure 5.9) on the current service side implementation.

ReMMoC currently only allows services to be hosted upon one binding type at a time

e.g. all operations hosted as IIOP. This is due to the implementation of the binding

framework. Future work could allow services to be hosted over multiple binding types

in the style of multi-personality ORBs such as UIC [Roman01]. Therefore, after the

lease has been released a new binding can be configured onto which the hosted

operations can be mapped. When the device changes location or interacts with a new

service of a different binding type (i.e. after it has performed a new lookup)

Application ReMMoC

C Operation
CreateOperation

invoke

CORBA Map

IMap
IServiceCallback

Op1

Op2

Op3

IIIOPServer

Server lease

 147

EndReceive flushes the previous underlying service binding and allows the operations

to be hosted over a new binding through re-invocations of the CreateOperation

method. In addition, the lease is automatically released when the iteration count for

every hosted operation is zero.

9. Char* GetID();

Certain applications require knowledge of the identifier of the service e.g. passing the

ID of a service to an interacting element in order for it to communicate back. The

GetID() operation returns a string reference of the hosted service (set of abstract

operations). The string ID depends upon the underlying binding; for example this is

the IOR for CORBA and the URL for SOAP and publish-subscribe.

5.5 Mapping Abstract Operations to Concrete Communication Paradigms

5.5.1 Introduction

In this section we demonstrate how the abstract operations of WSDL can be mapped

to the two contrasting binding paradigms that are implemented by the concrete section

of ReMMoC, namely Remote Method Invocation (SOAP and IIOP) and Publish-

Subscribe. There are four abstract operations in WSDL that must be mapped to the

corresponding operations in the concrete paradigms; these abstract operations are

formatted as follows:

1) Request-Response (input message, output message). The service provider sends a

response to a request of its service. The information to request a service is detailed

in the input message, while the output message contains the response.

2) Solicit-Response (output message, input message). The service provider acts as a

service requestor. The information about the request is held in the output message

and the input message contains the response.

3) One-Way (input message). The service provider receives a notification message.

4) Notification (output message). The service provider outputs a notification

message.

For these mappings to be effective, the following assumptions are made about the

current scenario:

 148

• The service provider and service requestor are both implemented against the same

abstract WSDL definition. That is, there is an exact syntactic match and hence,

type compatibility between the two parties.

• There is no guarantee that the service provider offers a semantic match to the

requestor’s operation; although there is a syntactic match it may not provide the

required behaviour and functionality.

• Only primitive types and arrays are used in abstract WSDL descriptions.

5.5.2 Mapping Abstract Operations to Remote Method Invocation

Overview

The mapping of WSDL operations to Remote Method Invocations is based upon the

similarities between the abstract messages of WSDL and the concrete messages of

RMI. Figure 5.10 informally defines the elements of an abstract WSDL operation; an

operation consists of an operation name, an input message and/ or an output message,

where each message consists of a set of attribute value pairs.

WSDL Operation consists of:
{Operation Name <string>}
{Operation Type <ReqResp | SolResp | OneWay | Notification>}
{Input Message}
{Output Message}

Input Message consists of:
list of {Parameter}

Output Message consists of:
 list of {Parameter}
Parameter consists of:

{Element Name <string>}
{Value <short | long | float | double | char | Boolean | string | array>}

Figure 5.10 Elements of a WSDL operation

Similarly, figure 5.11 informally specifies the format of a typical remote method

invocation; the RMI request consists an operation name and a set of input parameters,

where a parameter is a name value pair. The method result is synchronously returned

as a list of output parameters. To demonstrate a complete mapping between WSDL

and the RMI paradigm, this section describes the techniques of each of the four

WSDL operations.

 149

Service
Provider

Input message

Output message

Service

Requestor

Input message
elements → Input
Parameters

Output Parameters
→ Output message
elements

RMI request

RMI response

Remote Method Invocation consists of:
{Operation Name <string>}
{Input Parameters}
{Output Parameters}

Input Parameters consists of:
list of {Parameter}

Output Parameters consists of:
 list of {Parameter}

Parameter consists of:
{Parameter Name <string>}
{Value <short | long | float | double | char | Boolean | string | array>}

Figure 5.11 Elements of a Remote Method Invocation

Request-Response

The abstract Request-Response operation is mapped directly to a full Remote Method

Invocation. That is the service expects a physical input message (RMI request) and

will respond with a physical output message (RMI response). Therefore, the

input/output messages of abstract Request-Response operations are mapped directly to

the corresponding synchronous RMI request and responses typical of implementations

including SOAP and IIOP. This technique is illustrated in detail in figure 5.12. The

operation name maps to the method name to be invoked, the elements of the input

message are used to create the input parameter list and finally the result contained in

the output parameter list is mapped to fill the values of the output message elements.

Figure 5.12 Mapping abstract Request-Response to RMI

This technique is based upon the similarities between abstract and concrete messages

as previously described in figures 5.10 and 5.11. Therefore the mapping can be made

for identical operation names, when the types of the parameters and message elements

match. For example, the GetLastestStory operation defined in figure 5.6 is mapped by

creating an input parameter of type string with the defined vale. The named operation

 150

is invoked and the resulting output parameter of type string is mapped back to the

string element in the output message.

One-Way

An abstract one-way operation states the service provider expects to receive a single

concrete input message that it will react to and no response is generated. The abstract

operation is defined by an operation name followed by an input message. Therefore,

this information is mapped to one-way remote method calls, and this process (shown

in figure 5.13) is a subset of the procedure for a full request response operation i.e. the

operation is invoked with input parameters only (generated from the elements of the

input message). Depending on the RMI implementation, there may be no concrete

message returned (e.g. CORBA one-way), or a concrete return with no parameters

(e.g. Java RMI). Therefore, it is the responsibility of individual mapping components

to ensure consistent behaviour.

Figure 5.13 Mapping abstract One-Way to RMI

Solicit-Response

A Solicit-Response operation in the service provider definition describes a request

response operation carried out by that service, i.e. it doesn’t define an operation to

invoke, rather the requirement of an operation of another service. ReMMoC exists at

the service requestor side; therefore the service provider will invoke an operation

hosted by the application running on ReMMoC. As described in the abstract API

section, an RMI operation is created to match this Solicit-Response contract i.e. its

method name matches the operation name, the set of input parameters match the

information from the output message list. The method then produces a result whose

output must be in the form of the elements described by the abstract input message.

An overview of this mapping is illustrated in figure 5.14; it can be seen that

predictably this is the reverse of Request-Response.

Service
Provider

Input message

Service
Requestor

Input message
elements → Input
Parameters

RMI request

 151

Figure 5.14 Mapping abstract Solicit-Response to RMI

Notification

The abstract Notification operation is similar to Solicit-Response. Service providers

define notification messages; these simply state single output messages that are

generated by individual services. Service requestors or clients then implement

functionality to retrieve these when they are generated. The mapping of this operation

to the RMI paradigm is a subset of the mapping for the Solicit-Response operation

(illustrated in figure 5.15). The requestor implements a method that is hosted as a one-

way RMI operation. It contractually matches the Notification description i.e. the same

operation name, and a set of input parameters that map to the output message

elements. Therefore, the service will simply receive and react to incoming RMI

requests that match the Notification. Like one-way, the mapping component for

bindings of these types must ensure that if the invoker expects an empty return one is

generated.

Figure 5.15 Mapping abstract Notification to RMI

5.5.3 Mapping to Publish-Subscribe

Overview

Publish-Subscribe is an alternative communication paradigm whereby there is no

direct message exchange between service requestor and provider. A service provider

publishes events and a service requestor must filter to receive appropriate events.

Therefore, unlike RMI, the mapping of WSDL to publish-subscribe is not a direct

correlation. However, the technique employed to perform the mappings is again based

Service
Provider

Input message

Output message

Service

Requestor

Output
Parameters→ Input
message elements

Output message
elements → Input
Parameters

RMI response

RMI request

Service
Provider

Service

Requestor

RMI request Output message
elements → Input
Parameters

Output
Message

 152

upon the similarities between WSDL messages and published events (the structure of

a generic publish-subscribe event is informally specified in figure 5.16). This section

then proposes suitable methods to fit each abstract operation to a particular publish-

subscribe scenario. Each operation mapping is now described in turn; the goal of these

mappings is to ensure that the user of the abstract operation has no idea what

paradigm (RMI or Publish-Subscribe) is actually implemented.

Publish-Subscribe Event consists of:
{Subject <string>}
{Content}

Content consists of:
List of Attributes

Attributes consist of:
{Attribute Name <string>}
{Value <short | long | float | double | char | Boolean | string | array>}

Figure 5.16 General elements of a produced Publish-Subscribe event

Request-Response

The abstract request-response operation is a request of a service based upon the

information entered in the input message. In publish-subscribe, the subscriber

identifies what they wish to receive through a filter. Therefore, this mapping takes the

information from the input message to create a new filter. The similarities between the

abstract operations and the structure of a filter make this possible. Filters generally

take the form of subject and or content filters i.e. these can filter to receive all events

of subject A or events with content attributes of type name=value. Hence, the

operation name is used as the subject and then the input message elements are used to

create each individual content filters (this is a direct mapping as both parties are name-

value pairs of the same type). The requestor will then receive one or more events that

match this filter. The content of these concrete events become the results of the

request-response abstract operation and therefore, these are mapped to the output

message. Each content attribute is mapped directly to the corresponding output

message element. The complete mapping process is illustrated in figure 5.17.

As an example of this process, a stock quote service produces a set of events. The

subject is getQuote and the content is the ticker symbol (e.g. ticker=IBM) along with

its value (e.g. value = 89.1). An abstract request response operation of getQuote(IBM)

will create a filter with subject equal to getQuote and a single content rule attribute

 153

tickerSymbol equals IBM. The returned event for IBM contains the current value,

which is mapped to the element in the output message.

Figure 5.17 Mapping Request-Response to Publish-Subscribe

One-Way

A service provider states in a One-Way message they expect to receive input, and will

not return a response. Therefore, to map publish-subscribe to this behaviour requires

that the service requester produce events that the service provider is filtering for. The

only information available is the operation name and input message. Hence, the

technique employed is for the provider to filter on subject name alone; the concrete

events which are filtered are then mapped to the input message (i.e. the publisher must

create events that meet this contract). The outline of this mapping is illustrated in

figure 5.18. For example, a one-way operation for a shares service is addNewShare,

which contains the input elements: ticker symbol and starting value. When mapped

across publish-subscribe, the service will filter events by subject (addNewShare), and

then extract the ticker string and value from the received events.

Figure 5.18 Mapping One-Way to Publish-Subscribe

Service
Provider

Input message

Output message

Service

Requestor

FILTER
OpName→Subject
Input message
elements → Content
attributes

Content attributes
→ Output message
elements

Events

Filtered Event

Service
Provider

Operation Name

Service

Requestor

FILTER
OpName→Subject

Content attributes
→ Input message
elements

Events

Filtered Event

Input message

 154

Solicit-Response

Mapping Solicit-Response to publish-subscribe is the reverse of the technique used for

Request-Response. This time the service provider expects to receive events of a

certain type, and therefore will have created a filter for this; the service requestor role

must then publish the correct events to provide a match. Therefore, to meet the Solicit-

Response contract agreement, the service requestor creates events with a subject that

matches the operation name, and a set of content-attribute values that will first be

filtered correctly (it contains the attributes that map to the message elements of the

output message) and secondly whose content maps directly to the message elements of

the input message (as described by the abstract input message). The complete

mapping behaviour is seen below in figure 5.19.

Figure 5.19 Mapping Solicit-Response to Publish-Subscribe

Notification

Notification is the reverse of One-Way. The service provider produces events that the

client or requestor filters to receive. The operation name and output message are the

information available from the abstract contract. Hence, the client creates a subject

filter using the operation name. Matching events are then mapped to output message

content (illustrated in figure 5.20); each content attribute value is matched to the

corresponding element of the output message. As previously there must be a

contractual agreement that the content of the events matches the types and structure of

the output message, otherwise this process will fail.

Service
Provider

Output message

Service

Requestor

FILTER
OpName→Subject
Output message
elements → Content
attributes

Content attributes
→ Input message
elements

Events

Filtered Event

Input message

 155

Figure 5.20 Mapping Notification to Publish-Subscribe

5.5.4 Implementation of mapping components

Overview

A single mapping component is required for every middleware binding

implementation (e.g. SOAP, CORBA and STEAM publish-subscribe). The role of this

component is to implement the abstract to concrete mappings described previously

specifically for a particular middleware implementation. These components have a

similar format, as seen in figure 5.22 that allows them to be plugged into the

framework between the ReMMoC_abstract component and the binding framework.

Each component implements one interface (IMap) and one receptacle

(IServiceCallback), which are outlined in figure 5.21. There are four operations in the

IMap interface: MapInvoke, MapCreate, Receive and EndReceive; each is invoked

when the corresponding operation of the abstraction API is called. The

IServiceCallback interface is implemented by the ReMMoC_Abstract component, and

the mapping component uses the ServiceCallback method to return the results of an

operation.

interface IMap: IUnknown {
 HRESULT MapInvoke(ServiceReturnEvent sre, WSDLOperation su);
 HRESULT MapCreate(ServiceReturnEvent sre, WSDLOperation su);
 HRESULT Receive();
 HRESULT EndReceive();
};

interface IServiceCallback: IUnknown {
 HRESULT ServiceCallback(WSDLOperation ServiceDescription);
}

Figure 5.21 The IMap and IServiceCallback interfaces

Service
Provider

OpName

Output message

Service

Requestor

FILTER
OpName→Subject

Content attributes
→ Output message
elements

Events

Filtered Event

 156

For the ReMMoC implementation, a separate mapping component was created for

each of the implemented bindings, namely: SOAP, IIOP and STEAM publish-

subscribe. The implementations of two of these mapping components (IIOP and

publish-subscribe) are now described in detail.

The IIOP mapping component

The structure of the IIOP map component is seen in figure 5.22; in addition to the

standard interface and receptacle, the component implements two additional

receptacles: IIIOP and IIIOPServer. These allow the component to invoke operations

upon the corresponding binding in the framework. RMI and One-Way operations are

called through IIIOP, while the operations to create and host remote objects are made

through IIIOPServer.

Figure 5.22 The IIOP map component

Application developers use the abstraction API method for Request-Response and

One-Way operations. Both manipulate the WSDLOperation data structure (seen in

figure 5.4) that holds the operation name, input message, output message and event

handler. Note One-way has no handler or output message. The algorithm to then map

either is as follows:

IIOP Map

IMap

IServiceCallback

IIIOP IIIOPServer

 157

IOR (unique identifier of service hosting the operation)= ServiceReturnEvent.ior;
RemoteObject = new Object(IOR);
InputSize = Number of elements in abstract input message;
Input Parameters = new Parameter Array (InputSize);
For index = 0 to InputSize{

Read type and Read value of input message element [index];
Parameter = new Parameter (type, value);
Input Parameters [index] = Parameter;

}
If (OperationType==Request-Response){

OutputSize = number of elements in output message;
Output Parameters = new Parameter Array (OutputSize);
For index = 0 to OutputSize{
 Read type and Read value of output message element [index];
 Parameter = new Parameter (type, value);
 Output Parameters [index] = Parameter;

 }
}
Invoke(RemoteObject, OperationName, Input Parameters, Output Parameters);
If (OperationType==Request-Response){

For index = 0 to OutputSize{
 Read value of Output Parameters [index]];
 Ouput message element [index].value = value;
}
WSDLOperation.Handler(Output Message elements);

}

The abstract Solicit-Response and Notification operations are called using the

CreateOperation. The developer creates a C method named OperationName that takes

the WSDLOperation data structure as an in/out parameter. The IIOP map component

then creates a generic method dispatcher; i.e. a single Object, referenced by a single

IOR, hosts all these registered operations. This object is then hosted as a remote object

using the standard IIOPServer implementation; hence the solution is based on a simple

two level object adaptor. Incoming IIOP requests are then directed to the

corresponding registered method (for both full and one-way requests). However, the

content of the concrete request must be mapped first to the WSDLOperation data

structure (to be passed as a parameter), using the reverse of the technique used in the

algorithm above. Each input parameter is mapped to an element from the output

message. The C operation then extracts this information and for solicit-response

generates the values placed in the input message. When the response is returned these

 158

input message elements are mapped to create a new output parameter array, which is

then used to construct the IIOP response.

The Publish-Subscribe Mapping component

In addition to the standard IMap interface and IServiceCallback receptacle the

publish-subscribe mapping component implements two receptacles: IPublish and

ISubscribe. These allow the component to be connected to the publish-subscribe

personality of the binding framework. All events are currently published upon the

same multicast channel. Therefore, no extra information (like IOR in IIOP) is needed

by participating parties; however, the mapping may be extended across multiple

channels in the future, by adding attributes to the service discovery content.

Application developers call the abstraction operations for Request-Response and One-

Way. However, as described previously, Request-Response is a subscribe operation

and One-Way is a publish operation. Therefore, the mapping component implements

the MapInvoke method to check the operation type and react accordingly. The

Request-Response mapping follows the algorithm below. A filter is created to receive

events, the operation name matches the subject and the input message elements match

the content. The remaining content elements of the received event are then mapped

directly to the output message elements, which are returned to the application using

the passed event handler. One-Way is invoked with no event handler, only the

operation name and input message. Therefore, the mapping component uses this

information to create and publish an event to be filtered by the service. Hence, an

event of subject operation name is published. Subscribers that agree to the One-Way

operation contract (matching subject) can then receive these incoming one-way

requests, the content of the event mapped from the input message elements.

N = Number of elements in Input Message;
Filter = OperationName//{Input Message [0].Name=Input Message [0].Value …
 Input Message [n].Name=Input Message [n].Value};
Subscribe(Filter);
Event = Recevied Event;
OutputSize= number of elements in Output Message;
For index=0 to OutputSize{
 Output message element[index].value=Event attribute [index].value;
}
WSDLOperation.Handler(Output Message elements);

 159

Application developers use the API method CreateOperation for Solicit-Response and

Notification operations passing a C method to be invoked from incoming requests. For

mapping Solicit-Response, the passed method is used to generate published content.

Therefore, the operation is invoked using the output message elements as parameters.

The method produces the input message elements as a result. The mapping component

then uses this information to create an event that can be filtered for. The operation

name is the subject and the output message elements become the content filter

attributes, while the resulting input message values form the remaining content. For

notification operations, the component filters to receive events that when received

force the registered C method to be invoked. Therefore, the operation name is used to

form the filter. On notification of a match, the content of the event is mapped to the

output message elements, which are passed as parameters to the C method.

5.6 Managing adaptation of the Binding Framework

5.6.1 Overview

The final task of the ReMMoC_Abstract component is to manage the adaptation of the

binding framework to ensure that the configuration matches both the requirements of

the binding operation (client-side or server-side) and the binding type of the service

(SOAP, IIOP or Publish-Subscribe). For this purpose, the information returned from

service discovery drives reconfiguration. In addition, the style of operation defines

rules for reconfiguration (e.g. a create operation for RMI requires service functionality

to be configured). The algorithms for configuration are the same as those described for

the discovery framework, i.e. each possible binding personality is stored in an XML

description (available to the ReMMoC_Abstract component); when a change is

required the corresponding XML for the personality is parsed and the components are

loaded and connected into the binding framework using the ICFMetaArchitecture

operations.

5.6.2 Rules for Configuration based upon Binding Information

The information returned in ServiceLookupEvents is used by ReMMoC to configure

the binding framework to the correct middleware implementation. Currently, the URL

 160

holds the information to do this; SLP and UPnP return URLs in the format shown in

table 5.1. Note to comply with the UPnP standard, UPnP should advertise only SOAP

services. ReMMoC then extracts the concrete protocol from the URL (e.g. IIOP,

HTTP or steam) to determine which style of binding to configure into the binding

framework. This technique is possible because of the descriptive nature of URLs used

in SLP and UPnP. However, ReMMoC also accesses attributes, therefore in an

alternative discovery protocol the binding can be explicitly defined as an attribute by

the advertiser.

Binding

type

UPnP URL format SLP URL format

IIOP N/A service:servicename:iiop://hostname

SOAP service:servicename:http://hostname service:servicename:http://hostname

STEAM N/A service:servicename:steam://hostname

Table 5.1 URL formats for binding types

5.6.3 Rules for Configuring Client and Server Side Bindings

When abstract operations require client side functionality, i.e. IIOP requests, SOAP

requests and publish-subscribe subscribes, the required components are configured

and are then available to be reconfigured when the request has completed. The

component framework lock maintains this behaviour; the lock does not release until

an RMI request or subscribe operation completes.

However, when services are hosted over a particular binding style (i.e. publisher or

IIOP server) the binding personality must remain in place until these services are

released. Therefore, an extra server lease applies in the binding framework and

mapping components. Once, a server side personality hosts a set of services that

personality cannot be changed until the server lease expires (caused by flushing the

personality using the EndReceive() operation, or natural release of all operations).

While the server personality is configured it remains possible to change just the client

side. Therefore, it is possible to have IIOPServer and Subscribe followed later by

IIOPServer and SOAP client.

 161

5.7 Summary

This chapter has presented the abstract programming model of the ReMMoC

architecture to hide the application developer from heterogeneous middleware

implementations. This chapter proposed the following key features.

• A higher-level generic discovery abstraction based upon the common service

type and attribute elements in the majority of discovery protocols.

• A higher-level generic service binding abstraction based upon the Web

Services Architecture. Only abstract WSDL descriptions are utilised.

• Mappings from abstract WSDL operations to concrete binding

implementations.

• A demonstration that WSDL operations can be mapped to two contrasting

communication paradigms: RMI and publish-subscribe.

The next chapter of this thesis qualitatively evaluates the ReMMoC architecture and

quantitatively measures its performance.

 162

6Chapter 6 Evaluation

6.1 Introduction

This chapter presents an evaluation of the ReMMoC framework. The evaluation

methodology adopted by this thesis follows the established combination of qualitative

and quantitative evaluation for systems of this type. The fundamental goal of this

thesis is to demonstrate that the ReMMoC framework addresses the problem of

middleware heterogeneity in mobile computing scenarios. This is examined by a

qualitative evaluation (described in section 6.2), which seeks to demonstrate that the

required adaptation is performed, and that the higher-level abstraction provides the

necessary level of middleware transparency. A typical mobile scenario is presented

consisting of three individual application case studies. The behaviour (adaptation) of

ReMMoC is then investigated over the time duration of these applications.

Furthermore, the development process of middleware-independent, mobile client

applications is analysed, i.e. can realistic mobile applications be produced using this

abstraction?

In addition, the performance of the ReMMoC framework is evaluated quantitatively in

section 6.3. The ability to tackle heterogeneity inevitably comes at the price of

increased performance time overhead. This qualitative evaluation examines in detail

what this overhead consists of, and compares it to baseline middleware functionality.

The framework also operates on mobile devices, therefore it must not consume

excessive system resources, or perform considerably worse than existing mobile

middleware. However reflection is employed, which has been criticised as an

unsuitable technique for mobile devices due to the increase in performance time

overhead. Hence, the quantitative evaluation consists of a set of benchmark tests of

ReMMoC’s performance. These aim to demonstrate that although using reflection to

tackle heterogeneity carries an overhead in terms of both resource costs (memory) and

performance time, it remains a feasible solution for mobile devices.

 163

6.2 Qualitative Evaluation

6.2.1 Overview

The approach of the qualitative evaluation is to demonstrate that mobile client

applications developed using ReMMoC continuously operate across different

locations with application services implemented upon different middleware types.

This section first presents a typical scenario in the lifetime of a mobile user that

consists of a realistic level of heterogeneous middleware implementation. Three case

studies (individual mobile applications) are then identified within this scenario.

Firstly, an investigation of the adaptation behaviour of ReMMoC in each case study is

carried out. Secondly, the operation of the higher-level abstraction is analysed to

ensure each application behaves as required. Finally, the process for developing

realistic mobile applications and services using the ReMMoC framework is analysed.

6.2.2 Mobile Scenario

A simple mobile scenario (similar to that described in section 1.4) is illustrated in

figure 6.1; it is simple in that it consists of only three locations, each populated by two

or more of the same three application services. In the future more sophisticated

scenarios are likely to be available to mobile users; the user will move between many

individual locations that could each be populated with hundreds of applications.

However, even in this simple case the problem of middleware heterogeneity arises,

and this problem will only escalate in the more sophisticated scenarios.

Within the scenario, the three locations are the user’s home, the user’s office and a

coffee bar close to the office. All three locations are covered by an individual wireless

network hotspot; users can then connect to these networks using PDAs or laptops.

Three applications reside across the three locations; these applications encompass a

range of application styles that are typically utilised in mobile settings. The first

application is a stock quote service; this allows the user to request the price of

individual shares and view the current status of their portfolio. The style of this

application is information retrieval; tourist guides, cinema information, news and

weather are examples of other such mobile information applications. The second

application is a chat service; this allows the user to communicate with other local

 164

users (who may be connected from a fixed or portable machine). The style of this

application is communication-oriented; messaging, video conferencing and

collaborative work are examples of other mobile communication applications. Finally,

the third application is a jukebox service. At each location a physical device within the

environment plays music (typically these are in the form of audio speakers connected

to a computational device). The mobile user can display the list of songs available

from the jukebox on their mobile device; from here they can then select the song they

wish to play. The style of this application is remote control; a mobile device is used to

interact with devices in the environment. Alternative applications of this type are

video screen displays and light switches (and more generally home automata).

Figure 6.1 The evaluation scenario

Notably, the scenario is populated by heterogeneous middleware implementation. In

the office location, the stock quote service and chat service (realised as an application

upon another user’s mobile device or desktop) are implemented as CORBA services

and are advertised using the Service Location Protocol. This exemplifies how at one

location the same middleware may be used for all applications. However, the home

location does not follow this policy. The stock quote service is implemented as a

SOAP service that is advertised using UPnP, and the Jukebox service is implemented

using a CORBA implementation, which is advertised by SLP. All three applications

reside at the coffee bar and all of them are implemented as publish-subscribe services

and advertised using SLP.

Home

SOAP Stock
Quote Service

UPnP

CORBA Jukebox

SLP
P/S Jukebox

SLP

Office

CORBA Chat
Application

SLP

CORBA Stock
Quote Service

SLP

Coffee Bar

P/S Chat
Application

SLP

P/S Stock
Quote Service

SLP

 165

6.2.3 Implementing the Scenario

Overview

To evaluate the development of mobile applications using ReMMoC, a test harness

was implemented to emulate the previously described scenario. The first step was to

create the abstract service descriptions for each of the applications. These three

complete WSDL documents are located in Appendix C of this thesis. Three of the four

possible WSDL operations are utilised within the services. For example, the stock

quote service contains request-response operations (e.g. GetStockQuote). Similarly,

the Chat service contains one-way and notification operations; the client uses one-way

operations to send chat input, while the other participant (service) responds using

notification operations. The Jukebox services use request-response to retrieve play

lists (e.g. ListSong) and a one-way operation to play the chosen song.

In the scenario, a wireless network covers each of the three locations; for this purpose,

the 802.11b wireless network was used, which has hotspots across the Lancaster

University campus. Services operating from fixed machines were hosted using a

desktop machine with a 750MHz Pentium processor and 128Mbytes of RAM running

the Windows 2000 operating system. Applications operating from mobile devices

were hosted upon either a Toshiba e740 Pocket PC or a Compaq iPaq H350 (both with

the specification: 206 MHz StrongARM processor, 64 Mbytes of RAM and Windows

CE 3.0 OS). To simulate the changes in location by the mobile user, the currently

advertised and hosted services are dynamically changed. For example, a move from

the home to the office requires that the two available services be removed from the

discovery protocols in the network and then physically shutdown, while the two new

versions of the applications are started and then advertised. A simple executable was

created to manage this process.

Developing CORBA Services

To create the three CORBA application services described in the scenario, each of the

WSDL service descriptions were implemented as single CORBA objects. The

CORBA services hosted upon fixed machines, e.g. the jukebox and stock quote

services were implemented using the Orbacus ORB version 4.0.5, whereas, the

CORBA chat application hosted upon the Pocket PC device was developed using the

individual CORBA component personality described in section 4.6.3.

 166

The following text describes the method employed to transfer the abstract WSDL

definition into a concrete CORBA service. First, each request-response operation and

one-way operation is manually defined in a CORBA IDL interface. This IDL is then

implemented as a remote CORBA object. However, the service may also contain

notification operations (as seen in the chat WSDL); in this case, the CORBA service is

implemented to directly send CORBA one-way requests to the client with which it is

currently interacting.

Figure 6.2 Implementation of the CORBA chat application

To exemplify this process, the implementation of the chat application service is

illustrated in figure 6.2. The WSDL description of the chat service contains two one-

way operations (Init, ReceiveMessage) and one notification operation (SendMessage).

The ReMMoC client initiates a chat session with the service by calling Init; the IOR

of the client (which provides a reference for the chat service to direct responses to)

and the user’s name are passed as string parameters. The ReceiveMessage one-way

operation implemented by the service receives the incoming chat message from the

client and displays this to the screen. These two operations are first manually defined

in an IDL interface and then implemented within a single object executing within a

single thread. Conversely, the WSDL SendMessage notification operation (that sends

chat messages back to the client) is implemented within a separate thread that

produces one-way CORBA requests; the user of the chat service enters chat messages,

which are then passed as the string parameter of the outgoing one-way operation.

Chat Application

WSDL
One Way operations:
 Init

ReceiveMessage

IDL
interface Chat{
 void init(in string ID, in string UserID);

 void SendMessage(in string Message);
};

Chat
Object

WSDL
Notification operations:
 SendMessage

IIOP requests
 SendMessage

 167

Developing SOAP Services

In the scenario, only the stock quote service in the user’s home is implemented as a

SOAP service. Apache SOAP version 2.2 was used to implement this application

service and host it upon the fixed desktop machine. The process for implementing

SOAP services follows the techniques employed for CORBA application services.

The WSDL definition of the stock quote service contains a request response operation

(getQuote); this information is used to manually create a Java object with a method

that matches the syntax of the operation. This object is then hosted as an individual

SOAP service on the Apache server using a standard deployment descriptor.

Developing Publish-Subscribe Services

The chat, jukebox and stock quote services are all implemented as publish-subscribe

services in the coffee bar. The implementations of these services use the stand-alone

component-based implementation of the STEAM like publish-subscribe personality

described in section 4.6.3.

Figure 6.3 Implementation of chat application using publish-subscribe

The following techniques were employed to create the publish-subscribe application

services. For request-response operations, a publisher is created to output events that

will be matched by subscribers based upon the WSDL information. For example,

events with the subject GetQuote and content of the type: {tickerSymbol = IBM,

value=4.35} are produced for the stock quote publisher. The one-way operations e.g.

PlaySong and ReceiveMessage are implemented by creating a subscriber to receive all

messages of matching subject (e.g. subject=ReceiveMessage); the event content is

extracted to complete the operation behaviour, e.g. the string sent in the

Chat Application

WSDL
One Way operations:
 Init

ReceiveMessage

Subscriber WSDL
Notification operations:
 SendMessage

Publisher

Init Event
ID=253.255.4.5/Chat
Name = Paul

SendMessage Event
String = Hello

SendMessage Event
String = Hello Paul

 168

ReceiveMessage event is displayed to the screen. For notification operations, e.g.

SendMessage, the service must publish events to subscribers based upon the WSDL

syntax. Figure 6.3 illustrates how these techniques are used in the complete

implementation of the chat application service.

Advertising Services

The application services in the scenario are advertised using either UPnP or SLP. SLP

advertisement was performed using the OpenSLP toolkit version 1.0.11. A single

service agent is initiated on the fixed desktop machine and services were registered

using either the agent’s command line input or through sending SLP advertisement

messages. UPnP advertisement was performed using the Siemens AG UPnP C++

protocol stack. For each service (e.g. stock quote), a UPnP application was developed

and an XML device and service descriptors were registered. Table 6.1 illustrates the

URLs and service types used to advertise each of the three application services.

Application Protocol URL Attrs Service Type

CORBA Chat SLP Service:ChatService:iiop://148.88.155.209 IOR ChatService
CORBA
Stock quote

SLP Service:StockService:iiop://148.88.155.209 IOR StockService

CORBA
Jukebox

SLP Service:MusicService:iiop://148.88.155.209 IOR MusicService

P/S Chat SLP Service:ChatService:steam://255.253.15.8 ChatService
P/S Jukebox SLP Service:MusicService:steam:// 255.253.15.8 MusicService
P/S Stock
quote

SLP Service:StockService:steam:// 255.253.15.8 StockService

SOAP Stock
quote

UPnP Service:StockService:http://148.88.155.209 StockService

Table 6.1 Discovery protocol advertisements of application services

Developing The Stock Quote Client Application

The stock quote application was developed as a C++ Pocket PC 2002 application. The

application provides two types of functionality to the user: 1) the ticker symbol of any

stock can be entered to retrieve the current price, and 2) the user can add shares to a

portfolio and view the overall value of this. The interface for these interactions is

illustrated in the screen shots in figure 6.4.

 169

Figure 6.4 Screen shots from the stock quote client application

void ResultCallback(WSDLOperation *su){
 TCHAR szError[40];
 VARIANT var, var2;
 …
 pReMMoC_ICF->GetMessageValue(&WServ, (unsigned char*) "getQuote",
 (unsigned char*)"tickerSymbol", ReMMoC_STRING, RequestResponse, &var);
 …
 pReMMoC_ICF->GetMessageValue(&WServ, (unsigned char*) "getQuote",
 (unsigned char*)"price", ReMMoC_LONG, RequestResponse, &var2);
 …
 wsprintf(szError, _T("The value of %s is: %4.2f"), var.bstrVal, var2..floatvalue);
 MessageBox (r_hDlg, szError, TEXT("Result: "), MB_OK);

}
…
FILE *stream = fopen("StockQuote.wsdl", "r+t");
int numread = fread(xml, sizeof(char), MAX_FILE_SIZE, stream);
…
pReMMoC_ICF->WSDLGet(&WServ, (unsigned char*) xml);
…
pReMMoC_ICF->AddMessageValue(&WServ, (unsigned char*) "getQuote", (unsigned
 char*)"tickerSymbol", ReMMoC_STRING, RequestResponse, var);

HRESULT hr = pReMMoC_ICF->OperationCall(WServ, (unsigned char*) "getQuote", 1,
 &ResultCallback);

Figure 6.5. Code extracts from the stock quote application

To implement these operations the application must invoke the getQuote operation of

a found service of type StockService. The application does not require continued

interaction with a specific concrete service implementation, hence the OperationCall

method of the ReMMoC API can be utilised. Figure 6.5 shows the ReMMoC specific

 170

code to invoke the remote operation. First, the application obtains a local reference to

the WSDL interface using WSDLGet method. A tickerSymbol value e.g. “IBM” is

added to the input message element for the getQuote operation and finally the

OperationCall method is invoked passing the interface, operation name, and finally

the event handler for the result (ResultCallback). The handler receives the returned

information from the individual abstract operation and simply extracts the required

abstract elements, in this case the string ticker and float price and displays them to the

screen.

Developing the Jukebox Client Application

The jukebox client application allows the user to first list songs available on a nearby

music player service, displaying information such as title and artist for each song. The

user can then select one of these songs to begin playing on the remote audio output. In

addition, the user can also select to stop a currently playing song at any time. The user

interface for these operations is illustrated in the screen shot in figure 6.6.

Figure 6.6 Screen shot from the jukebox client application

The implementation of this application differs from the stock quote client. The

application requires that a list of songs from a nearby music service be downloaded.

However when playing the chosen song the remote invocation must be directed to the

 171

same service that the songs were listed from. Therefore, OperationCall is

inappropriate; rather ServiceLookup followed by a KnownOperationCall is used to

implement this behaviour. This is described in the code in figure 6.7. The application

first performs a service lookup of type MusicService. The event handler for lookup

(LookupCallback) then stores the service reference before invoking the

getNumberOfSongs abstract operation. The event handler for this operation

(GetNumberCallback) then finds the song details for each song using getSongDetails

operations. Finally, KnownOperationCall is used to play the song, having added the

song ID to the input message element. Note, PlaySong and StopSong are abstract one-

way operations and hence do not need an event handler.

boolean LookupCallback(char* ServiceType, ServiceReturnEvent evt, WSDLOperation SU){
 m_evt=evt;

…
 // Get the number of Songs on Jukebox
 HRESULT hr = pReMMoC_ICF->KnownOperationCall(m_evt, WServ, (unsigned char*)
 "getNumberofSongs", 1, &GetNumberCallback);
 …

 return true;
}
void GetNumberCallback(WSDLOperation *su){

 long value;
 value = su->Output.Body[0].Param.tagged_union.longvalue;

 VARIANT var;
 for (int i = 0; i<value; i++){
 var.lVal = i;
 pReMMoC_ICF->AddMessageValue(&WServ, (unsigned char*) "getSongDetails",
 (unsigned char*)"index", ReMMoC_LONG, RequestResponse, var);
 pReMMoC_ICF->KnownOperationCall(m_evt, WServ, (unsigned char*)
 "getSongDetails", 1, &GetSongCallback);
 }
}
…
pReMMoC_ICF->ServiceLookup(WServ.ServiceType, &LookupCallback);
…
pReMMoC_ICF->AddMessageValue(&WServ, (unsigned char*) "PlaySong", (unsigned char*)"index",
 ReMMoC_LONG, OneWay, (unsigned char*)"input", var);
pReMMoC_ICF->KnownOperationCall(m_evt, WServ, (unsigned char*) "PlaySong", 1, NULL);
…
pReMMoC_ICF->AddMessageValue(&WServ, (unsigned char*) "StopSong", (unsigned char*)"index",
 ReMMoC_LONG, OneWay, (unsigned char*)"input", var);
pReMMoC_ICF->KnownOperationCall(m_evt, WServ, (unsigned char*) "StopSong", 1, NULL);

Figure 6.7 Code fragments of the jukebox client application

Developing the Chat Client Application

In the chat client, the user first searches for other chat users who are advertising that

they are willing to chat. Once, a user is selected this initiates the chat session with this

user. The user then inputs messages, which are sent and displayed on the remote

 172

user’s device; conversely all incoming messages are displayed to the chat screen. This

behaviour is illustrated in the screen shots shown in figure 6.8.

Figure 6.8 Screen shots from chat client application

void SendMessage(WSDLOperation *su){
 …

pReMMoC_ICF->GetMessageValue(&WServ, (unsigned char*) "getQuote",
 (unsigned char*)"Message", ReMMoC_STRING, Notification, &var);

 …
 // Display Message to User interface
}

DWORD WINAPI ReceiveThread(LPVOID lParam){
 HRESULT hr = CoInitializeEx(NULL,COINIT_MULTITHREADED);
 if(!SUCCEEDED(hr)) return 0;

 pReMMoC_ICF->Receive();
 return 0;
}
…
pReMMoC_ICF->CreateOperation(ChatList[g_uiLookupItemIndex].evt, WServ, (unsigned char*)
"SendMessage", -1, &SendMessage);
HANDLE hThread = CreateThread(NULL, 0, ReceiveThread, &dwParam, 0, &dwThreadId);

Figure 6.9 Code fragments of the chat client application

The implementation of the chat client is similar to the jukebox client; the application

first discovers an available chat service, but once a concrete service is selected all

subsequent operations are directed to that specific service. Hence, the one-way

operations (Init and ReceiveMessage) are implemented in similar fashion to the code

 173

in figure 6.7. The chat application is notable in that it implements code to respond to a

notification operation (SendMessage). For this purpose, the user creates an abstract

method (SendMessage) that will be invoked every time an incoming notification is

received; the outline of this method is shown in figure 6.9. The parameter

WSDLOperation contains the incoming chat message element, which can then be

extracted and displayed to screen. The CreateOperation method is used to make the

abstract method available to the current service the client is interacting with. Hence,

this will ensure it is hosted over the same binding type. A single thread is then started

to manage the incoming requests (the main thread of the application can then continue

sending messages); this thread simply initiates ReMMoC to begin receiving input over

the current binding, achieved through the Receive operation.

Analysis of the ReMMoC development process

From the experience of developing applications and services within the scenario the

following points about the ReMMoC approach to application development can be

drawn:

• The ReMMoC API provides a simple environment to create applications to

interact with services defined by a WSDL description. To perform an abstract

operation, between two and four API methods are required. Hence, the code for

distribution and overcoming heterogeneity does not significantly detract from the

application logic.

• The ReMMoC API provides two beneficial styles of operation: 1) the traditional

method of first looking for a service and then invoking operations on the returned

identifier, and 2) an invoke operation that finds any matching service before

calling the method. The first method allows interaction with a specific service to

be maintained. Furthermore, the second method allows applications to be

developed that will continue operating when the user changes location.

• The analysis of the code to develop mobile client applications using the ReMMoC

API shows that no concrete middleware implementation information is visible to

the application developer. Only, abstract WSDL operations are utilised, hence the

appropriate level of middleware transparency is achieved.

Furthermore, the development of the three applications demonstrated current

weaknesses in the ReMMoC approach:

 174

• The Solicit-Response operation is not utilised within the applications. This is

because the abstraction to provide this behaviour is not fully implemented for

publish-subscribe. Solicit-Response for publish-subscribe requires events to be

generated for all possible input parameters (e.g. price events for all possible stock

elements). At present the method created by the application developer for solicit-

response only maps to RMI operations; future implementation could involve code

analysis of the application method to generate events, or to change the

implementation style of the abstract method.

• Solicit-Response & Request-Response operations are only effective across

publish-subscribe when implemented sensibly. Generally, information retrieval

functionality is best, for example get a stock quote or the latest news headline.

This is because a finite amount of events can be published to match the service

behaviour. However, computation based service methods should only be

implemented using RMI i.e. the method add(x, y) cannot be implemented by a

publish-subscribe service. Therefore, application service developers must sensibly

choose the most appropriate middleware binding to implement their service.

• At present implementing each WSDL interface (e.g. the stock service, chat service

etc.) upon a particular middleware (CORBA, SOAP & publish-subscribe) is a

complex task that requires a full understanding of the behaviour of WSDL and the

implementation details of each middleware. Hence, a better solution would

automate stages of this process i.e. take the WSDL service interface and produce

template code to be completed by the developer, or produce a WSDL document

based upon an existing service.

6.2.4 Results of ReMMoC’s Operation within Case Studies

Overview

This section investigates the operation and behaviour of both the ReMMoC

framework and the mobile applications described in the scenario. For this purpose,

three case studies are presented, which outline possible user movements and

application service interactions. At each stage of the sequence of application

interactions the current state of ReMMoC, in terms of current component

configurations, is analysed. This process evaluates whether or not ReMMoC performs

the appropriate dynamic reconfigurations in changing context. Furthermore, the

 175

demonstration of mobile applications (built upon ReMMoC) whose operations meet

the requirements of each individual interaction case study will illustrate success in

achieving the main aim of this thesis i.e. that middleware heterogeneity has been fully

addressed.

Dynamic Interaction Case Studies within the Scenario

The following text describes three case studies based upon mobile users changing

location while using the three applications presented in the main scenario.

• Case Study One. The mobile user is at home and uses the stock quote client

application on their Pocket PC device to retrieve the latest value of their portfolio.

Later the user moves to their office, and again checks the share prices from the

same client application. Finally, they move to the coffee bar and when a friend

wishes to know a latest share price the user again uses their application. To

perform the operations of this interaction the application must perform identically

in all three scenarios, the user is unaware of the changing middleware

implementation.

• Case Study Two. At work the user wishes to arrange a meeting with a colleague.

The chat client application is used to search for and then chat with this staff

member. Later in the day, the user is sitting alone in the coffee bar so they search

for other nearby, like-minded individuals to communicate with.

• Case Study Three. The user is in the coffee bar and wishes to play a song on the

jukebox, therefore the users opens their music player application on their mobile

device and selects a song from the list available. Similarly, at home the user uses

the same application to play songs on their own music player.

Results of Interaction in Case Study One

The sequence of operations for the Stock Quote interaction case study is described in

figure 6.10; the application is first opened in the home location, therefore ReMMoC

Startup is initiated. This forces the discovery framework to configure itself. A UPnP

device and SLP agent respond to protocol discovery, therefore SLP and UPnP

components are configured. The application then invokes an OperationCall method to

find the price of IBM. This forces ReMMoC to perform lookup for a StockService

over the two protocols, however only UPnP responds. The identified binding type is

SOAP, therefore the binding framework is configured appropriately. The request

 176

response operation is carried out as a SOAP method call and the resulting price is

returned. The user then moves to their office and again invokes the same operation to

find the price of BT (the application is not shutdown and re-started); then in the coffee

shop they request the price of BA. Figure 6.10 shows how the ReMMoC middleware

changes and behaves correctly in each case.

Figure 6.10 Illustration of stock application behaviour across changing locations

Results of Interaction in Case Study Two

The sequence of operations for the jukebox interaction case study is described in

figure 6.11; the application is initiated in the coffee shop, where only SLP is found in

use. The discovery framework is then configured as a single personality. The jukebox

application first performs ServiceLookup for a nearby jukebox; the information

returned configures the binding framework to a publish-subscribe personality. A

KnownOperationCall is made to request the SongDetails of a song; ReMMoC

correctly subscribes to receive the matching event. Another KnownOperationCall to

play a song forces a PlaySong event to be published; on reception the jukebox begins

audio output. Notably, when the user moves to their home location, the

DiscoverDiscovery component detects that UPnP is in use in this environment, and

therefore UPnP is configured into the discovery framework personality. When the

SLP
agent

Home (SLP & UPnP)

ReMMoC
Binding (none)

Service Discovery
(SLP/UPnP)

Office (SLP) Coffee shop (SLP)

ReMMoC
Binding (none)

Service Discovery
(SLP/UPnP)

Startup()

OperationCall(getQuote, IBM)

SLP
Agent

UPnP
Device

ReMMoC
Binding (SOAP)

Service Discovery
(SLP/UPnP)

Stock
SOAP

ResultCallback(Price = 4.56)

UPnP
Device

ReMMoC
Binding (SOAP)

Service Discovery
(SLP/UPnP)

OperationCall(getQuote, BT)

ReMMoC
Binding (IIOP)

Service Discovery
(SLP/UPnP)

Stock
IIOP

ResultCallback(Price = 8.65)

SLP
agent

ReMMoC
Binding (none)

Service Discovery
(SLP/UPnP)

OperationCall(getQuote, BA)

ReMMoC
Binding (Subscribe)

Service Discovery
(SLP/UPnP)

Stock
P/S

ResultCallback(Price = 0.78)

 177

application performs service lookup the CORBA implementation is found using SLP.

The binding framework is appropriately configured and the subsequent

KnownOperation calls are invoked as IIOP requests.

Figure 6.11 Illustration of the jukebox application behaviour across changing locations

Results of Interaction in Case Study Three

The behaviour of ReMMoC during the operation of the chat application is illustrated

in figure 6.12. This case study illustrates the behaviour of ReMMoC when using the

CreateOperation method over two contrasting middleware. In the Office location, the

chat session is initialised and then the CreateOperation is called to allow the

UPnP
Device

Coffee shop (SLP)

ReMMoC
Binding (none)

Service Discovery
(SLP)

Home (SLP & UPnP)

ReMMoC
Binding (none)

Service Discovery
(SLP)

Startup()

ServiceLookup(MusicService)

SLP
Agent

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP)
P/S

Jukebox

SLP
Agent

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP)

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP/UPnP)

KnownOperationCall(GetSongDetails, Track 1)

ResultCallback(Artist = Stone Rose, title= Made
of Stone)

KnownOperationCall(PlaySong, Track 1)

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP)

P/S
Jukebox

ReMMoC
Binding (none)

Service Discovery
(SLP/UPnP)

ServiceLookup(MusicService)

ReMMoC
Binding (IIOP)

Service Discovery
(SLP/UPnP) IIOP

Jukebox

SLP
Agent

KnownOperationCall(GetSongDetails, Track 1)

ResultCallback(Artist=Blur, title=Song 2)

KnownOperationCall(PlaySong, Track 1)

ReMMoC
Binding (IIOP)

Service Discovery
(SLP/UPnP)

IIOP
Jukebox

 178

application to receive notifications of the abstract SendMessage operation. The chat

service is implemented as an IIOP application therefore, ReMMoC configures the

service side personality to IIOPServer (alongside the current IIOP client personality).

The following call of Receive() initiates the binding so that it can begin to receive and

respond to incoming requests. Finally, when the chat between the two parties is ended

the EndReceive() method is invoked. This clears the hosted service side personality to

ensure that the application will operate in the next location.

Office (SLP)

ReMMoC
Binding (none)

Service Discovery
(SLP)

Coffee Shop (SLP)

ReMMoC
Binding (none)

Service Discovery
(SLP)

Startup()

ServiceLookup(ChatService)

SLP
Agent

ReMMoC
Binding

(IIOPServer&
IIOPClient)

Service Discovery
(SLP)

IIOP
Jukebox

SLP
Agent

CreateOperation(SendMessage)

KnownOperationCall(Init, getID, Paul)

ReMMoC
Binding (IIOPClient)

Service Discovery
(SLP)

IIOP
Jukebox

KnownOperationCall(SendMessage, “Hello”)

ReMMoC
Binding

(IIOPServer&
IIOPClient)

Service Discovery
(SLP)

IIOP
Jukebox

ReMMoC
Binding (none)

Service Discovery
(SLP)

ServiceLookup(ChatService)

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP)

P/S
Jukebox

SLP
Agent

CreateOperation(SendMessage)

KnownOperationCall(Init, getID, Paul)

ReMMoC
Binding (Pub)

Service Discovery
(SLP)

P/S
Jukebox

KnownOperationCall(SendMessage, “Hello”)

ReMMoC
Binding (Pub/Sub)
Service Discovery

(SLP)

P/S
Jukebox

Receive()

EndReceive()

Receive()

EndReceive()

 179

Figure 6.12. Illustration of the chat application behaviour across changing locations

When the user moves to the coffee bar the lookup request returns a chat application of

type publish-subscribe. In this case, CreateOperation forces ReMMoC to configure

the Subscribe personality as the fixed service side personality. The Receive() method

call then allows the incoming subscribed messages to be passed to the same abstract

method.

6.2.5 Analysis of Qualitative Evaluation

The qualitative evaluation of the ReMMoC platform in the chosen case studies has

shown the following benefits of the ReMMoC approach:

• The ReMMoC platform correctly discovers service discovery mechanisms within

the environment. The case studies show that when the service discovery

framework is initiated in different locations it adapts itself to the current

environmental context.

• The application developer can perform generic service lookup for a required

service. Hence, the same service type advertised using two different protocols in

separate locations is found by the application. The application is unaware of

discovery protocol implementation.

• The binding framework follows the rules for configuration in a number of

situations presented within the scenario. Using information from the service

discovery results, the correct type of binding is initialised e.g. IIOP, SOAP or

publish-subscribe. In addition, the more specific requirements driven by the

abstract operation type perform the correct adaptation e.g. request response over

IIOP equals IIOP client and over publish-subscribe equals the subscribe

personality.

• The three case studies demonstrate that ReMMoC can be used by a number of

styles of application. Information retrieval applications, e.g. News, Weather,

Tourist information can be implemented using the demonstrated techniques.

Similarly, the evaluation illustrates that remote device control and mobile

communication applications can be easily implemented using ReMMoC.

• ReMMoC cannot currently handle migration during operation invocation. A

location change will cause the “OperationCall” to fail. Therefore, a potential

 180

improvement to ReMMoC would detect location change, and perform

reconfiguration (i.e. a restart of the discovery and interaction phase based upon

current environmental conditions) to allow currently requested operations to

complete.

6.3 Quantitative Evaluation

6.3.1 Overview

The approach of the quantitative evaluation is to demonstrate both the performance

measures and the overhead costs of the ReMMoC framework. These seek to illustrate

that the core operations of ReMMoC (i.e. service calls) have a small performance

overhead (incurred as the cost for overcoming heterogeneity) compared to similar

operations within mobile middleware platforms. However, measurements of service

discovery mechanisms (i.e. abstract Service Lookup) are not included. This is because

meaningful comparisons cannot be made with concrete service discovery

implementations. ReMMoC performs service lookup for a period of time fixed by the

application e.g. search for 2 seconds. Once this time period has expired the matching

service is returned to the application. Hence, the abstraction overhead is bound into

this fixed time period.

In addition, these benchmarks also evaluate the cost of using reflection on mobile

devices. The flexibility provided by reflection is extremely valuable (the qualitative

evaluation has demonstrated that it provides the necessary level of dynamic behaviour,

openness and extensibility required to tackle heterogeneous environments), however it

comes at the expense of both performance and resource costs. First, the typical coarse-

grained reflective operations (personality configuration) that are composed of meta-

architecture and meta-interface operations are analysed. The analysis of fine-grained

(individual) reflective operations is outside the scope of this evaluation. However, an

analysis of the performance of reflective, OpenCOM based middleware platforms can

be found in [Coulson04]. Secondly, the additional resources utilised (in this case

system memory) is investigated.

 181

All tests within this evaluation were executed on the following equipment setup: a

stand-alone Compaq iPaq Pocket PC device (with a 206MHz StrongARM processor

and 64 Mbytes of system memory) running the Windows CE 3.0 Operating system,

and a Desktop PC (Windows 2000) with 128Mbytes RAM and 750MHz processor.

The devices were connected via an IEEE 802.11b wireless network at 11 Mbytes/s.

6.3.2 Abstract Operation Overhead in ReMMoC

Overview

This section investigates the cost of invoking abstract services in ReMMoC. That is,

what are the extra-incurred performance costs for overcoming heterogeneity? In this

case, three benchmark tests are executed that analyse how ReMMoC’s operation

compares to similar operations in concrete middleware platforms. The first experiment

identifies the overall percentage overhead of abstract service calls. The second

experiment then investigates this deeper, examining the overhead of mapping

operations in the overall system call overhead. Finally, the third experiment

investigates what impact dynamic reconfiguration has on the significance of the

performance overhead.

Benchmark Test One: Abstract versus Concrete Operation Invocations

This experiment demonstrates the overhead incurred when invoking abstract service

operations (in this case KnownOperationCall methods are used). For this purpose, two

operations were implemented upon both a SOAP and an IIOP service: an empty

NULL method (that performs no operation and takes no parameters) and a getQuote

operation that retrieves stock data from a remote web site. The empty method was

invoked 100 times (using four different component setups) from a mobile client

connected via the wireless network. From this measure, the operations invoked per

second was calculated. The four set-ups were: 1) a concrete IIOP client

implementation, 2) a concrete SOAP client implementation, 3) the ReMMoC platform

configured when the IIOP service has been found, and 4) the ReMMoC platform when

the SOAP service has been found. The underlying middleware for SOAP and IIOP is

identical in the ReMMoC and non-ReMMoC set up, therefore ReMMoC’s overhead

can be evaluated. The same experiment was then repeated for the getQuote remote

method.

 182

The incurred overhead documented in figure 6.13 is composed of two factors:

• The time required to initially reconfigure the binding framework to the correct

personalty

• The time to map the abstract operations onto the concrete invocations.

The results of the four tests are illustrated in figure 6.13. The NULL method results

demonstrate the maximum percentage overhead of the ReMMoC platform (i.e. in

addition to the cost of performing invocation across the network). These results show

that for NULL IIOP operations there is a 54% decrease in invocation per second

throughput for abstract calls compared to concrete calls. Similarly for SOAP, there is

an 11% throughput decrease for NULL operations. The SOAP decrease is less

because SOAP invocations are more expensive than IIOP invocations; therefore the

overhead of the reconfiguration time has less of an impact.

2.22

0.86

1.97

0.79

33.56

1.51

15.44

1.42

0 10 20 30 40

Empty

getQuote
"IBM"

Operation Calls per Second

ReMMoC (IIOP)
IIOP
ReMMoC (SOAP)
SOAP

Figure 6.13 Comparison of service invocations

The results for GetQuote IIOP operations demonstrate that there is a 6% decrease in

invocations per second throughput for abstract operations compared to concrete.

Similarly for SOAP there is an 8% decrease. This illustrates that the impact of the

overhead is reduced when realistic application operations are executed. Hence, the

initial cost of reconfiguration becomes less of a factor for operations whose logic

takes longer to perform, i.e. there is only a small decrease in invocation throughput.

 183

However, there remains a small, fixed, in-band overhead on each operation call due to

the abstract-to-concrete mapping; this is investigated further in the next experiment.

Benchmark Test Two: Investigating Abstract-to-Concrete Mapping

The previous test demonstrated the overhead of ReMMoC for a fixed number of

method invocations. This experiment investigates the in-band overhead of mapping

abstract operations to concrete invocations during ReMMoC’s operation. For this

purpose, the same four tests used in the last benchmark test (using NULL and

GetQuote operations on IIOP and SOAP services) were carried out. However, in this

case the initial reconfiguration is not measured, only the time for 100 invocations;

from this the invocations per second value was calculated.

0.86

2.22

0.81

2.13

1.51

33.56

1.42

32.96

0 10 20 30 40

Empty

getQuote
"IBM"

Operation Calls per Second

ReMMoC (IIOP)
IIOP
ReMMoC (SOAP)
SOAP

Figure 6.14 Abstract-to-concrete mapping costs during service invocation

The results in figure 6.14 show that as expected for NULL operations, there is only a

small overhead for abstract invocations. For IIOP there is a 2% decrease in

throughput, and a 2% decrease for SOAP. This is because there is no abstract data to

map, and the overhead is simply the extra indirection due to ReMMoC’s component

architecture. Conversely, the getQuote operation requires a mapping of one input and

one output parameter. Hence, there is an additional in-band overhead. For IIOP there

is a 5% decrease in throughput (an additional 3% to the NULL measure) and 7% for

SOAP. Therefore, an extra mapping overhead is attached to each invocation, and this

 184

is dependent on the complexity of the operation call, i.e. an operation with more

parameters will take longer to map.

Benchmark Test Three: Impact of Dynamic Reconfiguration

The final test of ReMMoC’s overhead investigated the impact of dynamic

reconfiguration. That is, how does frequent reconfiguration affect service invocation?

For this purpose, the binding framework was used to invoke 1000 operations of both

SOAP and IIOP methods, repeatedly switching between the two with varying levels of

frequency. In this experiment only the binding framework of ReMMoC was utilised,

this allowed the abstraction overhead to be minimised. In addition the IIOP and SOAP

services were hosted on the same Pocket PC as the binding framework to remove the

network communication overhead.

Test Description Time
(milliseconds)

Calls/Second % Time
increase from

test 1
1. 500 SOAP invocations + 500
IIOP invocations

55505 18 0

2. 500 SOAP then 500 IIOP 64543 15.49 16.3
3. 250 SOAP then 250 IIOP (x2) 69679 14.35 20.3
4. 100 SOAP then 100 IIOP (x5) 84067 11.89 51.46
5. 50 SOAP then 50 IIOP (x10) 114476 8.74 106.2

Table 6.2 Cost of dynamic reconfiguration

The first test involved no reflection; this is a simulated base test (using base

components, rather than the ReMMoC framework) of the time taken to perform 500

SOAP invocations and 500 IIOP invocations. Subsequent tests used reflective

operations on the binding framework to switch invocation types between SOAP and

IIOP; the frequency of reconfiguration was changed for each test. In test two a SOAP

personality was configured and 500 invocations were performed, the framework was

then dynamically reconfigured to IIOP and 500 invocations were made. Similarly, test

three performed 250 SOAP invocations then 250 IIOP invocations and this was

repeated once.

 The results of the five tests performed are shown in table 6.2. It can be seen that as

the frequency of reflective operations increases the time taken to perform 1000

 185

invocations increases. For behaviour where reconfiguration is generally out-of-band,

i.e. infrequent compared to the number of invocations, the additional overhead is less

significant (a 16.3% increase in time). However, as the reconfiguration becomes more

frequent, e.g. 10 reconfigurations in 1000 invocations, the overhead becomes

significantly expensive (a 106% increase in time).

6.3.3 Measurements of Coarse-Grained Reflective Operations

Overview

This section describes three benchmark tests that illustrate the performance costs

incurred by the key coarse-grained, reflective mechanisms that are performed during

ReMMoC’s principle operations. The first test examines the cost of loading

components. The second test illustrates the cost of configuring middleware

personalities into either the binding or service discovery framework. Finally, the third

test measures the actual cost of dynamic reconfiguration, i.e. changing from one

personality to another in the service discovery framework. These experiments

demonstrate where the actual overheads that have been previously described occur.

Benchmark Test 1: Component Insertion

These experiments measure the time taken to instantiate a new component and then

insert it into a framework. This is the single most expensive fine-grained reflective

operation and consumes a large part of the overhead incurred in personality

configuration. The experiments measure the time taken for the first insertion of a

particular component, and then the time taken for subsequent insertions.

The results in table 6.3 demonstrate that the initial insertion takes more time. This is

because each component is stored in a separate Dynamic Link Library (DLL) that

must be first loaded. In windows CE, once a DLL is loaded then it remains loaded

throughout the lifetime of the application; therefore, subsequent component creations

take less time. Table 6.3 also illustrates that the size of the component (DLL) has no

relation to the component insertion time, which remains constant.

 186

Component Name Size (bytes) Initial Time

(mSecs)

Subsequent Time

(mSecs)

Socket 16896 66 54

TCP 14336 62 54

HTTP 18432 68 55

SLPMessage 45638 68 55

GIOP 20480 67 54

SOAP 30720 66 54

Table 6.3 Component insertion measurements

Benchmark Test 2: Configuring Middleware Personalities

The measurements in table 6.4 illustrate the time taken to configure each of the

binding personalities into the binding framework. This is a measurement of the time

taken from when the ReMMoC framework initiates the new configuration, until the

configuration has been verified as a correct personality by the framework. The two

times represent the time taken for the initial configuration, and then the time for

subsequent configurations. The additional overhead is explained by the time to load

new DLLs as described in the previous benchmark tests.

Personality Name Total Initial

Time (mSecs)

Total Subsequent

Time (mSecs)

IIOP Client 2949 2754

SOAP Client 3876 3552

IIOP Server 2976 2733

IIOP Client and Server 6589 6291

Publish 3069 2810

Subscribe 2584 2387

Publish-Subscribe 5208 4929

Table 6.4 Binding framework configuration measurements

Table 6.5 illustrates the results of experiments breaking down the total time to

configure personalities into the binding framework. This consists of the time to insert

the personality into the framework (using the algorithm described in figure 4.15 to

first insert the components and then connect them together based upon an XML

 187

configuration description), and then to check that the personality is valid. It can be

seen that increasing the complexity of the personality (in terms of number of

components and number of connections) increases the time to first configure the

personality and then verify it is valid. Connecting the components is the most

expensive operation; this is because the interfaces must be searched for (using

introspection operations) before the connections are dynamically made.

Personality

Name

No.

Components

No.

Connections

Time to

Insert

Components

(mSecs)

Time to

Connect

Components

(mSecs)

Time to

check

(mSecs)

IIOP Client 5 6 628 2080 263

SOAP

Client

6 6 747 2375 273

IIOP Server 5 6 640 2086 271

IIOP Client

and Server

7 11 880 4962 521

Publish 6 5 841 1979 315

Subscribe 5 4 660 1578 234

Publish-

Subscribe

7 7 900 3113 345

Table 6.5 Detailed binding framework configuration measurements

Table 6.6 illustrates the time taken to configure personalities into the service

discovery framework. Again, these results show that the same factors as for the

binding framework (e.g., number of components and connections) affect performance

time. However, these results show a significant improvement in configuration time i.e.

the more complex SLP & UPnP personality takes less time to configure than the

simpler SOAP client. This is because of the differences in implementation of the two

frameworks. The binding framework is implemented for extensibility. Each

personality has an XML description that is used to build the configuration; this allows

new personalities to be dynamically added to the ReMMoC framework without re-

implementation. However, the discovery framework configuration is driven by the

DiscoverDiscovery component that knows in advance which components to

configure; therefore this process is optimised to perform the minimum reflective

 188

operations. Adding a new discovery protocol to ReMMoC requires re-implementation

of the DiscoverDiscovery component. Hence, there is a trade-off between

performance and extensibility.

In addition, the time to verify each service discovery personality is illustrated in table

6.6. This measure demonstrates that a large part of the overhead incurred during

configuration of the service discovery framework is for ensuring valid operation in the

face of dynamic change. An unsafe version of ReMMoC (i.e. where there is no

architectural checking of the component framework graph against XML descriptions

in the face of reconfiguration) would perform significantly better; for example, an

optimised, unsafe configuration of SLP takes only 1.06 seconds, compared to 3.87

seconds for the XML-based, safe SOAP client personality configuration.

Personality No.

Comps.

No.

Conns.

Time to

Configure

(mSecs)

Time to

Check

(mSecs)

Total Time to

Configure

(mSecs)

SLP 4 9 1066 563 1629

UPnP 5 8 1070 432 1502

SLP &

UPnP

8 17 1956 997 2953

Table 6.6 Service Discovery framework configuration measurements

Benchmark Test 3: Dynamic Reconfiguration

0

50000

100000

150000

200000

250000

300000

1 50 100 150 200 250 300 350 400 450 500

Number of Reconfigurations

T
im

e
(m

ill
is

ec
o

n
d

s)

Figure 6.15 Performance of dynamic reconfigurations in discovery framework

 189

This experiment investigated the cost of dynamic reconfiguration. In particular, the

service discovery framework was repeatedly reconfigured between SLP and UPnP. A

reconfiguration is defined as a change from one personality e.g. SLP to the other i.e.

UPnP. The graph in figure 6.15 shows that the time to reconfigure is consistent; that

is, the time to reconfigure remains the same irrespective of the number of

reconfigurations. This is an area of potential optimisation. When the personality has

been configured before, this can be remembered and simply swapped back in. Hence,

initial configurations are more expensive than reconfigurations (see [Coulson04] for an

example of this process).

6.3.4 System Memory Costs incurred when using Reflection

At present mobile devices have a limited amount of system memory, which can

quickly be consumed by user’s applications; therefore it is important to minimise the

amount of memory needed to store a middleware implementation. This section

examines the resource costs (in terms of system memory) in building the reflective

middleware framework.

Table 6.7 documents the static memory footprint sizes of the separate parts of the

platform i.e. configurations for the binding and service discovery frameworks (e.g.

IIOP client, SOAP client etc.), and the base elements of ReMMoC. Two

measurements are taken for each architecture personality: the ARM reflective and

ARM non-reflective memory footprint size. The non-reflective personality is the basic

component implementation, whereas a reflective personality maintains meta-

information about the structure of each component and supports the subsequent

introspection of this data. These reflective personalities can be used within ReMMoC,

the non-reflective counterparts cannot. Non-reflective base elements of ReMMoC are

meaningless (they cannot be used alone), and hence these are not measured.

Table 6.7 illustrates the cost in terms of extra memory requirements of the reflective

personalities as opposed to their non-reflective counterparts. For the implemented

configurations this ranges between a 41.7% and 71.8% increase in the amount of extra

memory consumed by the reflective version of the personality. The storage of type

 190

libraries and an additional 20 lines of C++ code for each component in the

configuration accounts for the extra memory cost. This can be calculated by:

Personality Type Library Size + (Number of Components * 1.5K). The size of each

type library is dependent on the complexity of interface descriptions used on that

component; hence, the cost per component varies.

 Reflective Non-Reflective

Function
ARM (Bytes)

(a)
ARM (Bytes)

(b)
%

Overhead
Base Elements of ReMMoC

OpenCOM 28160 n/a n/a

Binding CF 16896 n/a n/a
Service Discovery
CF 19968 n/a

n/a

ReMMoC_Abstract 37376 n/a n/a

CORBA_Map 24064 n/a n/a

SOAP_Map 19968 n/a n/a

Subscribe_Map 23040 n/a n/a

Binding Framework Personalities
IIOP Client 96768 56320 71.8

IIOP Server 99840 58880 69.6
IIOP Client &
Server 140288 82944

69.1

SOAP client 97792 64512 51.6

Publish 76800 55645 41.7

Subscribe 85504 58368 46.5

Publish & Subscribe 105984 74752 41.8

Service Discovery Framework Personalities
SLP Lookup 85504 53248 60.6

SLP Register 80896 48128 68.1
SLP Lookup &
Register 103936 65024

59.8

UPnP Lookup 80384 56320 42.7

Table 6.7 Memory footprint sizes of component configurations in ReMMoC

The results also illustrate that the reflective configurations are suited to mobile

devices, as minimum configurations of the binding framework and service discovery

framework are less than 100Kbytes. For example, the reflective ARM measurements

of IIOP client, SOAP client, subscribe, UPnP lookup and SLP lookup are each

individually less than 100Kbytes. These are comparable to related systems; for

example, the non-reflective ARM IIOP client implementation (55K) compares with

the 29K SH3 CORBA client personality of the Universal Interoperable Core (UIC)

 191

implementation [Roman01] and the 48K non-pluggable GIOP client Zen

implementation [Klefstad03], which have similar capabilities. The difference between

the ReMMoC and the UIC value can be attributed to a different processor, for

example ARM implementations are larger than both x86 and SH3 implementations

(because it is a RISC processor, rather than CISC) and using a COM based

implementation.

6.3.5 Analysis of Quantitative Evaluation

The following points can be extracted from the quantitative evaluation of ReMMoC’s

performance.

• Abstract service invocation incurs a performance overhead compared to the same

operation performed by a concrete middleware platform. The configuration of the

binding personality (loading and connecting of components) and the mapping of

abstract operations to concrete invocations cause this. A potential optimisation of

ReMMoC is to pre-load configurations in advance before service invocation is

requested therefore, removing a significant performance overhead.

• The significance of the service invocation overhead is reduced when realistic

service operations are performed. The throughput of ReMMoC IIOP invocations

per second is reduced from the maximum 54% decrease to a 6% decrease

(compared to base IIOP invocations) for a realistic mobile application operation.

• Mapping abstract operations to concrete operations incurs an in-band operation

overhead. For NULL operations where there is no mapping, a 2% decrease in

ReMMoC invocation throughput (compared to base IIOP) is observed. This is

caused by additional indirection. Mapping a single input and output parameter

incurs an extra 3% decrease in throughput for ReMMoC IIOP, and an extra 5%

decrease for SOAP.

• Dynamic reconfiguration adds an additional “out-of-band” overhead. Infrequent

reconfiguration e.g. 1 reconfiguration during 1000 invocations suffers a 16%

decrease in performance time. Frequent reconfiguration e.g. 10 reconfigurations

during 1000 invocations suffers a 106% decrease in performance time. Therefore,

where reconfiguration is performed infrequently it has less of an impact on overall

throughput.

 192

• Algorithms implemented to improve platform extensibility (e.g. configuring

personalities in the binding framework) are significantly more expensive than

optimised configuration algorithms (e.g. in the service discovery framework). The

configuration of the less complex SOAP client personality takes over three times

longer than the SLP personality Hence, a trade-off between extensibility and

performance can be made when implementing middleware platforms.

• Checking the validity of component frameworks adds another overhead. A trade-

off can again be made between platform safety and system performance. A non-

safe SLP personality can be configured in 1.066 seconds compared to 1.629 for

the safe version.

• Reflective component configurations can be created that fit on devices with

limited memory capacity. A multi-personality instantiation of ReMMoC (IIOP,

SOAP, SLP and UPnP) can be created that is smaller than 500 Kilobytes.

• On average, utilising reflective component personalities provides between a 42%

and 71% increase in memory resource usage compared to standard component

implementations.

• Components will need to be transmitted across the network (for example, when

the platform discovers it needs components not currently on the device).

Therefore, personalities less than 100K (a typical size of a binding or discovery

personality as seen in table 6.7) in size can support this behaviour.

These results generally indicate that utilising a reflective middleware framework upon

mobile devices is expensive in terms of both performance time and storage costs, and

that these may be detrimental to the uptake of such an approach in real world

scenarios. However, closer analysis of the results suggests that the approach is not

prohibitive; reconfiguration and architectural verification are the primary expenses,

yet these are dependent upon environmental context and the platform only changes

upon detected middleware heterogeneity. Therefore, in scenarios where there is little

heterogeneity ReMMoC will perform similarly to a base middleware platform.

Furthermore, ReMMoC is not designed as an optimised implementation and the

results indicate possible areas to improve its performance measures. Finally,

overcoming heterogeneity must come at an extra performance cost, but the author

 193

believes this is acceptable in order to allow mobile applications to continue operating

in any environment.

6.4 Summary

This chapter has provided an evaluation of the ReMMoC platform. The qualitative

evaluation described in section 6.2 has shown that the ReMMoC framework achieves

the main goal of this thesis. That is, mobile applications can be developed, which

continue operating in locations populated by heterogeneous middleware

implementation. In addition, the ReMMoC development process has shown that

ReMMoC can be used for a range of application types. Furthermore, the ReMMoC

API presents the appropriate level of middleware transparency and developers need

not be aware of concrete middleware implementation.

The quantitative evaluation described in section 6.3 documented the comparison of

ReMMoC to traditional concrete middleware implementation. The ability to overcome

heterogeneity adds an additional performance time overhead. The significance of this

overhead is reduced when the framework is utilised in realistic application scenarios.

Furthermore, the breakdown of this performance time overhead into coarse-grained

reflective operations was examined. It was seen that the safety and extensibility of the

ReMMoC framework contributes to the additional overhead. Finally, the cost of

reflection was investigated. Using reflection increases memory footprints between

42% and 71%, and reflective operations add to a 6% decrease in ReMMoC IIOP

throughput of invocations/second and 8% decrease for SOAP, compared to base

middleware behaviour.

 194

7Chapter 7 Conclusions

7.1 Introduction

This thesis has investigated the problems that middleware heterogeneity pose to the

developers of the next generation of mobile applications. More specifically, the

ReMMoC middleware framework has been described in detail. This platform

demonstrates that reflective middleware offers a good solution for developing a

higher-level (or meta) middleware to solve the problems of middleware heterogeneity.

The combination of components, component frameworks and reflection supports

appropriate adaptation of middleware behaviour in the domains of service binding and

service discovery. In addition, ReMMoC promotes a higher-level abstraction that

provides middleware transparency to mobile application developers. Web Services

form the base of this abstraction, a standard the author believes will become a widely

used technology for addressing middleware heterogeneity and middleware integration.

The remainder of this chapter is structured as follows. Section 7.2 provides a summary

of the arguments presented within this thesis in a chapter-by-chapter fashion. Section

7.3 reviews the major results that have emerged as a result of the work carried out, and

the other notable contributions are found in section 7.4. The order of these results is

arbitrary and does not indicate relative importance. Finally, section 7.5 describes

pointers to future work that may be carried out based upon the research presented in

this thesis.

7.2 Thesis Overview

The thesis began with chapter 1, which introduced the main areas of research

undertaken. The characteristics of mobile computing were first briefly introduced,

including surveys of mobile applications, wireless networks, mobile devices and the

well-identified challenges that mobile computing poses to middleware developers.

The different styles of mobile middleware that have so far been developed to meet

these challenges were then briefly described. Furthermore, a new problem of

middleware heterogeneity in mobile environments was identified, specifically the

need to develop mobile applications that continue operation across multiple locations

 195

independent of middleware implementation in the environment. The remainder of this

chapter then outlined the main aims of the thesis.

Chapter 2 presented an in-depth survey of middleware for mobile computing. Each

particular middleware style was examined in turn: extensions to well-established

middleware (e.g. CORBA), asynchronous middleware, data-sharing middleware,

mobile agents, reflective middleware, policy-based adaptive middleware and finally

service discovery. Each particular style was analysed for effectiveness in overcoming

the challenges posed in chapter 1. It was argued that, although these solutions have

been successful in solving these initial challenges, they do not offer any solutions to

the problems of middleware heterogeneity, rather the range of available solutions

exacerbates the problem.

Chapter 3 examined the initial solutions in the area of middleware heterogeneity. The

wide-ranging solutions covered: Web Services, mobile code, platform independent

modelling, bridging and adaptive middleware. It was argued that none of these

solutions supports the dynamic interaction scenarios found in mobile computing

applications, nor allows for the many different middleware styles and service

discovery mechanisms. Hence it was argued that a suitable higher-level abstraction

must be complemented by a combination of dynamic service binding and service

discovery mechanisms.

The design of the ReMMoC framework was introduced in chapter 4. The combination

of components, component frameworks and reflection was presented as the basis for

the design. To complement this, the choice of the OpenCOM component platform was

explained, and the design of a novel component framework architecture for this

platform was provided. The remainder of the chapter then concentrated on the

reflective operations of the ReMMoC framework. The design and implementation of

the two key component frameworks: binding and service discovery were described in

detail. The component implementations of individual middleware personalities were

discussed together with the algorithms for dynamic adaptation. Notably, the “cycle-

and-see” philosophy was presented as a solution to the problem of discovery protocol

discovery.

 196

Chapter 5 documented a higher-level abstraction for mobile middleware based upon

the abstract services of the Web Services Architecture. The choice of Web Services,

as opposed to other heterogeneity solutions, was explained; the deciding factor was

that this standard is currently the front-runner for integrating heterogeneous

middleware technologies. The design and implementation of this abstraction was then

described in detail. The operations available from the event-based ReMMoC API were

presented. Furthermore, a description of the mapping process was explained; each of

the four abstract WSDL operation was mapped to two contrasting middleware

paradigms: RMI and publish-subscribe.

Chapter 6 presented an evaluation of the ReMMoC framework. The evaluation

approach combined two techniques. Firstly, the facilities for distributed mobile

application development were evaluated in a qualitative manner. A case study of

application services implemented upon heterogeneous middleware across multiple

locations was carried out, and the benefits and flexibility of the ReMMoC adaptation

framework was demonstrated. Secondly, the basic performance of the framework was

measured using quantitative measures. The importance of this evaluation is that it

demonstrated comparable performance to existing mobile middleware in addition to

overcoming heterogeneity. Furthermore, quantitative evaluation identified that the

cost of reflection does not impact on the suitability of utilising the technique of

reflection on mobile devices.

7.3 Major Results

7.3.1 Identification of Middleware Heterogeneity in Mobile Computing

An important contribution of this thesis is the identification of the problem of

middleware heterogeneity in the domain of mobile computing. It is now well

identified that the range of middleware paradigms and implementations available to

developers is causing problems across all application domains However, this thesis

takes the view that the dynamic nature of the mobile environment, e.g. the user

constantly changing location, magnifies this problem; a significant range of

middleware implementations will be encountered by a mobile application during its

execution. In addition, many more types of middleware may be used within mobile

 197

computing settings e.g. proprietary solutions for individual locations (e.g. smart

spaces), whereas a large percentage of the middleware used in the fixed environment

will be of established types (e.g. CORBA, SOAP and Java RMI). State of the art

mobile middleware has generally ignored the middleware heterogeneity problem,

instead focussing on the specific challenges of mobile computing. However,

middleware heterogeneity is a problem that must be addressed, otherwise mobile

applications will only be able to interoperate in particular locations and situations.

7.3.2 The ReMMoC Approach

The most important contribution of this thesis is the design and implementation of the

ReMMoC framework. A three part architecture was designed and implemented

consisting of: 1) a dynamically adaptable concrete middleware framework, 2) an

abstract programming API to hide middleware heterogeneity, and 3) mappings

between abstract and concrete operations. The resulting qualitative evaluation of this

framework demonstrated that client applications developed upon ReMMoC would

continue operating in locations populated with heterogeneous middleware

implementation. Within the evaluation scenario, different styles of mobile client

applications (information retrieval, device control and communication) interfaced with

application services implemented upon heterogeneous middleware (e.g. CORBA,

SOAP, SLP, UPnP and publish-subscribe). Hence, the ReMMoC platform is shown to

tackle middleware heterogeneity in the mobile domain and meet the main aim of this

thesis.

The implementation of the ReMMoC framework consists of the adaptive service

binding component framework and the adaptive service discovery component

framework. The required application service must be found using a discovery protocol

that matches the advertising mechanism of that service. Hence, the service discovery

framework dynamically changes its internal personality when new discovery protocols

are in use in the environment; for this purpose, service lookup can be executed over

multiple protocols to ensure the service is found. The information returned from

service lookup is then used to control the service-binding framework that performs the

communication with a service. Notably, the binding framework within the ReMMoC

architecture adapts between multiple communication paradigms e.g. publish-subscribe

 198

and RMI. The combination of these two adaptive frameworks is an important

contribution of this thesis, as it provides a novel solution that has not previously been

applied to the problem of middleware heterogeneity.

7.3.3 A Higher-level Middleware Abstraction

The final important contribution of this thesis is the higher-level middleware

abstraction promoted by ReMMoC. A reflective architecture for changing middleware

behaviour is not enough to solve heterogeneity. A developer would find it impossible

to predict the middleware a mobile application may encounter in newly entered

locations. Therefore, an abstraction above current middleware programming models is

required. This thesis identifies that Web Services already offers an interesting and

popular abstraction in this domain, which is becoming widely used as a method to

integrate heterogeneous middleware. ReMMoC uses the base concepts of abstract

services (defined in WSDL) and adds a generic service discovery abstraction to create

a higher-level middleware abstraction for mobile computing middleware. Through an

API providing middleware transparency, mobile applications can then be developed

that will operate in unknown locations populated with unknown types of middleware.

7.4 Other Significant Results

7.4.1 The OpenCOM Component Framework Model

The design of the ReMMoC framework is based upon the concept of component

frameworks; these manage the adaptation of components within particular domains of

middleware functionality. The available component framework methods for

OpenCOM were identified as unsuitable for the complex hierarchical architectures

required by ReMMoC. Therefore, a new component framework model for OpenCOM

was designed based upon the concept of composite components in OpenORB

[Blair01]. Each component framework is composed of the component configuration

that implements its behaviour. Dynamic inspection and alteration of the architecture of

the framework is then made through an additional meta-object protocol (whose design

is based upon the OpenORB reflective APIs [Blair01]). In addition, the use of locking

interceptors and graph checking components provide methods to maintain integrity in

the face of dynamic changes to the framework. The resulting component framework

 199

model is generic in nature, and therefore is usable by other OpenCOM based

platforms and not just ReMMoC.

7.4.2 The “Cycle and See” Philosophy

A significant problem that emerged during the course of this research was that of

discovering discovery protocols. In order for the discovery framework to operate

correctly, the environment must be searched for discovery mechanisms in use. For this

purpose, the “Cycle and See” method was developed. This involves the framework

searching for known protocols in parallel; when a matching response is returned this

forces the framework to be reconfigured appropriately. This method is preferable to a

higher-level discovery mechanism, as it does not require any conformance between

advertised services. Hence, existing environments and discovery protocols can be

used. However, when an unknown discovery protocol is encountered this method will

fail. Therefore, the implementation is componentised to allow a new “cycle and see”

component (containing new protocols) to be dynamically added.

7.4.3 The use of Reflection on Mobile Devices

The technique of reflection is often criticised for its poor performance and increased

utilisation of system resources. Hence very few mobile middleware systems are

available that use reflection, even though it is ideally suited to many of the challenges

of mobile middleware [Capra02]. The quantitative evaluation results produced in this

thesis demonstrate the following properties. ReMMoC does consume more system

resources (memory) than a corresponding non-reflective implementation (between a

42% and 71% increase). However, the complete solution (approximately 1 Megabyte)

will comfortably operate on today’s mobile devices (e.g. the Compaq iPaq H3870 has

64Mbytes of system memory). In addition, the results show that reflection adds

additional overhead to the performance of a middleware. However, the impact of this

overhead is lessened during the operation of realistic mobile application services. For

example, there is only a 6% decrease in IIOP invocations per second in ReMMoC

compared to base IIOP behaviour.

 200

7.4.4 Abstract-to-Concrete Mappings

The final significant contribution of this thesis is the abstract to concrete mappings

that form part of the solution to middleware heterogeneity. The abstract services

described in WSDL can only be utilised if the abstract operations are mapped to

concrete middleware messages e.g. IIOP requests and publish-subscribe events. This

thesis describes in details the mappings to contrasting communication paradigms:

remote method invocation and publish-subscribe. The similarities between abstract

and concrete message content form the basis of these mapping e.g. message elements

and RMI parameters. In addition, these event-based mappings (i.e. all mappings return

results as events) ensure that a consistent flow of information is maintained to the

application irrespective of the computation model of the underlying middleware.

7.5 Future Work

7.5.1 Additional Middleware Personalities

At present, only a small number of binding and service discovery protocols have been

developed. Increasing the encompassed types of middleware personalities will

strengthen the argument that ReMMoC fully addresses middleware heterogeneity. For

service discovery, only two protocols are implemented. Initial analysis illustrates that

alternative discovery protocols like Jini and Salutation have the required properties to

be included within the generic service discovery architecture. Further investigation

through implementation of component-based personalities for these will verify that

this is the case. Furthermore, this will identify if additional discovery protocols have a

significant impact on the performance of ReMMoC.

Only two middleware paradigms are implemented within the ReMMoC framework:

RMI and publish-subscribe. To further investigate the general nature of the ReMMoC

framework, new bindings of each style of mobile middleware should be investigated

to see if it is applicable in the framework model. For example, tuple spaces, mobile

agents and data-sharing communication paradigms offer diverse and interesting

challenges in terms of applying them within this domain. As seen within the analysis

of the publish-subscribe model not all of the WSDL operations need to be mapped to

each paradigm, hence it is feasible that these bindings can be applied.

 201

7.5.2 Security Component Framework

Security is an important issue in mobile computing. In the scenarios presented in this

thesis, access to services may be restricted to authentic users. In addition, secure

methods of communication will be required for services that communicate private

information or for which the user pays for the service. Therefore, an interesting piece

of future work is a security component framework to extend the ReMMoC

framework. To maintain the ReMMoC philosophy the security framework would

ideally need to operate across different security mechanisms implemented by each

service. For example, a generic user authentication service may be physically

implemented by a number of contrasting authentication protocols. An investigation

within this realm would identify if such an approach is feasible, or if single fixed

mechanisms are more appropriate.

7.5.3 Resource Management Component Framework

A challenge of mobile computing is the limited resources found upon mobile devices.

At present ReMMoC does not attempt to reduce system resource consumption during

operation. Hence, in the future ReMMoC could be extended by a resource

management component framework, which effectively controls the resource

consumption by each component. An OpenCOM resource management framework is

currently available [Duran00], which looks at controlling system memory and threads.

However, battery power is a more valuable resource on mobile devices, particularly as

ReMMoC’s operation involves frequent communication over wireless networks.

Therefore, future work integrating this resource management framework to effectively

improve battery lifetime would be a significant result.

7.5.4 Web Service Extensions

There is ongoing work into the definition of the Web Services Architecture. This

includes the standardisation of new languages that offer more complex behaviour than

WSDL. For example, the Web Services Flow Language (WSFL) [Leyman01] allows

developers to describe complex interactions patterns between groups of participating

services. In addition, new languages are emerging that allow the abstract service

descriptions to be extended to include non-functional aspects including Quality of

 202

Service and Security e.g. the Web Services Endpoint Language (WSEL) [Hung02]. An

investigation of how the base ReMMoC abstraction must be extended to support

languages of this type would be required. It is likely, that the implementation would

rely upon the two previously described component frameworks (i.e. security and

resource management).

7.5.5 Semantic Service Matching

ReMMoC relies upon the assumption that if the service type matches the lookup

request then that service provides the functionality required. However, services of the

same type and with the same syntactic definition may still behave differently.

Therefore, to remove this reliance, semantic matching of services is required. The

mechanisms of service discovery could be extended to base service selection upon

information that semantically describes the service’s behaviour. Semantic services are

an emerging hot topic within the Web Services community. A number of technologies

have already emerged. OWL [OWL03], the Web Ontology Language, allows explicit

meaning to be attached to information allowing machines to automatically process

information. Future work could examine how these technologies may provide

application service selection to ensure the behaviour of the service matches the

application requirements.

7.5.6 Dynamic Component Downloading

The evaluation section of this thesis describing memory costs demonstrated that single

middleware personalities could be stored on mobile devices. However, each device

cannot store every possible middleware component that may be needed. Over the

lifetime of a mobile device, upwards of ten middleware implementations (bindings

and service discovery) would exhaust the system memory of present day devices.

Therefore, a method for dynamically downloading components to the device when

needed is required. However, component downloading introduces additional

performance overhead; therefore techniques to ensure the component is available to

start-up before the application requests it are required. Predictive caching based upon

context information is an interesting option for this. For example, the user is moving

towards a particular location were they previously used the SLP discovery protocol

 203

and the publish-subscribe middleware binding, therefore download all of the

components for these personalities.

7.5.7 Ubiquitous Computing Environments

ReMMoC has been specifically designed for, and applied within the domain of mobile

computing applications. However, the framework has the potential to be utilised in

many more applications domains, including ubiquitous computing and Smart Home

Environments. These are applications where the computer becomes part of the

environment e.g. intelligent devices and wearable computers. A framework such as

ReMMoC would then ideally support the discovery of and communication between

heterogeneous elements within these scenarios. The application of ReMMoC to these

domains would also provide a sterner evaluation of ReMMoC in terms of the

complexity of applications that it can fully support.

7.6 Concluding Remarks

This thesis has identified that there are now many mobile middleware solutions

available, each of which address one or more of the original challenges of mobile

computing. However, these heterogeneous solutions create the problem of middleware

heterogeneity. The author envisages the next generation of mobile applications will

support the philosophy of “use anywhere” irrespective of middleware implementation

i.e. a restaurant table booker will work in any city in the world. Hence, the ReMMoC

framework has been presented, whose goal is to allow mobile applications to be

developed independently of middleware implementation. These applications will then

continue operation in new, unknown locations. ReMMoC currently relies upon the

Web Services Architecture; an initiative that the author believes will become the

driving technology in higher-level middleware frameworks and middleware

integration. This thesis has demonstrated that the combination of Web Services with a

dynamically adaptable middleware framework successfully overcomes the problem of

dynamic middleware heterogeneity.

 204

8References

[Ankolekar01] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S.

Narayanan, M. Paolucci, T. Payne, K. Sycara and H. Zeng, “Daml-s: Semantic markup for

web services”, Proceedings of the International Semantic Web Working Symposium

(SWWS), pp. 39-54, 2001.

[Apache03] The Apache Software Foundation, “Web Services – Axis”,

http://ws.apache.org/axis/, 2003.

[Apple94] Apple Computer Inc., “OpenDoc: White Paper”, Apple Computer Inc., 1994.

[Arnold99] K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo and A. Wollrath, “The Jini

Specification”, Addison Wesley, 1999.

[Asthana94] A. Asthana, M. Cravatts and P. Krzyzanowski, “An Indoor Wireless System

for Personalized Shopping Assistance”, Proceedings of IEEE Workshop on Mobile

Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[Bacon00] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel and M.

Spiteri, “Generic Support for Distributed Applications”, IEEE Computer, 33(3), pp. 68-76,

March 2000.

[Bakker00] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk, M. van

Steen and A. Tanenbaum, “The Globe distribution network”, Proceedings of the {USENIX}

Annual Conference", pp. 141-152, 2000.

[Biegel02] G. Biegel, V. Cahill and M. Haahr, “A Dynamic Proxy-Based Architecture to

Support Distributed Java Objects in Mobile Environments”, Proceedings of the International

Symposium on Distributed Objects and Applications (DOA 2002), Lecture Notes in

Computer Science, volume 2519, R. Meersman and Z. Tari (Eds.), pp. 809-826, October

2002.

[Blair01] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-

Limon, T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas and K. Saikoski, “The design

and implementation of Open ORB 2”, IEEE Distributed Systems Online, 2(6), Sept 2001.

[Bluetooth99] The Bluetooth specification,

http://www.bluetooth.com/developer/specification/specification.asp, 1999.

[Bluetooth99b] Bluetooth Specification Part E, “Service Discovery Protocol (SDP)”,

http://www.bluetooth.com/, 1999.

[Booth03] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D.

Orchard, “Web Services Architecture”, W3C Working Draft, http://www.w3.org/TR/ws-arch/,

August 2003.

 205

[Boulkenafed03] M. Boulkenafed and V. Issarny, “AdHocFS: Sharing Files in WLANS”,

Proceeding of the 2nd IEEE International Symposium on Network Computing and

Applications, Cambridge, MA, USA, April 2003.

[Box00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S.

Thatte and D. Winer, “Simple Object Access Protocol (SOAP) 1.1. Technical Report”,

http://www.w3.org/TR/SOAP, May 2000.

[Brewer98] E. Brewer et al., “A Network Architecture for Heterogeneous Mobile

Computing”, IEEE Personal Communications, October 1998.

[Bustamante00] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener, “Efficient

wire formats for high performance computing”, Proceedings of the 2000 International

Conference on Supercomputing (SC2000), Dallas, Texas, USA, November 2000.

[Campadello00] S. Campadello, H. Helin, O. Koskimies and K. Raatikainen, “Wireless

Java RMI”, Proceedings of The 4th International Enterprise Distributed Object Computing

Conference, pp. 114-123, Makuhari, Japan, September 2000

[Capra01] L. Capra, W. Emmerich and C. Mascolo, “Reflective Middleware Solutions for

Context-Aware Applications”. Proceedings of REFLECTION 2001- The Third International

Conference on Meta-level Architectures and Separation of Crosscutting Concerns, September

2001.

[Capra02] L. Capra, G. Blair, C. Mascolo, W. Emmerich and P. Grace, “Exploiting

Reflection in Mobile Computing Middleware”, ACM SIGMOBILE Mobile Computing and

Communications Review, 6(4), pp. 34-44, October 2002.

[Capra02b] L. Capra, W. Emmerich and C. Mascolo, “A Micro-Economic Approach to

Conflict Resolution in Mobile Computing”, Proceedings of the Foundations of Software

Engineering (ACM SIGSOFT/FSE-10), pp. 31-40, Charleston, South Carolina, USA,

November 2002.

[Carzaniga01] A. Carzaniga, D. Rosenblum and A. Wolf, “Design and Evaluation of a

Wide-Area Event Notification Service”, ACM Transactions on Computer Systems, 19(3), pp.

332-383, 2001.

[Chan01] W. Chan, “Project Voyager: Building an Internet Presence for People, Places,

and Things”, Masters Thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, May 2001.

[Chinnici03] R. Chinnici, M. Gudgin, J. Moreau and S. Weerawarana, “Web Services

Description Language (WSDL) Version 1.2”, W3C Working Draft,

http://www.w3.org/TR/wsdl12/, March 2003.

[Clarke01] M. Clarke, G. Blair, G. Coulson and N. Parlavantzas, “An Efficient Component

Model for the Construction of Adaptive Middleware”, Proceedings of Middleware 2001,

Heidelberg, Germany. November, 2001.

 206

[Cole03] A.Cole, S. Duri, J. Munson, J. Murdock and D. Wood, “Adaptive Service Binding

to Support Mobility”, Proceedings of the ICDCS International Workshop on Mobile

Computing Middleware, Providence, RI, US, May 2003.

[COM95] Microsoft Corporation, “The Component Object Model Specification, Version

0.9”, http://www.microsoft.com/Com/resources/comdocs.asp, October 1995.

[Coulouris00] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems,

Concepts and Design”, Addison-Wesley (3rd Edition), 2000.

[Coulson04] G. Coulson, G. Blair and P. Grace, “On the Performance of Reflective Systems

Software”, Proceeding of International Workshop on Middleware Performance (MP 2004),

Phoenix, Arizona, USA, April 2004 (to appear).

[Cugola01] G. Cugola, E. Di Nitto and A. Fuggetta, “The JEDI event-based infrastructure

and its application to the development of the OPSS WFMS”, IEEE Transactions on Software

Engineering, 9(27), pp. 827-850, September 2001.

[Cunnings01] R. Cunnings, S.Fell and P. Kulchenko, “SMTP Transport Binding for SOAP

1.1”, http://www.pocketsoap.com/specs/smtpbinding/, November 2001.

[Davies98] N. Davies, A. Friday, S. Wade and G. Blair, “L2imbo: A Distributed Systems

Platform for Mobile Computing”, ACM Mobile Networks and Applications (MONET) ­

Special Issue on Protocols and Software Paradigms of Mobile Networks, 3(2), pp. 143­156,

August 1998.

[Davies99] N. Davies, K. Cheverst, K. Mitchell and A. Friday, “Caches in the Air:

Disseminating Information in the Guide System”, Proceedings of the 2nd Workshop on

Mobile Computing Systems and Applications (WMCSA ’99), 1999.

[Davis02] D. Davis and M. Parashar, “Latency performance of SOAP implementations”,

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the

Grid, pp. 407–412, Berlin, Germany, May 2002.

[DCOM96] Microsoft Corporation. “Distributed Component Object Model Protocol-

DCOM/1.0, draft”, http://www.microsoft.com/Com/resources/comdocs.asp, November 1996.

[Delamaro02] M. Delamaro and G. Picco, “Mobile Code in .NET: A Porting Experience”,

Proceedings of the 6th International Conference on Mobile Agents, Barcelona, Spain, October

2002.

[Demers94] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch,

“The Bayou Architecture: Support for Data Sharing among Mobile Users”, Proceedings of the

IEEE Workshop on Mobile Computing Systems and Applications, pp. 2–7, Santa Cruz,

California, December 1994.

[Dey99] A. Dey, M. Futakawa, D. Salber and G. Abowd, “The Conference Assistant:

Combining Context-Awareness with Wearable Computing”, Proceedings of the 3rd

International Symposium on Wearable Computers (ISWC '99), pp. 21-28, October 1999.

 207

[Dey00] A. Dey and G. Abowd, “CybreMinder: A Context-Aware System for Supporting

Reminders”, Proceedings of the 2nd International Symposium on Handheld and Ubiquitous

Computing (HUC), pp. 172-186, Bristol, UK, September 2000.

[Duftler01] M. Duftler, N. Mukhi, A. Slominski and S. Weerawarana, “Web Services

Invocation Framework (WSIF)”, Proceedings of OOPSLA 2001 Workshop on Object

Oriented Web Services, Tampa, Florida, October 2001.

[Duran00] H. Duran and G. Blair, “A Resource Management Framework for Adaptive

Middleware”, Proceedings of the 3rd IEEE International Symposium on Object-oriented Real-

time Distributed Computing (ISORC'2K), Newport Beach, California, USA, March 2000.

[Efstratiou02] C. Efstratiou, A. Friday, N. Davies and K. Cheverst, “A Platform Supporting

Coordinated Adaptation in Mobile Systems”, Proceedings of the 4th IEEE Workshop on

Mobile Computing Systems and Applications, pp. 128-137, Callicoon, New York, June, 2002.

[Fassino02] J. Fassino, J. Stefani, J. Lawall and G. Muller, "Think: A software framework

for component-based operating system kernels", Proceedings of Usenix Annual Technical

Conference, Monterey (USA), June 2002.

[Fell03] S. Fell, “Pocket SOAP”, http://www.pocketsoap.com

[Fiege03] L. Fiege, F. Gärtner, O. Kasten, and A. Zeidler, “Supporting Mobility in Content-

Based Publish/Subscribe Middleware”, Proceedings of Middleware 2003, Rio de Janeiro,

Brazil, June 2003.

[Finney96] J. Finney and N. Davies, "The FLexible Ubiquitous Monitor Project",

Proceedings of the Third Computer Networks Symposium, July 1996.

[Flinn01] J. Flinn, E. de Lara, M. Satyanarayanan, D. Wallach and W. Zwaenepoel,

“Reducing the Energy Usage of Office Applications”, Proceedings of Middleware 2001,

Heidelberg, Germany. November, 2001.

[Forman94] G. H. Forman and J. Zahorjan, “The Challenges of Mobile Computing”, IEEE

Computer, 27(4), pp. 38-47, 1994.

[Friday96] A. Friday, “Infrastructure Support for Adaptive Mobile Applications”, Ph.D

Thesis, Computing Department, Lancaster University, 1996.

[Gamma95] E. Gamma, R. Johnson, R. Helm and J. Vlissides, “Design Patterns: Elements

of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

[Gelernter85] D. Gelernter, “Generative Communications in Linda”, ACM Transactions on

Programming Languages and Systems, 7(1), pp80-112, January 1985.

[Goland99] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple Service

Discovery Protocol 1.0”, http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt, Internet

Draft, June 1999.

 208

[Govindaraju02] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon,

“Requirements for and evaluation of RMI protocols for scientific computing”, Proceedings of

the 2000 Conference on Supercomputing (SC2000), Dallas, Texas, November 2000.

[Haahr00] M. Haahr, R. Cunningham and V. Cahill, “Towards a Generic Architecture for

Mobile Object-Oriented Applications”, Proceedings of SerP 2000: Workshop on Service

Portability, San Francisco, December 2000.

[Hayton98] R. Hayton, A. Herbert and D. Donaldson, “Flexinet: a flexible, component

oriented middleware system”, Proceedings of the 8th ACM SIGOPS European Workshop:

Support for Composing Distributed Applications, Sintra, 1998.

[Hung02] P. Hung, “Specifying Conflict of Interest in Web Service Endpoint Language

(WSEL)”, ACM SIGecom Exchanges, 3(3), pp. 1-8, August 2002.

[IBM00] IBM Corporation, “AlphaWorks: Web Services Toolkit”,

http://www.alphaworks.ibm.com/tech/webservicestoolkit, July 2000.

[IEEE03] The IEEE 802.11 Working Group, http://www.ieee802.org/11/

[IKV99] IKV++ GmbH Informations und Kommunikationssysteme. “Grasshopper: The

Agent Platform - Technical Overview”, February 1999.

[IONA99] Iona Technologies, “OrbixCOMet ”,

http://www.iona.com/support/whitepapers/ocomet-wp.pdf, 1999.

[IrDA01] IrDA Serial Infrared Data Link Standard Specifications, http://www. irda.org/,

2001.

[Jacobsen99] K. Jacobsen and D. Johansen, “Ubiquitous Devices United: Enabling

Distributed Computing Through Mobile Code”, Proceedings of the Symposium on Applied

Computing (ACM SAC'99), February 1999.

[Johansen95] D. Johansen, R. van Renesse and F. Schneider, “Operating system support for

mobile agents”, Proceedings of the 5th IEEE Workshop on Hot Topics in Operating Systems,

Orcas Island, Wa, USA, May 1995.

[Joseph95] A. Joseph, A. deLespinasse, J. Tauber, D. Gifford and M. Kaashoek, “Rover: A

Toolkit for Mobile Information Access”, Proceedings of the 15th Symposium on Operating

Systems Principles (SOSP '95), Colorado, U.S., pp. 156­171, December 1995.

[Kagal01] L. Kagal, V. Korolev, H. Chen, A. Joshi and T. Finin, “Centaurus: A framework

for intelligent services in a mobile environment”, Proceedings of the International Workshop

on Smart Appliances and Wearable Computing (IWSAWC), April 2001.

[Klefstad03] R. Klefstad, S. Rao and D. Schmidt, “Design and Performance of a

Dynamically Configurable, Messaging Protocols Framework for Real-time CORBA”, In

Proceedings of Distributed Object and Component-based Software Systems part of the

Software Technology Track at the 36th Annual Hawaii International Conference on System

Sciences, Big Island of Hawaii, January, 2003.

 209

[Kon00] F. Kon, F, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes and R. Campbell,

“Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB”,

Proceedings of Middleware 2000, ACM/IFIP, April 2000.

[Kon00b] F. Kon and R. Campbell, “Dependence Management in Component-Based

Distributed Systems”, IEEE Concurrency, 8(1), pp.26-36, 2000.

[Kristensen00] T. Kristensen and T. Plagemann, “Enabling Flexible QoS Support in the

Object Request Broker COOL”, Proceedings of International Workshop on Distributed Real-

Time Systems (IWDRS 2000), April 2000.

[Lange98] D. Lange and M. Oshima, “Programming and Deploying Java Mobile Agents

with Aglets”, Addison-Wesley, 1998.

[Leyman01] F. Leymann, “Web Service Flow Language (WSFL 1.0)”, IBM Document,

www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001.

[Liljeberg97] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell, K. Maumon, E.

Veldkamp, B. Wind and S. Trigila, “Using CORBA to Support Terminal Mobility”.

Proceedings of TINA '97, 1997.

[Lin01] Y. Lin and I. Chlamtac, “Wireless and Mobile Network Architectures”, John Wiley

& Sons, 2001

[Long96] S. Long et al., “Rapid Prototyping of Mobile Context-aware Applications: The

Cyberguide Case Study”, Proceedings of the 2nd ACM International Conference on Mobile

Computing and Networking (MobiCom'96), 1996.

[Mamei03] M. Mamei, F. Zambonelli and L. Leonardi, “Tuples On The Air: a Middleware

for Context-Aware Computing in Dynamic Networks”, Proceedings of 1st International

ICDCS Workshop on Mobile Computing Middleware (MCM03) Providence, Rhode Island,

May 2003.

[Marmasse00] N. Marmasse and C. Schmandt, “Location-aware information delivery with

comMotion”, Proceedings of the Second International Symposium on Handheld and

Ubiquitous Computing (HUC), pp. 157 – 171, Bristol, UK, September 2000.

[Mascolo02] C. Mascolo, L. Capra, and W. Emmerich, “Middleware for Mobile Computing

(A Survey)”, Advanced Lectures in Networking, Editors E. Gregori, G. Anastasi, S. Basagni,

Springer, LNCS 2497, 2002.

[Mascolo02b] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich, “XMIDDLE: A

Data-Sharing Middleware for Mobile Computing”, International Journal on Personal and

Wireless Communications, April 2002.

 [McHugh03] J. McHugh “Low Bandwidth SOAP”, webservices.xml.com,

http://webservices.xml.com/pub/a/ws/2003/08/19/ksoap.html, August 2003.

 210

[Meier02] R. Meier and V. Cahill, “STEAM: Event-Based Middleware for Wireless Ad

Hoc Networks”, Proceedings of the International Workshop on Distributed Event-Based

Systems (ICDCS/DEBS'02), pp. 639-644, Vienna, Austria, 2002.

[Microsoft00] Microsoft Corporation, “The .NET Framework”,

http://www.microsoft.com/net/, 2000.

[Microsoft00b] Microsoft Corporation, “Universal Plug and Play Device Architecture”,

Version 1.0, http://www.upnp.org/download/UPnPDA10_20000613.htm, June 2000.

[Microsoft01] Microsoft Corporation, “CE.NET”,

http://www.microsoft.com/windows/embedded/ce.net/

[Miller01] J. Miller and J. Mukerji (eds.), “Model Driven Architecture”, OMG Document

number ormsc/2001-07-01, July 2001.

[Mitchell00] S. Mitchell, M. Spiteri, J. Bates and G. Coulouris, “Context-Aware

Multimedia Computing in the Intelligent Hospital”, Proceedings of SIGOPS EW2000, the

Ninth ACM SIGOPS European Workshop, Kolding, Denmark, September 2000.

[Monson-Haefel00] R. Monson-Haefel, “Enterprise Java Beans”, O'Reilly UK (2nd

Edition), 2000.

[Moreira01] R. Moreira, G. Blair and G. Carrapatoso, “Reflective Component-Based &

Architecture Aware Framework to Manage Architecture Composition”, Proceedings of 3rd

International Symposium on Distributed Objects & Applications (DOA 2001), Rome, Italy,

September 2001.

[Muhl02] G. Mühl, L. Fiege, F. Gärtner and A. Buchmann, “Evaluating Advanced Routing

Algorithms for Content-Based Publish/Subscribe Systems”, Proceeding of 10th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, pp.167-176, Fort Worth, Texas, October 2002.

[Muratore00] F. Muratore (Ed), “UMTS: Mobile Communications for the Future”, John

Wiley & Sons, 2000.

[Murphy01] A. Murphy, G. Picco and G. Roman, “LIME: A Middleware for logical and

Physical Mobility”, Proceedings of the 21st International Conference on Distributed

Computing Systems (ICDCS-21), May 2001.

[Narayanaswami00] C. Narayanaswami and M. Raghunath, “Application design for a

smart watch with a high resolution display”, Proceedings of the Fourth International

Symposium on Wearable Computers, pp. 7-14, Atlanta, GA, October 2000.

[Newcomer02] E. Newcomer, “Understanding Web Services: XML, WSDL, SOAP and

UDDI”, Addison-Wesley, 2002.

[Oasis02] Oasis Technical Committee, “Univeral Description, Discovery and Integration of

Web Services”, http://www.uddi.org. 2002.

 211

[Oberon97] Oberon Microsystems Inc., “Blackbox Developer and Blackbox Component

Framework”, Oberon Microsystems, http://www.oberon.ch.

[OMG95] Object Management Group, “The common object request broker: Architecture

and specification”, Tech. Report. Version 2.0, July 1995.

[OMG97] Object Management Group, “COM/CORBA Interworking Specification Part A

& B”, 1997.

[OMG98] Object Management Group Telecom Domain Task Force, “Wireless access and

terminal mobility in CORBA (draft white paper)”, OMG Document: telecom/98-06-01, May

1998.

[OMG98b] Object Management Group, “Event Service”, OMG Document formal/2001-03-

01.

[OMG02] Object Management Group, “CORBA Component Model v3.0”, OMG

Document: formal/2002-06-65.

[OMG03] Object Management Group, “Wireless Access & Terminal Mobility in CORBA,

v1.0”, OMG Document formal/03-03-64.

[OWL03] Web Ontology Language Working Group. http://www.w3.org/2001/sw/WebOnt/

[POMA03] “POMA headset”, www.xybernaut.com/Solutions/product/poma_product.htm

[Preuss02] S. Preuss, “JESA Service Discovery Protocol”, Proceedings of Networking

2002, pp. 1196-1201, Pisa, Italy, May 2002.

[Rahnema93] M. Rahnema, “Overview of the GSM System and Protocol Architecture”,

IEEE Communication Magazine, 31(4), pp. 92-100, April 1993.

[Roman01] M. Roman, F. Kon and R. Campbell, “Reflective Middleware: From Your Desk

to Your Hand”, IEEE Distributed Systems Online, 2(5), August 2001.

[Roman02] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and

K.Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active Spaces”, IEEE Pervasive

Computing, 1(4), pp. 74-83, Oct-Dec 2002.

[Rysavy98] P. Rysavy, “General Packet Radio Service (GPRS)", GSM Data Today online

journal, September 1998.

[Salutation98] Salutation Consortium. “White Paper: Salutation Architecture Overview”,

http://www.salutation.org/whitepaper/originalwp.pdf, 1998.

[Salutation00] The Salutation Consortium, “Salutation-Lite Open Source”,

http://www.salutation.org/lite/litesource.htm, 2000.

[Satyanarayanan90] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and

D. Steere. “Coda: A Highly Available File System for a Distributed Workstation

Environment”, IEEE Transactions on Computers, 39(4), pp. 447–459, April 1990.

[Satyanarayanan96] M. Satyanarayanan, “Mobile Information Access”, IEEE Personal

Communications, 3(1), pp. 26-33, February 1996.

 212

[Satyanarayanan96b] M. Satyanarayanan, “Fundamental Challenges in Mobile

Computing”, Proceedings of the Fifteenth ACM Symposium on Principles of Distributed

Computing, Philadelphia, PA, May 1996.

[Schmidt99] D. Schmidt and C. Cleeland, “Applying Patterns to Develop Extensible ORB

Middleware”, IEEE Communications Magazine Special Issue on Design Patterns, 37(4), pp.

54-63, 1999.

[Segall97] B. Segalland D. Arnold, “Elvin has left the building: a publish/subscribe

notification service with quenching”, Proceedings of AUUG97, September 1997.

[Seitz98] J. Seitz, N. Davies, M. Ebner and A. Friday, “A CORBA-based Proxy

Architecture for Mobile Multimedia Applications”, Proceedings of the 2nd IFIP/IEEE

International Conference on Management of Multimedia Networks and Services (MMNS '98),

Versailles, France. November,1998.

[Shah03] P. Shah, B. Bryant, C. Burt, R. Raje, A. Olson and A. Mikhail, “Interoperability

between Mobile Distributed Components using the UniFrame Approach", Proceedings of the

41st Annual ACM Southeast Conference, pp. 30-35, Savannah, Georgia, March 2003.

[Silva97] A. Silva, M. Mira da Silva and J. Delgado, “Motivation and Requirements for the

AgentSpace: A Framework for Developing Agent Programming Systems”, Proceedings of the

Fourth International Conference on Intelligence in Services and Networks, Cernobbio, Italy,

1997.

[Sivaharan02] T. Sivaharan, “A Publish-Subscribe Service for Mobile Client

Applications”, MSc. Thesis, Lancaster University, September 2002.

[Sivaharan04] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P. Okanda, C.

Sørensen,, “Cooperating Sentient Vehicles for Next Generation Automobiles”, Proceedings of

the First ACM International Workshop on Applications of Mobile Embedded Systems

(WAMES'04), Boston, June 2004.

[Srinivasan95] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specification

Version 2”, Internet RFC 1831, August 1995.

[Stallings02] W. Stallings, “Wireless Communications and Networks”, Prentice-Hall, 2002.

[Storey02] M. Storey, G. Blair and A. Friday, “MARE: Resource Discovery and

Configuration in Ad Hoc Networks”, Mobile Networks and Applications, 7(5), pp. 377-387,

October 2002.

[Sun97] Sun Microsystems Corporation, "Java RMI Specification",

ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf, 1997.

[Sun97b] Sun Microsystems, “The Java Beans Specification 1.01”,

http://java.sun.com/products/javabeans/docs/spec.html, August 1997.

[Sun02] Sun Microsystems, “Java Reflection API”,

http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html, 2002.

 213

[Sutton01] P. Sutton, R. Arkins and B. Segall, “Supporting Disconnectedness - Transparent

Information Delivery for Mobile and Invisible Computing”, IEEE International Symposium

on Cluster Computing and the Grid, Brisbane, Australia, May 2001.

[Szyperski98] C. Szyperski, “Component Software, Beyond Object-Oriented

Programming”, ACM Press/Addison-Wesley, 1998.

[TCD00] Trinity College Dublin, “The K-ORBs Project”,

http://www.dsg.cs.tcd.ie/research/minCORBA/, 2000

[Thatte01] S. Thatte, “XLANG: Web Services for Business Process Design”,

www.gotdotnet.com/team/xml_wsspecs/xlang-c/, 2001.

[Veizades97] J. Veizades, E. Guttman, C. Perkins and S. Kaplan, “Service Location

Protocol (SLP)”, Internet RFC 2165, 1997.

[Vinoski02] S.Vinoski, “Toward Integration - Web Services Interaction Models”, IEEE

Internet Computing Online, 6(3), pp. 89-91, May/June 2002.

[Vinoski03] S. Vinoski, “It’s just a Mapping Problem”, IEEE Internet Computing Online,

7(3), pp. 88-90, May/June 2003.

[W3C99] World Wide Web Consortium, “Resource Description Framework (RDF)”,

www.w3.org/RDF/, 1999.

[Wade99] S. Wade, “An Investigation into the use of the Tuple Space Paradigm in Mobile

Computing Environments,” Ph.D. Thesis, Computing Department, Lancaster University,

1999.

[Waldo98] J. Waldo, “Javaspaces specification 1.0”, Sun Microsystems Technical report,

March 1998.

[Wall01] T. Wall and V. Cahill, “Mobile RMI: Supporting Remote Access to Java Server

Objects on Mobile Hosts”, Proceedings of the Third International Symposium on Distributed

Objects and Applications”, pp. 41-51, Rome, Italy, September 2001.

[Watanabe87] T. Watanabe and A. Yonezawa, “Reflection in an Object-Oriented

Concurrent Language”, Proceedings of OOPSLA’88, Vol. 23 of ACM SIGPLAN Notices, pp.

306-315, ACM Press, 1988.

[Weiser91] M. Weiser, "The Computer for the 21st Century", Scientific American, 265(3),

pp. 94-104, September 1991.

[Wong97] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young and B. Peet, “Concordia:

An Infrastructure for Collaborating Mobile Agents”, Proceedings of the 1st International

Workshop on Mobile Agents, Berlin, Germany, April 1997.

[Wyckoff98] P. Wyckoff, S. McLaughry, T. Lehman and D. Ford, “Tspaces”, IBM Systems

Journal, 37(3), pp. 454-474, 1998.

 214

[Yokote92] Y. Yokote, “The Apertos Reflective Operating System: The Concept and Its

Implementation”, Proceedings of OOPSLA’92, ACM SIGPLAN Notices, Vol. 28, pp. 414-

434, ACM Press, 1992.

[Zachariadis03] S. Zachariadis, C. Mascolo and W. Emmerich. “Adaptable Mobile

Applications: Exploiting Logical Mobility in Mobile Computing”. Proceedings of 5th

International Workshop on Mobile Agents for Telecommunication Applications”, Marrakech,

Morocco, October 2003.

 215

9Appendix A Component Framework Meta Interfaces

Operations for Inspection

/***
* Returns a list with the identifiers of the components that constitute the *
* base-level configuration. *
***/
HRESULT get_internal_components([out] IUnknown** ppComps[], [out] int *pcElems);

/***
* Returns a list with information (component id and interface names) of all *
* components bound to the one identified as the argument. *
***/
HRESULT get_Bound_Components([in] IUnknown* comp, [out] ConnectedComponent**
 ppConnections[], [out] int *pConnectedElements);

/***
* Returns a list with the ids of all connections that are part of the *
* base-level composition. *
***/
HRESULT get_internal_bindings([out] unsigned long *ppConnIDs[], [out] int *pcElems);

Operations for Reconfiguration

/**
* Establish a local binding on the interface between two components. *
**/
HRESULT local_bind([in] IUnknown *pIUnkSource, [in] IUnknown *pIUnkSink, [in]
 REFIID iid, [out] unsigned long *pConnID);

/**
* Break the local binding between the two Components. *
**/
HRESULT break_local_bind([in] unsigned long connID);

/**
* Create and insert a new component into the base-level configuration, *
* with the given name. *
**/
HRESULT insert_component([in] CLSID clsid, [in, string] const char *name, [out]
 IUnknown **ppIUnknown);

/**
* Delete the component from the configuration. *
**/
HRESULT remove_component([in] IUnknown *pIUnknown);

/**
* Replace an existing component with a new component of the *
* given type. *
**/
HRESULT replace_component([in] IUnknown *pOldComponentIUnk, [in] IUnknown
 *pNewComponentIUnk);

 216

/**
* Map the interface of an internal component as a new interface of the *
* composite CF. *
**/
HRESULT Expose_Interface([in] IID rintf, [in] IUnknown *pComp);

/**
* Remove an exposed interface. *
**/
HRESULT UnExpose_Interface([in] IID rintf, [in] IUnknown *pComp);

/**
* Map the receptacle of an internal component as a new receptacle of *
* the composite component. *
**/
RESULT Expose_Receptacle([in] IID rintf, [in] IUnknown *pComp, [in]
 OCM_RecpType_t recpType);

/**
* Remove an exposed Receptacle. *
**/
HRESULT UnExpose_Receptacle([in] IID rintf, [in] IUnknown *pComp);

/**
* Replace the current graph of components with a new graph. *
**/
HRESULT ReplaceConfiguration([in] IUnknown *pComponents[], [in] int cCmps);

/**
* Start the transaction for architecture reconfiguration. *
**/
HRESULT init_arch_transaction();

/**
* Completes the reconfiguration. *
**/
HRESULT commit_arch_transaction();

/**
* Rolls back any changes made during an architectural transaction. *
**/
HRESULT rollback_arch_transaction();

 217

10Appendix B Example XML Component Configuration

The following is an XML based architectural description of the IIOP client binding

personality.

<ReMMoC_Configuration>
 <Interfaces>
 <Interface>{D692671C-F14C-4f27-9646-07A6E7EC013A}</Interface>
 </Interfaces>
 <Components>
 <Component>
 <Name>ReMMoC_OSNet</Name>
 <ID>{15E7D7CF-5750-46de-9924-D219DDD7CA8E}</ID>
 </Component>
 <Component>
 <Name>ReMMoC_TCP</Name>
 <ID>{8CB1DB64-ED4F-4486-8578-96017825F6DD}</ID>
 <Connections>
 <Interface>{D993631C-FD4C-4f27-9646-07E6E7EC098A}</Interface>
 </Connections>
 </Component>
 <Component>
 <Name>ReMMoC_CORBAMarshaling</Name>
 <ID>{12C7D7CF-5451-43de-9924-D219DED2CB2A}</ID>
 </Component>
 <Component>
 <Name>ReMMoC_GIOP</Name>
 <ID>{14C7E7CF-5750-46de-9924-D219DED7CB2A}</ID>
 <Connections>
 <Interface>{D892611A-F14B-4f27-9646-07A6E7EC013A}</Interface>
 <Interface>{ABFC5317-BF1D-4644-A19C-1A6766AA8349}</Interface>
 </Connections>
 </Component>
 <Component>
 <Name>ReMMoC_IIOP</Name>
 <ID>{842AC4E9-CC84-4bb6-9673-EDAC639F106D}</ID>
 <Connections>
 <Interface>{D892611A-F14B-4f27-9646-07A6E7EC013A}</Interface>
 <Interface>{ABFC5317-BF1D-4644-A19C-1A6766AA8349}</Interface>
 <Interface>{D293611A-FD4C-4f27-9646-07A6E7EC013A}</Interface>
 </Connections>
 </Component>
 </Components>
</ReMMoC_Configuration>

 218

11Appendix C WSDL of Application Services

1. Stock Quote Service

<?xml version="1.0"?>
<definitions name="StockQuote"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="long"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="TradePrice"/>
 </message>

 <portType name="StockQuotePort">
 <operation name="getQuote">
 <input message="GetLastTradePriceInput"/>
 <output message="GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="StockQuoteBinding"></port>
 </service>

</definitions>

 219

2. Chat Service

<?xml version="1.0"?>
<definitions name="Chat" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <element name="InitRequest">
 <complexType>
 <all>
 <element name="ID" type="string"/>
 <element name="Nickname" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="InitResponse">
 <complexType>
 <all>
 <element name="ID" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="ChatData">
 <complexType>
 <all>
 <element name="Message" type="string"/>
 </all>
 </complexType>
 </element>
 </types>

 <message name="InitRequestInput">
 <part name="body" element="InitRequest"/>
 </message>
 <message name="InitResponseOutput">
 <part name="body" element="InitResponse"/>
 </message>
 <message name="ChatMessage">
 <part name="body" element="ChatData"/>
 </message>

 <portType name="ChatPort">
 <operation name="Init">
 <input message="InitRequestInput"/>
 <output message=" InitResponseOutput"/>
 </operation>
 <operation name="ReceiveMessage">
 <input message=" ChatMessage "/>
 </operation>
 <operation name="SendMessage">
 <output message=" ChatMessage "/>
 </operation>
 </portType>
</definitions>

 220

3. Music Player Service

<?xml version="1.0"?>
<definitions name="MusicService" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <element name="GetNumberOfSongsResponse">
 <complexType>
 <all><element name="Number" type="long"/></all>
 </complexType>
 </element>
 <element name="GetSongRequest">
 <complexType>
 <all><element name="index" type="long"/></all>
 </complexType>
 </element>
 <element name="SongResponse">
 <complexType>
 <all>
 <element name="Title" type="string"/>
 <element name="Artist" type="string"/>
 </all>
 </complexType>
 </element>
 </types>
 <message name="GetNumberOfSongsInput">
 <part name="body" element="GetSongRequest"/>
 </message>
 <message name="GetNumberOfSongsOutput">
 <part name="body" element="GetNumberOfSongsResponse"/>
 </message>
 <message name="GetSongInput">
 <part name="body" element="GetSongRequest"/>
 </message>
 <message name="GetSongDetailsOutput">
 <part name="body" element="SongResponse"/>
 </message>
 <portType name="MusicServicePort">
 <operation name="getNumberofSongs">
 <input message="GetNumberOfSongsInput"/>
 <output message="GetNumberOfSongsOutput"/>
 </operation>
 <operation name="getSongDetails">
 <input message="GetSongInput"/>
 <output message="GetSongDetailsOutput"/>
 </operation>
 <operation name="PlaySong">
 <input message="GetSongInput"/>
 </operation>
 <operation name="StopSong">
 <input message="GetSongInput"/>
 </operation>
 </portType>
</definitions>

