
Exploiting Reflection in
Mobile Computing Middleware

Licia Capraa Gordon S. Blairb Cecilia Mascoloa

Wolfgang Emmericha Paul Graceb

aDepartment of Computer Science, University College London, London, UK
bDistributed Multimedia Research Group, Computing Department, Lancaster University, Lancaster, UK

The increasing popularity of portable devices and recent advances in wireless networking
technologies facilitate the engineering of new classes of applications, which present chal-
lenging problems to designers. Mobile devices face temporary and unannounced loss of
network connectivity when they are moved, they are likely to have scarce resources, and
they are required to react to frequent changes in the environment. To accommodate these
new requirements imposed by mobility, middleware platforms for mobile computing must be
capable of both deployment-time configurability and run-time reconfigurability. We illus-
trate how reflective techniques can be exploited by middleware designers to address these
requirements. We discuss two complementary approaches: CARISMA, where reflection is
used to support dynamic adaptation of middleware behaviour to changes in context, and
ReMMoC, which uses reflection to accommodate heterogeneity requirements imposed by
both applications and underlying device platforms.

I. Introduction

The increasing popularity of portable computing de-
vices, such as mobile phones, personal digital assis-
tants, digital cameras and the like, and recent advances
in wireless networking technologies are facilitating
the construction of new classes of distributed and mo-
bile applications. These applications pose a number
of new challenges for middleware technology. In par-
ticular, the middleware that supports the construction
of such applications has to belight-weight, in order
to run on resource-constrained devices; middleware
has also tosupport context-awareness, as mobile ap-
plications need to adapt to variations in the context of
execution, such as fluctuating network bandwidth, de-
creasing battery power, changes in location or device
capabilities, and so on. Finally, the problem ofinter-
operating with heterogeneous middlewaretechnolo-
gies that exist in different locations needs to be over-
come; for example, middleware might provide differ-
ent asynchronous communication paradigms that may
be used to cope with the frequent and unannounced
disconnections that are typical of the mobile environ-
ment.

Unfortunately, the current generation of main-
stream middleware is, to a large extent, heavyweight,
monolithic and inflexible and, thus, fails to properly
address these requirements. The main reason is that
traditional middleware systems have been built adher-
ing to the principle of transparency: implementation

details are hidden from both users and application de-
signers and are encapsulated inside the middleware it-
self, so that the distributed system appears to applica-
tion developers as a single integrated computing facil-
ity. Although having proved successful for building
traditional distributed systems, this approach suffers
from severe limitations when applied to the mobile
setting where it is neither always possible, nor desir-
able, to hide all the implementation details from the
user. Such black box systems are inevitably heavy-
weight, have built-in mechanisms and policies that are
not suitable for mobile computing and cater for the
common case rather than the high levels of hetero-
geneity intrinsic in mobile environments. In addition,
applications may have valuable information that could
enable the middleware to execute more efficiently.

In order to cope with these limitations, many re-
search efforts have focused on designing new middle-
ware systems capable of supporting the requirements
imposed by mobility (see section II). As a result of
these efforts, a pool of mobile middleware systems
has been produced. However, none of the solutions
developed to date supports the necessary level of mid-
dleware configurability and reconfigurability that is
required to accommodate mobile computing. In our
opinion, a more systematic, principled and dynamic
solution is needed.

We hypothesise thatreflection [41] offers signifi-
cant advantages for building mobile computing mid-
dleware. Reflection is a principled technique support-

34 Mobile Computing and Communications Review, Volume 6, Number 4



ing both introspection and adaptation (see section III).
The technique hence supports more configurable and
reconfigurable middleware (e.g., [5]). This means
that a middleware core with only a minimal set of
functionalities can be installed on a mobile device.
Context information can be maintained by the mid-
dleware and through reflective mechanisms applica-
tions can acquire information about their execution
context and tune the middleware behaviour accord-
ingly. No specific communication paradigm is related
to the principle of reflection, so this issue is left un-
specified and depends on the particular middleware
system built.

The remainder of the paper is structured as follows:
Section II describes the state of the art of mobile com-
puting middleware and points out gaps in current ap-
proaches. Section III defines the concept of reflec-
tion, and how it applies to mobile computing middle-
ware. In Section IV, two projects that exploit reflec-
tion to build mobile computing middleware are pre-
sented: CARISMA (Context-Aware Reflective mId-
dleware System for Mobile Applications), that aims at
enhancing the development of context-aware applica-
tions, and ReMMoC (Reflective Middleware for Mo-
bile Computing), that aims at overcoming the prob-
lem of heterogeneity in mobile middleware technol-
ogy. We then briefly discuss related work before con-
cluding the paper and pointing out some future open
issues.

II. Mobile Computing Middleware

In this section we look in turn at state of the art mid-
dleware, including traditional middleware types used
in the mobile domain and new classes of middleware
built specifically for mobility. However, an exhaustive
review of all existing mobile computing middleware is
beyond the scope of this paper and we refer the inter-
ested reader to [27].

II.A. Existing Middleware Standards
and Platforms

There have been attempts to adapt traditional object-
oriented middleware, including CORBA, DCOM and
Java RMI, to mobile settings, mainly to allow mo-
bile devices to interoperate with services within ex-
isting fixed networks. For example, IIOP (the Internet
Inter-ORB Protocol) has been successfully ported to
the mobile setting, presenting a layered architecture
that ensures an IIOP connection remains established
transparently [19]. Similarly, RAPP [39] and DOL-
MEN [25] offer alternative methods for supporting

CORBA object invocations in the wireless environ-
ment. Mobile DCE [37] is another early platform that
successfully demonstrated that remote procedure calls
could be utilised by mobile applications. However,
the synchronous communication paradigm assumes a
permanent connectivity that cannot be guaranteed in
most mobile computing settings. Adaptations of tra-
ditional object-oriented middleware to mobile scenar-
ios are therefore usually targeted to nomadic settings
where cell hand-overs allow mobile devices to roam
while being connected.

Although extensions to established platforms have
illustrated that they can be utilised in wireless net-
works, they do not support the most natural interac-
tion paradigm for this setting. The characteristics of
wireless communication media (e.g., low and variable
bandwidth, frequent disconnections, etc.) favour a de-
coupled and opportunistic communication paradigm:
decoupled in the sense that computation proceeds
even in the presence of disconnections, and oppor-
tunistic as it exploits connectivity whenever it be-
comes available. Therefore, middleware that supports
asynchronous communication has been proposed as
being more suitable for developing mobile applica-
tions. These generally take the form of publish-
subscribe platforms and tuple spaces. Notably, how-
ever, Rover [20] was an initial platform in this area
that implemented an asynchronous remote procedure
call paradigm.

Within the publish-subscribe paradigm, interaction
takes the form of event notification; namely, con-
sumers subscribe to events they are interested in and
are notified when they are published. Logically, the
two parties do not have to be connected simultane-
ously to interact, therefore, suiting the mobile envi-
ronment. Examples of these are Elvin [38], SIENA [8]
and iBus [42]. However, these platforms were de-
signed specifically for fixed networks and do not take
into account the dynamic connection of mobile hosts.
This has enforced the emergence of some preliminary
solutions. For example, Elvin has been extended to in-
corporate proxy servers to support the persistence of
events, so that clients who disconnect repeatedly do
not lose events. Nonetheless, it requires that clients
connect to the same proxy, which cannot be guar-
anteed in mobile networks. Another alternative is
JEDI [13], which includes a dynamic tree of dispatch-
ers for ensuring publish-subscribe information is re-
tained as members connect and reconnect. Both tech-
niques rely on centralised entities holding event infor-
mation, which is not suitable for mobile applications
based in ad-hoc wireless networks.

Mobile Computing and Communications Review, Volume 6, Number 4 35



Although not initially designed for this purpose
(their origins go back to Linda [18], a coordination
language for concurrent programming), tuple space
systems have been shown to provide many useful fa-
cilities for communication in wireless settings. Tuple
spaces act as a repository of data structures called tu-
ples that processes can concurrently access. Commu-
nication is de-coupled in both time and space: senders
and receivers do not need to be available at the same
time, because tuples have their own life span, inde-
pendent of the process that generated them, and mu-
tual knowledge of their location is not necessary for
data exchange, as the tuple space looks like a globally
shared data space, regardless of machine or platform
boundaries. These forms of decoupling assume enor-
mous importance in a mobile setting, where the par-
ties involved in communication change dynamically
due to their migration or connectivity patterns. Exam-
ples include, Lime [31], TSpaces [45] and L2imbo
[14]. With the exception of L2imbo, these systems do
not address the issue of dynamic adaptation of mid-
dleware to changing context.

The range of middleware types described illus-
trates the level of middleware heterogeneity that oc-
curs within the mobile domain (i.e., the platforms that
mobile services are advertised and implemented by,
change as the device roams). As previously stated,
reflection does not assume or require any particular
communication paradigm. A reflective middleware
can therefore provide any communication style (e.g.,
tuple space), or better, can provide different communi-
cation paradigms (e.g., RPCs, events, messages, etc.)
among which applications can dynamically choose
the one that best suits their current needs.

II.B. New Approaches

We hypothesise that the range of asynchronous mid-
dleware paradigms such as publish/subscribe and
message oriented systems will play a key role in the
success of mobile computing middleware. However,
communication is not the only aspect that middleware
should tackle: other important aspects such as data
sharing and context awareness need to be addressed.

Middleware must support mobile applications to be
aware of the context in which they are being used in
order to enable applications to adapt to heterogene-
ity of hosts and networks, as well as variations in the
user’s environment. User context includes, but is not
limited to: location, with varying accuracy depending
on the positioning system used; relative location, such
as proximity to printers and databases; device charac-
teristics, such as processing power and input devices;

physical environment, such as noise level and band-
width; user activity, such as driving a car or sitting in
a lecture theatre.

Context-aware computing is not a new computing
paradigm; it was first proposed a decade ago [36] and
many researchers have studied and developed systems
that collect context information, and adapt to changes.
In particular, location has attracted a lot of attention
and many applications exploit location information to
offer travellers directions, such as the Shopping Assis-
tant [2] and CyberGuide [26]; to find out neighbouring
devices and the services they provide, such as Tele-
porting [3]; to send messages to anyone in a specific
area, such as a Conference Assistant [15]; and so on.
Most of these systems interact directly with the un-
derlying network OS to extract location information,
process it, and present it in a convenient format to the
user. One of their major limitations concerns the fact
that they do not cope with heterogeneity of coordinate
information, and therefore different versions have to
be released that are able to interact with specific sen-
sor technologies, such as the Global Positioning Sys-
tem (GPS) outdoors, and infrared and radio frequency
indoors.

To enhance the development of location-based ser-
vices and applications, and to reduce their develop-
ment cycle, middleware systems have been built that
integrate different positioning technologies by provid-
ing a common interface to the different positioning
systems, thus solving heterogeneity issues. Exam-
ples include Oracle iASWE [33], Nexus [17], Alter-
nis [1], SignalSoft [40], and CellPoint [10]. Interest-
ingly enough, few contexts other than location have
been actually used to date.

An exception can be found in [44], where an archi-
tecture is proposed that reports changes in the environ-
ment to interested applications. Changes are modelled
as asynchronous events that are dispatched to envi-
ronment aware applications through an event delivery
mechanism that separates event detection from deliv-
ery, so that event producers and consumers are effec-
tively decoupled. Events are hierarchically organised,
and can be extended in order to deal with a variety
of changes happening in the environment (e.g., differ-
ent location, memory availability, network connectiv-
ity, etc.). However, changes in the environment affects
only the application behaviour, and are not used to dy-
namically adapt middleware behaviour.

Another major issue addressed by mobile comput-
ing middleware is the support for disconnected oper-
ations and data-sharing. Systems like Odyssey [35]
and Xmiddle [28] try to maximise availability of data,

36 Mobile Computing and Communications Review, Volume 6, Number 4



giving users access to replicas; they differ in the way
they ensure that replicas move towards eventual con-
sistency, that is, in the mechanisms they provide to de-
tect and resolve conflicts that naturally arise in mobile
systems.

We assert that a reflective middleware may enhance
the development of context-aware services and appli-
cations. Through reflection, application-specific in-
formation can be exploited, for example, to dynam-
ically instruct middleware on which positioning sys-
tem to use (if more than one is available). More gen-
erally, a reflective middleware would provide appli-
cations with context information that they can use to
optimise (i.e., dynamically reconfigure) middleware,
as well as their own behaviour, counter balancing, for
example, the scarce resource availability.

III. Reflection

Reflection is a technique that first emerged in the pro-
gramming language community to support the design
of more open and extensible languages (e.g., see [21]).
The key to the approach is to offer a meta-interface
supporting the inspection and adaptation of the un-
derlying virtual machine (the meta-level). The ser-
vice offered by this interface is then referred to as
the meta-object protocol. Access to this meta-level
is provided through a process of reification. Reifi-
cation effectively makes some aspect of the internal
representation explicit and hence accessible from the
application (the base-level). The opposite process is
then absorption where some aspect of meta-system is
altered or overridden.

The approach is nicely summarised by the follow-
ing quote from Brian Cantwell Smith, the originator
of the early work on reflection [41]:

”In as much as a computational process can
be constructed to reason about an external
world in virtue of comprising an ingredient
process (interpreter) formally manipulating
representations of that world, so too a com-
putational process could be made to reason
about itself in virtue of comprising an ingre-
dient process (interpreter) formally manipu-
lating representations of its own operations
and structures”.

Reflection is now widely adopted in language de-
sign, as witnessed for example by the Java Core Re-
flection API and also the meta-object protocol defined
in CLOS [21]. Reflection is also increasingly being
applied to a variety of other areas including operating

system design [46], concurrent languages [43], and in-
creasingly distributed systems, as in [29] or [32]. Cru-
cially, there is now a growing community working on
the area of reflective middleware [4]. The main moti-
vation for this research is to provide a principled (as
opposed to ad-hoc) means of achieving openness (of
the underlying middleware platform). For example,
reflection can be used to inspect the internal behaviour
of a platform (introspection). By exposing the un-
derlying implementation, it becomes straightforward
to insert additional behaviour to monitor the imple-
mentation, e.g., performance monitors, quality of ser-
vice monitors, or accounting systems. Reflection can
also be used to alter the internal behaviour of the mid-
dleware (adaptation). Examples include replacing or
changing the implementation of the underlying trans-
port protocol to operate more optimally over a wire-
less link, introducing an additional level of distribu-
tion transparency in a running computation (such as
migration transparency), or inserting a filter compo-
nent to reduce the bandwidth requirements of a com-
munication stream.

In middleware platforms, two (complementary)
styles of reflection have been used, namely structural
and behavioural reflection.

• Structural reflection is concerned with the under-
lying structure of objects or components, e.g., in
terms of interfaces supported. This is similar,
for example, to the introspection features found
in Java 1.2 and associated technologies, such as
JavaBeans [30]. More advanced features may
also be offered, such as the ability to adapt the
structure of an object (e.g., to add new behaviour
at run-time). Similarly, some systems provide ar-
chitectural reflection, whereby the software ar-
chitecture of the system can be reified and al-
tered [5, 9], e.g. in terms of components and con-
nectors. This can be applied to the very structure
of the middleware platform itself, allowing the
customisation of the architecture for the current
environmental conditions. Finally, meta-data or
context can be viewed as a form of structural re-
flection, providing additional (meta)information
about the underlying system, e.g. physical loca-
tion, current battery levels or performance of the
network.

• Behavioural reflection is concerned with activ-
ity in the underlying system, e.g., in terms of the
arrival and dispatching of invocations. Typical
mechanisms provided include the use of inter-
ceptors that support the reification of the process

Mobile Computing and Communications Review, Volume 6, Number 4 37



of invocation and the subsequent insertion of pre-
or post- actions. Other systems provide similar
capabilities through dynamic proxies [30]. Fi-
nally, some research has been carried out on pro-
viding access to underlying resources and associ-
ated resource management, e.g. through the reifi-
cation of a set of logical tasks and enabling the
customisation of resource allocation and man-
agement policies [16].

There has also been research on overall architectures
that encompass the various forms of reflection [5].

IV. Projects

IV.A. CARISMA

In order to allow applications that execute on portable
devices to adapt to frequent and unannounced changes
in the environment, middleware systems must support
context awareness. By context, we mean everything
that can influence the behaviour of an application,
from resources within the device, such as memory,
battery power, screen size and processing power, to
resources outside the physical device, such as band-
width, network connection, location and other hosts
within reach.

CARISMA, a project carried out at University Col-
lege London, is a middleware that uses both structural
and behavioural reflection to enable context-aware in-
teractions between mobile applications. The middle-
ware is in charge of maintaining a valid representation
of the execution context, by directly interacting with
the underlying network operating system. Depending
on the current context, applications may require the
middleware to behave in specific ways. For exam-
ple, an image processing application may ask the mid-
dleware to display pictures in black and white when
battery power is low, using full-size, full-colour pic-
tures when battery power permits. In CARISMA, the
middleware can be seen by applications as a dynam-
ically customisable service provider. This customisa-
tion takes place by means ofapplication profiles.

Resource
Resource

Resource
Resource
Resource

DisplayPicture
Black&White

Battery < x

FullColor
Battery >=x

Example

. . .

Policy
Service

Policy

Application Profile

Context

Context}

}
. . .

Figure 1: Structure of an application profile.

As shown in Figure 1, each application profile de-
fines associations between the services that the mid-
dleware delivers, the policies that can be applied to de-
liver the services, and the context configurations that
must hold in order for a policy to be applied. In the
example above, an association is defined between the
service ‘DisplayPicture’, the ‘Black&White’ policy,
and a context where the resource ‘Battery Power’ is
low, and another one between the same service ‘Dis-
playPicture’, the ‘FullColour’ policy, and a context
where ‘Battery Power’ is high. Profiles are passed
down to the middleware; each time a service is in-
voked, the middleware consults the profile of the ap-
plication that requests it to determine which policy can
be applied in the current context. Our model assumes
that at each time the behaviour of the middleware with
respect to a particular service is determined by one
and only one policy, that is, a service cannot be de-
livered using a combination of different policies. If
different policies need to be combined, a new name
must be assigned to the combined policy, and this
name must be used in the profile. For example, the
display of an image can be done using a ‘B&W-Low’
policy, that is a combination of ‘Black&White’ and
‘LowResolution’.

As both the needs of the user and the context change
quite frequently, we cannot expect an application to
fix its own profile once and for all at the time of in-
stallation and never change it after. We therefore need
to provide the middleware with an initial profile, and
then grant the application dynamic access to it. Here
is where (structural) reflection comes into play. The
middleware configuration with respect to current con-
text is reified by means of application profiles, and al-
tered through a reflective API that allows applications
to read their own profile (introspection of middleware
behaviour), and to dynamically modify the meta-data
that is encoded in the profile (adaptation of middle-
ware behaviour). If we consider once again the dis-
play picture example, an application may restrict the
use of the ‘FullColour’ policy from a context where
battery power is high to a context where both battery
power and memory are high, due to a considerable
drop in memory availability.

CARISMA uses also behavioural reflective tech-
niques to dynamically customise resource allocation
among mobile applications that are competing for lim-
ited resources, such as battery, memory and band-
width [7]. A conflict exists when multiple policies,
common to multiple application instances, can be ap-
plied at the same time to deliver a requested service,
so that the middleware does not know which one to

38 Mobile Computing and Communications Review, Volume 6, Number 4



apply (recall that we made the assumption that a ser-
vice can be delivered using only one policy at a time).
Different policies deliver different quality of service,
and consume different amounts of (usually scarce) re-
sources.

The resolution is based on an auction protocol
where middleware plays the role of the auctioneer, ap-
plications are the bidders and policies are the goods
they are competing for [7]. The main rule of the game
is very simple: each bidder submits a single sealed
bid, and the ‘winner’ is the bidder who bids highest.
Bids are computed based on non-functional concerns,
such as availability, security, performance. Reflection
is used to allow applications (i.e., bidders) to dynam-
ically change the set of non-functional requirements
they care about; as a result, the same conflict may be
resolved in different ways in different context, thus
resulting in different middleware behaviours and dif-
ferent resources allocation.

We have implemented a prototype of our reflective
middleware in Java, and developed a conferencing ap-
plication and an instant messaging application on top
of it. Application profiles have been encoded using
the eXtensible Markup Language (XML). We chose
to use XML as this meta-language enhances context-
aware and user-driven interactions between middle-
ware and applications, supporting a representation of
information that is both easily manipulatable by ma-
chines and readily understandable by humans.

Performance evaluation of CARISMA is ongo-
ing work. Preliminary results obtained running
CARISMA on top of Compaq iPAQ PDAs running
Linux, and connected using WaveLAN, have shown
that it takes less than 200ms to start a local service,
and less than 400ms for a remote service. We have
also measured the overhead introduced by the conflict
resolution mechanism; in case a conflict exists, the
amount of time required to start a service increases by
10% for a local service, and of 20% for a remote one.
In both cases, the there is no human perception of the
delay as most of the time is taken by the loading and
provisioning of the service. Further experiments will
be run on multiple services, and compared with a sys-
tem that does not use reflection. For a more complete
discussion of CARISMA, please refer to [6, 7].

IV.B. ReMMoC

The ReMMoC project, being carried out at Lancaster
University in collaboration with Lucent Technologies,
is examining the use of reflection and component
technology to overcome the problems of heteroge-
neous middleware technology in the mobile environ-

ment. Mobile applications and services are imple-
mented upon a range of middleware platforms (e.g.,
RPC, message-oriented and event-based paradigms)
and are advertised using different service discovery
protocols. Therefore, developing mobile applications
upon fixed middleware types is unsuitable; rather the
middleware on the mobile device should be able to dy-
namically change its structure and behaviour so that it
can discover and interoperate with all services avail-
able in the current environment.
 

SLP Services 

PDA PDA 

Event Broker SOAP Server 

Print  
Service

Sport News 
Channel 

Tourist 
Guide 

Service

Lancaster University (802.11 b Network) Lancaster City Centre (802.11 b Network)

UPnP Services 

PDA 
PDA PDA 

SLP Services 

SOAP Server 

Sport News 
Service 

CORBA Server 

Print  
Service Tourist 

Guide 
Service 

Figure 2: Heterogeneous mobile services.

To illustrate this, a typical mobile scenario is pre-
sented in Figure 2. Two possible locations in the ses-
sion of a mobile user and the mobile services that can
be interacted with via the given mobile device are il-
lustrated. It can be seen that the same three mobile ap-
plication services are available to the user in the differ-
ent locations, but the platforms presenting them differ.
For example, the sport news service is implemented as
a publish-subscribe channel on the university campus
network and as a SOAP service in the town centre. If
fixed middleware were to be used, then two separate
applications and middleware implementations would
be needed on the device. Similarly, the print service
and tourist guide service are implemented across dif-
ferent middleware types. However, this is not the
only level of heterogeneity in the scenario; the ser-
vices themselves must first be discovered by the mo-
bile device before interaction can occur. Neverthe-
less, in this setting the service discovery technologies
themselves are different, i.e., the services available to
campus users are discoverable using the Service Lo-
cation Protocol (SLP), while the services across the
city centre can be found using both the Universal Plug
and Play (UPnP) protocol and SLP. If the middleware
can only perform one type of service discovery then it
may miss some available resources and in the worst-
case scenario find none of them.

ReMMoC is a middleware platform built upon the
concepts of components and reflection as proposed in
the OpenORB Project [5]. The platform is constructed
out of component frameworks, which consist of a con-

Mobile Computing and Communications Review, Volume 6, Number 4 39



figuration of components whose structure can be al-
tered via a meta-object protocol. This meta-object
protocol provides the ability to i) inspect and invoke
the interfaces available within the framework, ii) view
and alter the component architecture and, finally, iii)
insert interceptors to dynamically add new behaviour.

The current platform consists of two key compo-
nent frameworks for binding and service discovery,
whose behaviour can be dynamically altered using the
previously described reflective techniques. The bind-
ing framework can be re-configured between different
types of interaction protocols (e.g., CORBA, SOAP,
publish-subscribe, etc.). Similarly, the service dis-
covery framework can change between one or more
of the different service discovery technologies (e.g.,
SLP, Jini, UPnP, etc). Therefore, possible configura-
tions could be SLP at one time, but changed to SLP
and UPnP at another; this will allow services adver-
tised by both technologies to be found. The infor-
mation obtained from performing service discovery
drives the reconfiguration of the binding framework to
the appropriate interaction protocol. We are also cur-
rently exploring the use of XML to allow the applica-
tion’s requirements to be described independently of
the underlying middleware technologies. ReMMoC
will then base its adaptation upon meeting these re-
quirements.

We have implemented the ReMMoC platform upon
our own OpenCOM Light component model. Open-
COM Light has been developed for use on devices
running the Windows CE Operating System, with the
aim of creating a minimum component platform for
devices of limited resources. The size of this com-
ponent platform is currently 41 Kbytes and the com-
ponents created upon it are on average 8 Kbytes in
size. The platform is closely based on Microsoft
COM but enhanced with richer reflective facilities.
More information about the OpenCOM model can be
found in [12]. Furthermore, we have implemented
middleware functionality for SOAP, IIOP and pub-
lish/subscribe to support dynamic binding and we are
working on SLP and UPnP implementations of ser-
vice discovery behaviour.

IV.C. Relationship between the two plat-
forms

The two platforms described previously are closely re-
lated, in that they use reflection to support two key
requirements of mobile middleware. Firstly, ReM-
MoC presents the ability to develop applications inde-
pendently from specific middleware technologies that
may be encountered over time, by allowing the service

discovery and communication implementation to be
adapted dynamically. However, the control of adapta-
tion needs to be based upon context information from
both the environment and the device, in order for the
middleware to offer the best level of service. The
management of the underlying platform changes over
time can be controlled by the properties offered by
CARISMA. Therefore, a reflective framework, where
policy and mechanism co-exist and can both be altered
dynamically, provides support to mobile application
developers to solve a host of problems.

V. Related Work

The principle of reflection has already been inves-
tigated by the middleware community during the
past years, mainly to achieve flexibility and dy-
namic reconfigurability of the Object Request Bro-
ker (ORB) of CORBA. Examples include, but are not
limited to, OpenCorba [24], dynamicTAO [23] and
OpenORB [5]. However, the platforms developed
to experiment with reflection were based on standard
middleware implementations (except Open ORB as
shown in section IV.B), and therefore targeted to a
wired distributed environment.

Other approaches that specifically target the mo-
bile setting include: Universally Interoperable Core
(UIC [34]), a minimal reflective middleware for mo-
bile devices where a pluggable set of components al-
lows developers to specialise the middleware to suit
different devices and environments, thus solving het-
erogeneity issues. The configuration can also be au-
tomatically updated both at compile-time and run-
time. Personalities can be defined to have a client-
side, server-side or combined behaviours. Personali-
ties can also define the server type for an interaction
(i.e., CORBA or Java RMI): single personalities allow
the interaction with only one type, while multi person-
alities allow interaction with more than one type. In
the case of multi personalities the middleware dynam-
ically chooses the right interaction paradigm. The size
of the core goes from 16KB for a client-side CORBA
personality running on a Palm OS device to 37KB
for a client/server CORBA personality running on a
Windows CE device. UIC offers similar capabilities
to the ReMMoC platform to overcome middleware
heterogeneity. However, unlike ReMMoC, it concen-
trates on synchronous communication paradigms, less
suited to mobile settings, and does not directly address
the key property of heterogeneous service discovery.

2k [22] is an example of reflective, component-
based meta-operating system based on the premise

40 Mobile Computing and Communications Review, Volume 6, Number 4



“What You Need Is What You Get”, that is, the system
dynamically reconfigures itself to provide the func-
tionality required by each particular entity. An en-
tity may vary from users, to software components to
devices. At any time, only a minimal set of com-
ponents required for executing the user applications
in the most efficient way is loaded, without carrying
around non-utilised modules.

On top of this framework, Gaia [11] has been devel-
oped adding support for dynamic adaptation to con-
text conditions. Gaia converts physical spaces and
the ubiquitous computing devices they contain into
active spaces, that is, programmable computing sys-
tems with well-defined behaviour and explicitly de-
fined functionality. The goal of an active space is to
provide a generic model that hides the complexity as-
sociated to its internal status and exports a standard
programming interface independent of the underlying
physical space. Gaia then adapts application require-
ments to the properties of its associated active space,
without having the application to explicitly deal with
the particular characteristics of every possible physi-
cal space where they can be executed.

VI. Conclusion and Future Work

We have argued why the principle of transparency that
has driven the design of traditional middleware sys-
tems may not be optimal for mobile settings. Im-
plementation details have to be made available to the
above running applications to allow dynamic recon-
figuration of the underlying system, based on different
context conditions and varying application needs.

We propose reflection as a principle to accommo-
date the variety of requirements imposed by mobil-
ity. In order to provide the best service to the applica-
tion, the middleware must be aware of its context and
current behaviour and then alter according to environ-
mental changes. The two properties of openness and
adaptation provided by reflective middleware is par-
ticularly well suited to this. We have shown examples
that support this hypothesis. In particular, we have il-
lustrated two projects: CARISMA, where reflection is
used to allow applications to dynamically customise
middleware behaviour, and ReMMoC, where reflec-
tion is used to deal with heterogeneous middleware
technology in mobile environments. We have shown
that these are two complementary techniques that are
closely related and that together they can support the
development of mobile applications.

Some major drawbacks of the reflective approach
are performance, integrity and security issues. When

developing a reflective mobile middleware, the fol-
lowing questions must therefore be addressed care-
fully: how much are we willing to trade-off between
flexibility and performance? What is the scope of
changes when reconfiguring the system? And, fi-
nally, what happens if malicious programs enter into
our system and use the reflective mechanism to mis-
configure the middleware?

Despite being a powerful means to build mobile
computing middleware, reflection alone is not enough.
The devices are not able to know a-priori which com-
ponents they are going to need in which situation, and
which other devices they are going to encounter. De-
vices cannot load all the possible behaviours, due to
memory constraints; moreover, new behaviours may
be delivered from time to time to cope with unforeseen
context configurations and new application needs. We
propose a combination of reflection and different mo-
bile code paradigms (e.g., code on demand, remote
evaluation, etc.) to enhance the adaptability of mobile
computing applications and introduce the required
level of dynamism and flexibility into the middleware.

References

[1] Alternis S.A. Solutions for Location Data Medi-
ation. http://www.alternis.fr/.

[2] A. Asthana and M. Cravattsand P.
Krzyzanowski. An indoor wireless system
for personalized shopping assistence. In
Proceedings of IEEE Workshop on Mobile
Computing Systems and Applications, pages
69–74, Santa Cruz, California, December 1994.
IEEE Computer Society Press.

[3] F. Bennett, T. Richardson, and A. Harter. Tele-
porting - making applications mobile. InProc. of
the IEEE Workshop on Mobile Computing Sys-
tems and Applications, pages 82–84, Santa Cruz,
California, December 1994. IEEE Computer So-
ciety Press.

[4] G. S. Blair, R. Campbell, F. Costa, and
F. Kon. Proceedings of First International
Workshop on Reflective Middleware (RM2000).
http://www.comp.lancs.ac.uk/computing/RM2000/,
April 2000.

[5] G. S. Blair, G. Coulson, A. Andersen,
L. Blair, M. Clarke, F. Costa, H. Duran-Limon,
T.Fitzpatrick, L. Johnston, R. Moreira, N. Parla-
vantzas, and K. Saikoski. The Design and Im-
plementation of OpenORB v2.IEEE DS Online,

Mobile Computing and Communications Review, Volume 6, Number 4 41



Special Issue on Reflective Middleware, 2(6),
2001.

[6] L. Capra, W. Emmerich, and C. Mascolo.
Reflective Middleware Solutions for Context-
Aware Applications. InProc. of REFLEC-
TION 2001. The Third International Conference
on Metalevel Architectures and Separation of
Crosscutting Concerns, volume 2192 ofLecture
Notes in Computer Science, pages 126–133, Ky-
oto, Japan, September 2001. Springer Verlag.

[7] L. Capra, W. Emmerich, and C. Mascolo. A
Micro-Economic Approach to Conflict Reso-
lution in Mobile Computing. InProceedings
of the 10th International Symposium on the
Foundations of Software Engineering (FSE-10),
Charleston, South Carolina, USA, November
2002. ACM Press. To appear.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event no-
tification service. ACM Transactions on Com-
puter Systems, 19(3):332–383, August 2001.

[9] W. Cazzola, W. Savigni, A. Sosio, and F. Tisato.
Rule-based Strategic Reflection: Observing and
Modifying Behaviour at the Architectural Level.
In 14th IEEE International Conference on Au-
tomated Software Engineering (ASE99), pages
263–266, Cocoa Beach, Florida, USA, October
1999.

[10] CellPoint, Inc. The CellPoint System.
http://www.cellpt.com/thetechnology2.htm,
2000.

[11] R. Cerqueira, C. K. Hess, M. Roman, and R. H.
Campbell. Gaia: A Development Infrastructure
for Active Spaces. InWorkshop on Application
Models and Programming Tools for Ubiquitous
Computing (held in conjunction with the UBI-
COMP 2001), September 2001.

[12] M. Clarke, G. S. Blair, G. Coulson, and N. Parla-
vantzas. An Efficient Component Model for
the Construction of Adaptive Middleware. In
IFIP / ACM International Conference on Dis-
tributed Systems Platforms (Middleware’2001),
pages 160–178, Heidelberg, Germany, Novem-
ber 2001.

[13] G. Cugola, E. Di Nitto, and A. Fuggetta. Ex-
ploiting an event-based infrastructure to develop

complex distributed systems. In19th Inter-
national Conference on Software Engineering
(ICSE98), pages 261–270, 1998.

[14] N. Davies, A. Friday, S. Wade, and G. S.Blair.
L2imbo: A Distributed Systems Platform for
Mobile Computing.ACM Mobile Networks and
Applications (MONET), Special Issue on Pro-
tocols and Software Paradigms of Mobile Net-
works, 3(2):143–156, 1998.

[15] A. K. Dey, M. Futakawa, D. Salber, and G.D.
Abowd. The Conference Assistant: Combining
Context-Awareness with Wearable Computing.
In Proc. of the 3rd International Symposium on
Wearable Computers (ISWC ’99), pages 21–28,
San Franfisco, California, October 1999. IEEE
Computer Society Press.

[16] H. Duran-Limon and G. S. Blair. A Resource
Management Framework for Adaptive Middle-
ware. In 3rd IEEE International Symposium
on Object-oriented Real-time Distributed Com-
puting (ISORC’2K), Newport Beach, California,
USA, March 2000.

[17] D. Fritsch, D. Klinec, and S. Volz. NEXUS
Positioning and Data Management Concepts for
Location Aware Applications. InProceedings of
the 2nd International Symposium on Telegeopro-
cessing, pages 171–184, Nice-Sophia-Antipolis,
France, 2000.

[18] D. Gelernter. Generative Communication in
Linda.ACM Transactions on Programming Lan-
guages and Systems, 7(1):80–112, 1985.

[19] M. Haahr, R. Cunningham, and V. Cahill. Sup-
porting CORBA Applications in a Mobile Envi-
ronment (ALICE). In5th Int. Conf. on Mobile
Computing and Networking (MobiCom), pages
36–47. ACM Press, August 1999.

[20] A. Joseph, A. deLespinasse, J. Tauber, D. Gif-
ford, and M. Kaashoek. Rover: A Toolkit for
Mobile Information Access. In15th Symposium
on Operating Systems Principles (SOSP ’95),
pages 156–171, Colorado, U.S, December 1995.

[21] G. Kiczales, J. des Rivires, and D.G. Bobrow.
The Art of the Metaobject Protocol. MIT Press,
1991.

[22] F. Kon, R.H. Campbell, M.D. Mickunas,
K. Nahrstedt, and F.J. Ballesteros. 2k: A Dis-
tributed Operating System for Dynamic Hetero-

42 Mobile Computing and Communications Review, Volume 6, Number 4



geneous Environments. In9th IEEE Interna-
tional Symposium on High Performance Dis-
tributed Computing, pages 201–210, Pittsburgh,
August 2000. IEEE Computer Society Press.

[23] F. Kon, M. Roḿan, P. Liu, J. Mao, T. Yamane,
L.C. Magalh aes, and R.H. Cambpell. Monitor-
ing, Security, and Dynamic Configuration with
the dynamicTAOReflective ORB. InInterna-
tional Conference on Distributed Systems Plat-
forms and Open Distributed Processing (Mid-
dleware’2000), pages 121–143, New York, April
2000. ACM/IFIP.

[24] T. Ledoux. OpenCorba: a Reflective Open Bro-
ker. In Reflection’99, volume 1616 ofLec-
ture Notes in Computer Science, pages 197–214,
Saint-Malo, France, 1999. Springer Verlag.

[25] M. Liljeberg, K. Raatikainen, M. Evans, S. Fur-
nell, K. Maumon, E. Veldkamp, B. Wind, and
S. Trigila. Using CORBA to Support Terminal
Mobility. In TINA ’97, 1997.

[26] S. Long, R. Kooper, G.D. Abowd, and C.G.
Atkenson. Rapid prototyping of mobile context-
aware applications: the Cyberguide case study.
In Proceedings of the Second Annual Interna-
tional Conference on Mobile Computing and
Networking, pages 97–107, White Plains, NY,
November 1996. ACM Press.

[27] C. Mascolo, L. Capra, and W. Emmerich. Mid-
dleware for mobile computing (a survey). In
Tutorial Proceedings of the International Con-
ference of Networking 2002, Lecture Notes in
Computer Science. Springer Verlag, May 2002.
To appear.

[28] C. Mascolo, L. Capra, S. Zachariadis, and
W. Emmerich. XMIDDLE: A Data-Sharing
Middleware for Mobile Computing.Int. Jour-
nal on Personal and Wireless Communications,
21(1):77–103, April 2002.

[29] J. McAffer. Meta-Level Architecture Support for
Distributed Objects. In G. Kiczales, editor,Re-
flection 96, pages 39–62, San Francisco, 1996.

[30] Sun Microsystems. Java reflection.
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html,
2002.

[31] A. L. Murphy, G. P. Picco, and G.-C. Roman.
L IME: A Middleware for Physical and Logi-
cal Mobility. In Proceedings of the 21st In-

ternational Conference on Distributed Comput-
ing Systems (ICDCS-21), pages 524–533, May
2001.

[32] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-
1/D: A Distributed Programming System with
Multi-Model Reflection Framework. InWork-
shop on New Models for Software Architecture,
November 1992.

[33] Oracle Technology Network. Or-
acle9i Application Server Wireless.
http://technet.oracle.com/products/iaswe/content.html,
2000.

[34] M. Roman, F. Kon, and R. Campbell. Reflec-
tive Middleware: From your Desk to your Hand.
IEEE Communications Surveys, 2(5), 2001.

[35] M. Satyanarayanan. Mobile Information Ac-
cess.IEEE Personal Communications, 3(1):26–
33, February 1996.

[36] B. Schilit, N. Adams, and R. Want. Context-
Aware Computing Applications. InProc. of the
Workshop on Mobile Computing Systems and
Applications, pages 85–90, Santa Cruz, CA, De-
cember 1994.

[37] A. Schill, B. Bellmann, W. Bohmak, and
S. Kummel. System Support for Mobile Dis-
tributed Applications. In2nd International
Workshop on Services in Distributed and Net-
worked Environments (SDNE), pages 124–131,
Whistler, British Columbia, June 1995. IEEE
Computer Society Press.

[38] W. Segall and D. Arnold. Elvin Has Left the
Building: A Publish/Subscribe Notification Ser-
vice with Quenching. InAustralian UNIX Users
Group 97, Brisbane, Australia, September 1997.

[39] J. Seitz, N. Davies, M. Ebner, and A. Friday.
A CORBA-based Proxy Architecture for Mobile
Multimedia Applications. In2nd IFIP/IEEE In-
ternational Conference on Management of Mul-
timedia Networks and Services (MMNS ’98),
Versailles, France, November 1998.

[40] SignalSoft. Wireless Location services.
http://www.signalsoftcorp.com/, 2000.

[41] B.C. Smith. Reflection and Semantics in a Pro-
cedural Programming Language. Phd thesis,
MIT, January 1982.

Mobile Computing and Communications Review, Volume 6, Number 4 43



[42] Softwired. iBus Mobile. http://www.softwired-
inc.com/products/mobile/mobile.html, April
2002.

[43] T. Watanabe and A. Yonezawa. Reflection in an
Object-Oriented Concurrent Language. InOOP-
SLA 88, volume 23, pages 306–415. ACM Press,
1988.

[44] G. Welling and B. Badrinath. An Architecture
for Exporting Environment Awareness to Mobile
Computing.IEEE Transactions on Software En-
gineering, 24(5):391–400, 1998.

[45] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and
D. A. Ford. T Spaces.IBM Systems Journal,
37(3):454–474, 1998.

[46] Y. Yokote. The Apertos Reflective Operating
System: The Concept and Its Implementation. In
OOPSLA92, volume 28, pages 414–434. ACM
Press, 1992.

44 Mobile Computing and Communications Review, Volume 6, Number 4


