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Abstract— Pervasive computing applications typically involve
rich interactions and heterogeneous network types; e.g. involving
the collation of data from a sensor network into a replicated
repository in a fixed network. Although the middleware approach
has been highly successful in supporting application development
in networked environments, current middleware technologies
cannot handle the accelerating complexity in interaction types,
and diversity in networks types, seen in pervasive computing
environments. Therefore, we propose a middleware solution
(called Gridkit), which uniformly supports an extensible set
of middleware interaction types (e.g. RPC, publish-subscribe,
streaming, etc.), and handles network heterogeneity by layering
itself over virtual overlay networks which it manages and
transparently instantiates on demand. We focus in this paper on
Gridkit’s generalized architecture for the transparent deployment
and management of overlay networks. We also consider the
application of the Gridkit approach in two application scenarios.

I. I NTRODUCTION

Pervasive Computing applications often involve rich inter-
actions between users and devices in highly heterogeneous
networked environments involving, e.g., high-speed LANs,
lower-speed WANs, ad-hoc networks, and specialized sensor
networks. Consider, for example, an application that collects
data from sensor networks and then stores and processes the
data on powerful end-systems in the Internet; or an application
involving mobile users on wireless networks (infrastructure or
ad-hoc) interacting with Internet-based users and services.

Middleware is a well-established solution for providing
interaction services in the face of end-system, operating
system and network heterogeneity. Furthermore, middleware
simplifies the task of the application developer by managing
the problems of distribution. However, with respect to the
types of applications considered above, current middleware
technologies are limited in the following three respects:

• Middleware solutions are typically network-style centric.
That is, their operation is suited to individual network
types. For example: wireless network middleware trans-
parently handle disconnection [1] [2]; ad-hoc network
middleware promotes abstractions suitable for ad-hoc
interactions [3] [4]; and enterprise middleware assumes
high connectivity in fixed networks [5] [6].

• Middleware technologies typically support individual ser-
vices, e.g. resource discovery, remote procedure call
(RPC), publish-subscribe, etc. However, one-size does not

fit all network types; for example, data sharing is well
suited to ad-hoc interaction in ad-hoc and sensor networks
[7] [8], whereas RPC is better suited to infrastructure
networks.

• Deployed middleware services are static. That is, a run-
ning service cannot evolve if the underlying network
characteristics change (e.g. if it first operates in the
Internet, and later extends to include a sensor network).

To address these limitations we present in this paper a
network-style independent middleware platform called Gridkit
[9]. Gridkit addresses two key requirements within the perva-
sive application domain:

• Service Deployment. Developers must be able to choose
a suitable middleware service, which must then be de-
ployed in an environment that potentially encompasses
multiple network types.

• Dynamic reconfiguration. Deployed communication ser-
vices must be able to adapt to changing network hetero-
geneity.

The key to our approach is to leverage the notion ofoverlay
networks to construct middleware services (we consider an
overlay network as a virtual communications structure that
is logically ‘laid over’ an underlying physical network or
networks). In particular, we focus on policy-based selection of
overlays to deploy the best overlay type(s) in different network
environments, and dynamic bridging to build services across
multiple network types. We motivate this approach by eliciting
middleware requirements from two application scenarios, and
evaluate the approach by documenting how effectively the
middleware solution can meet such requirements in one of
these scenarios.

II. EXAMPLE SCENARIOS

This section analyses two pervasive computing scenarios
that are characterized by the need for multiple middleware
services and the need to integrate different network types.

A. Forest Fire Fighting

This scenario is focused on forest or savannah fire fighting
in remote, poorly resourced locations. There are two user roles
involved: controllersandfire fighters. Controllers manage the
operation: they move fire fighters, issue commands, decide



Fig. 1. Network types in the fire fighting scenario

where to deploy fire sensors, and investigate real-time simula-
tions that predict the spread of the fire. Fire fighters use mobile
devices, on which graphics-based commands from controllers
are displayed, and deploy wind speed sensor networks.

Figure 1 illustrates a typical network configuration for
this scenario: fire fighters form ad-hoc connections between
themselves, sensors and on-site controllers; and infrastructure
networks connect all controllers. Depending on the location of
the fire, the connections between on-site and remote controllers
could be provided by satellite, GPRS, Wireless LAN, or other
network types.

Middleware Requirements

• A group communication service is needed to enable con-
trollers to disseminate commands to fire fighters (where
to move, which part of fire to fight, where to put sensors,
etc.).

• A publish-subscribe service is required for the collection
of sensor events to be fed to the controllers’ fire spread
simulations.

B. Environmental informatics

In this scenario, a river, estuary and bay are instrumented
with sensors to monitor temperature, water level, flow rate,
pollution levels etc. Some of these sensors are networked using
Ethernet (e.g. sensors in tidal-defence walls), while others
employ wireless technologies (e.g. IEEE 802.15.4 or 802.11
radios; or long-wave radios for underwater use). These may
be mobile in the water, and will come into the range of fixed
sensors in an ad-hoc fashion. Point-to-point microwave con-
nectivity may also be used to link individual sensor networks
to strategically placed IP gateways at which sensor data is
collated and cached.

Given this infrastructure, scientists in widely-dispersed lo-
cations selectively store data for future analysis; integrate
and process live sensor data on their workstations; cooper-
atively visualise this data in real-time (supported by a video
conferencing system); and use both stored and live data to
computationally steer long running environmental simulations.
Figure 2 illustrates a typical network configuration for this
scenario.

Middleware requirements

• A data retrieval service is needed to collect data from the
sensor networks.

• An event service is needed to ’push’ sensor data to long-
running simulations.

Fig. 2. Network types in the environmental informatics scenario.

• A video streaming service is needed to support video
conferencing between fixed workstations.

III. AN OVERLAY-BASED MIDDLEWARE

Gridkit is a novel middleware framework that can support
the development of scenarios of the types described above. It
achieves this by deploying an extensive and extensible set of
middleware services over an infrastructure of overlay networks
which it itself creates and manages. The operation of Gridkit is
depicted in figure 3: to deploy a middleware service involving
nodes situated in different network types, Gridkit deploys in
each physical network an overlay that is optimised for that
network type, and then constructs an “overlay of overlays”
that bridges the individual overlays. This provides a uniform
network infrastructure that includes all the participating nodes
and supports the required middleware service(s).

In terms of software architecture, the Gridkit framework
(illustrated in figure 4) is deployed on each participating node.
At the bottom level it employs a minimal runtime for the
loading and binding of lightweight software components [10].
This runtime is so minimal that it can be supported even
on very primitive devices. The next layer up (theoverlays
framework) is a distributed framework for the deployment of
multiple overlay networks. In practice, this amounts to hosting,
in a set of distributed overlay framework instances, a set of
per-overlay plug-in overlay components (see figure 5). Each
of these represents a single overlay network node and consists
of a control element that cooperates with its peers on other
hosts to build and maintain some virtual network topology, a
forwardingelement that appropriately routes messages over its
virtual topology, and a state element that contains per-overlay-
node state such as a next-neighbours list.

Above the overlays framework is a set of further “vertical”
frameworks that provide functionality in various orthogonal
areas, and can optionally be included or not included on
different devices. In brief, the frameworks are as follows:
the interaction frameworkaccepts multiple interaction type
plug-ins (e.g. RPC, publish-subscribe, group communication);
the service discovery frameworkaccepts plug-in strategies to
discover application services (e.g. SLP, UPnP, Salutation); the
resource discovery frameworkaccepts plug-in strategies to
discover resources such as CPUs and storage (e.g. peer-to-peer
search); theresource management and resource monitoring
frameworksare respectively responsible for managing and



Fig. 3. Deploying a middleware service that span multiple network types.

Fig. 4. The Gridkit Architecture.

monitoring resources; and thesecurity frameworkprovides
general security services for the rest of the frameworks. These
frameworks are discussed in more detail in [9], as is the web
services layer that (optionally) sits atop the frameworks and
provides a uniform web-service based API for applications.

Essentially, the Gridkit architecture is based upon the
customised stacking of software components to achieve the
required local deployment. Overlay plug-ins can be stacked on
other overlay plug-ins to produce a required (virtual) network
service. Then, middleware components are stacked atop these
overlays to yield a required middleware service. The config-
uration of components is not created until run-time; hence,
applications can be deployed in ‘black-box’ environments.

IV. DEPLOYMENT & RECONFIGURATION OF
MIDDLEWARE SERVICES

In this section we present the techniques used in Gridkit
to support the deployment and reconfiguration of overlay-
supported middleware services across multiple hosts situated
in heterogeneous networks. In particular, we focus on how
suitable deployment and reconfiguration decisions are made
and enacted.

Fig. 5. The Structure of an overlay plug-in.

<ConfigurationRule>
<Framework>OverlayFramework</Framework>
<Interface>IMulticast</Interface>
<attrs>

<network>fixed</network>
</attrs>
<Configuration>

<Layers>
<Framework>Scribe.xml</Framework>
<Framework>Chord.xml</Framework>

</Layers>
</Configuration>

</ConfigurationRule>

Fig. 6. An example policy for overlay deployment.

A. Policy-based Deployment of Middleware Services

The task of the middleware service deployment process is to
ensure that an appropriate “stack” of software components is
in place on each participating node. Participating nodes each
take one of the following two roles: they are either a member
of the middleware service (i.e. a participant that actively uses
the middleware service); or afacilitator of the service (i.e.
they do not use the service, but rather help to support its
infrastructure).

Each middleware service is built on demand in an incre-
mental fashion that is initiated when a potential member node
requests a service. Such nodes present to Gridkit apolicy file
that describes how the required service can be constructed.
Grikit then creates or joins the service (as appropriate). It
also takes into account the current dynamically-determined
environmental context(e.g. available physical network types)
of the node. An example policy file, described in XML, is
shown in figure 6; this is part of a policy used to build a
group communication service on top of a multicast overlay
service. The file states that if the environmental context is
‘fixed network’, the overlay framework should deploy a Scribe
[11] plug-in atop a Chord [12] plug-in (n.b. “Scribe.xml” is a
software architecture description of components and connec-
tors). An alternative policy for an ad-hoc network context (not
shown) might deploy, say, an epidemic multicast overlay.

The limitation of the above-described process is that it does
not yet take into account the facilitator role. Furthermore, it
will lead to disjoint middleware services when the service
spans network types, i.e. we can provide a multicast service
in both ad-hoc and fixed networks, but not across both. We
now present refinements of the basic process described above
that address both these problems.

B. Leveraging Facilitators

To involve facilitators in the deployment process we utilise
two techniques: i) a stack configurator, that is inspired by the
Ensemble [15] micro-protocol framework; and ii) gossip-based
dissemination of deployment information to nearby Gridkit
nodes.



Fig. 7. Message based deployment of stacked components.

1) Deployment Configurator:All messages disseminated
using overlay-based middleware services in Gridkit attach
information in their header about the “software stack” used
to create the message. For example, if a message was sent
on a group service layer, above the Scribe and Chord overlay
plug-ins, there would be three ordered identifiers in the header:
chord::scribe::gkgroup; these are added in LIFO fashion.
This list is then used on the receiving host to traverse the
component configuration and ensure it is processed by the
same components that constructed it. Notably, we re-use this
approach to support deployment. When a message cannot be
‘up-called’, because that layer hasn’t been deployed, it is
sent to the stack configurator that then deploys the correct
components.

Figure 7 illustrates this process; for example, a message is
received on the Chord overlay pertaining to a Scribe-gkgroup
service, but the Scribe and gkgroup layers are not in place in
the architecture, so the message is sent to the configurator. The
configurator then uses reflection to determine which elements
required by the message are missing in the architecture, and
then dynamically inserts what is needed.

2) Gridkit Deployment Service:The deployment configura-
tor process works for cases where the nodes are involved in the
same overlay. Facilitators in a different overlay network will
not receive messages sent within the other network. Hence,
we leverage the concept of a common deployment service
across all Gridkit nodes. In this case, the service is provided
using gossip style dissemination [13]; messages sent by the
frameworks (like that in figure 7 are periodically selected
and sent probabilistically to local Gridkit nodes, which then
gossip the message further. When the gossip service receives a
message it is uploaded to the stack configurator, which decides
whether to deploy the required components. At present, we
make the assumption that the deployment service is available
on executing Gridkit nodes, and software components are
available locally to be deployed.

Gridkit may be deployed across multiple network types;
hence, the service gossips information independently of the
network. Figure 8 illustrates the deployment service set-up in
each Gridkit framework; in this case a gossip version for each
network type (ad-hoc and fixed) is plugged-in, which combine
to form a single service; messages received from one domain
are gossiped into the other domains. When such a message is
received, it is passed to the Gridkit configurator that makes

Fig. 8. Gridkit’s Deployment Service Architecture.

decisions on whether to deploy software to support a service,
thus becoming a facilitator for that service.

3) Bridging Overlays:When a middleware service is de-
ployed across disjoint overlay networks, Gridkit employs a
dynamic bridging technique to facilitate the merging of the
service. For example, when building a group multicast service,
the initial deployment may contain a probabilistic multicast
overlay in the ad-hoc domain, and a multicast tree overlay
[14] in the fixed domain. The service is then disjoint as there
is no connection between the two overlays.

A ‘bridge’ in Gridkit is a generic overlay plug-in that is
placed above two or more overlay plug-ins (each implementing
a disjoint overlay). A bridge can be used to support any
type of middleware service, and can be placed above any
overlay types (albeit it is sensible to bridge only overlays
providing the same service e.g. multicast). The plug-in is
implemented using the control-forward approach described in
section 3. The control element manages the joining and leaving
of disjoint overlays to the bridge; the forward component is
responsible for receiving messages from one overlay plug-in
and forwarding them to the other plug-ins below (message
ids are stored to ensure messages are not duplicated). Finally,
the state component stores the neighbour information (bridged
plug-ins). Figure 9 illustrates this architecture; here we can
see a group middleware service underpinned by two overlay
multicast services: probabilistic multicast (PMCast) and a
multicast tree (ALM) [14]. This node then acts as a facilitator
for the group communication service, merging the nodes from
two different overlay networks into a single service overlay.

The final problem to address is: how and where is the bridge
deployed? In our current implementations, overlays emerge
based upon the policies described in the previous sections and
hence nodes with multiple network types (hardware interfaces)
will produce multiple stack configurations e.g. a group com-
ponent over two overlay plug-ins as seen in figure 9. In these
cases the configurator detects the multiple overlays and places
the bridge automatically. This would occur, for example, on the
detection of two disjoint multicast overlays of the same group
type (we currently identify a group by its URL). Similarly, if



Fig. 9. Bridging overlays in Gridkit.

the node has the potential to be a bridge, but isn’t participating
in the service, then the deployment service for facilitators can
be re-used to deploy a bridge.

We acknowledge that this approach is limited in that it may
produce multiple unnecessary bridges, increasing the amount
of duplicate messages forwarded. Similarly, some nodes may
be better suited than others to act as a bridge (i.e. ones
with more resources and more available bandwidth). We are
currently investigating how to reuse the deployment service to
disseminate information between Gridkit nodes in order to co-
ordinate the deployment of bridges (e.g. potential bridge nodes
co-ordinate to place one or more bridges in ideal locations in
a scenario).

4) Reconfiguring Middleware Services:Pervasive comput-
ing scenarios do not remain constant over time. It is likely
nodes will move, change their role, and importantly change
from one network type to another e.g. when a mobile device
moves from out of range of a wireless infrastructure network.
Therefore, to deploy once and retain the same deployment is
unsuitable; rather a middleware service must be dynamically
reconfigurable and self-configuring to cope with such changes
in its individual members. This could take the form of the
addition of new overlay networks, or a change in overlay type.
We are currently investigating the dynamic reconfiguration of
deployed services. Gridkit is reflective, i.e. it supports the
inspection and dynamic reconfiguration of software compo-
nents, based upon the well-established event action-adaptation
procedure. Gridkit configurators subscribe to context events
(e.g. change in network, change in location etc.), so when
these events occur it can trigger a software reconfiguration. In
particular, we are interested in the co-ordinated reconfiguration
of communication services across multiple hosts, requiring a
shared decision making process.

V. PRELIMINARY EVALUATION

In this section, we provide a qualitative evaluation of
our techniques to build middleware services using overlay
networks in order to overcome the problems of creating
applications over different network types. For this we take the
initial requirements we elicited from the fire-fighting scenario
in section 2 and demonstrate how these are reached using the
Gridkit approach.

The forest fire scenario has two requirements: 1) a group
communication service between PCs, laptops, and PDAs in-
terconnected by both infrastructure, and ad-hoc networks; 2)

a publish-subscribe service between all the devices in the
scenario, across the same diverse network types. The following
describes a testbed to simulate the scenario. We connected a
set of 3 PCs using a fixed network. One PC was equipped with
a wireless network card to connect to an 802.11b network in
infrastructure mode. In addition, 2 laptops each equipped with
2 wireless interfaces connected to the wireless infrastructure
network, and also operated in ad-hoc mode. Finally, we
connected PDAs and sensors using 802.11b in ad-hoc mode.

The applications were deployed on each device type, along
with the middleware components. We then investigated the
outcome of performing the initial request for a middleware
configuration (i.e. both group and publish-subscribe), and
then executed a join of that service. Table 1 illustrates the
deployment results of these requests. The table illustrates the
sonftware configurations generated on each device inside the
overlay framework and the interaction framework. These show
that the two requirements are met i.e. the communication
services support the applications across the diverse network
types. This is essentially achieved by the deployment of the
appropriate system configuration on the devices, particularly
the additional software bridges.

On Fixed Controllers (FC) in the fixed network we used the
Interaction Framework to build the required group commu-
nication (GKGRP) and publish-subscribe (GKPS) services.
These were constructed on top of an Application-Level Multi-
cast tree overlay (TBCP [14]) within the Overlay Framework
(OF). For the on-site controllers (MC) there are two network
types to bridge, so the same Interaction Framework set-up
is built atop bridged overlays - in this case Probabilistic
Multicast for the ad-hoc network, and Scribe for the wire-
less infrastructure. One FC with fixed and wireless network
interfaces bridges the other FCs and MCs, therefore including
a bridge within the overlay framework.

Discussion of fire fighting scenario
This scenario involves spontaneous networking, but relies

on a reasonable level of connectivity between participants
to maintain up-to-date information. That is, fire fighters and
sensors that are out of range of nodes in the other networks will
hinder the application’s operation. Interestingly this problem
is helped in the scenario by end-user interaction for the
creation of spontaneous networks i.e. controllers can direct
the movement of nodes to repair communication services. We
are currently investigating this approach to improve reliability
and dependability in scenarios of this type.

VI. RELATED RESEARCH

Previous middleware has considered the problem of network
heterogeneity. However, this work is largely geared to specific
cases of network integration, and tightly coupled to particular
interaction types. For example, CORBA [6] offers a bridging
solution (Inter-ORB bridges) to ensure distributed objects
interoperate across different types of network. Typically these
networks are of the same type, however, ALICE [1] and DOL-
MEN [2] investigate how CORBA bridges operate between
wireless infrastructures and fixed infrastructures. Hence, these



TABLE I

FOREST FIRE DEPLOYMENT RESULTS

Role Device Network Software Configurations

FC 2 PCs Fixed Overlay Fwk=TBCP; Interaction Fwk=GKGRP & GK PS

FC 1 PC Fixed & Wireless Overlay Fwk=TBCP:Bridge & Chord KBR:Scribe:Bridge; Interaction Fwk=GKGRP & GK PS

MC 2 Laptops Wireless & Ad-hoc Overlay Framework=PMCast:Bridge & Chord KBR:Scribe:Bridge; Interaction Fwk=GKGRP & GK PS

FF PDA Ad-hoc Overlay Fwk=PMCast:Bridge; Interaction Fwk=GKGRP & GK PS

Sensor PDA Ad-hoc Overlay Fwk=PMCast:Bridge; Interaction Fwk=GKPS

present a solution for a single interaction type (i.e. RPC) in
a single deployment case (spans two specific networks). In
a similar vein, publish-subscribe broker networks have been
investigated [3] [4] that ensure events are sent and received be-
tween endpoints in wireless and fixed networks. There are also
other middleware solutions that perform specific integration
tasks. However, as far as we are aware no middleware supports
a general solution to this problem in order to selectively build
any communication service atop any combination of network
integrations.

VII. C ONCLUSION AND FUTURE WORK

In this paper we have presented our approach to deploying
communication services across diverse and heterogeneous
communication networks. Fundamentally, this involves a dy-
namically deployable and reconfigurable middleware frame-
work that constructs and deploys an appropriate configuration
of overlay networks to ensure that the application’s require-
ments for a communication service are met. In addition, we
have introduced policy-based configuration rules for dynamic
deployment that is coupled with a generalised software bridg-
ing solution to ensure that communication service messages
span overlays, and hence network types.

In future work, we will focus on investigating the de-
ployment of software and development of further real-world
scenarios. In this paper, we have presented one approach to
system software and application deployment. However, this
may not be well suited to all application types. For example,
we are also interested in deployment approaches involving
super peers; for example, in the case of sensor networks,
with limited resources; a more powerful node may manage
deployment of components. In this special case, we would
assume a base capability of the super-peer to connect to
the resource-limited node, and remotely load and configure
software (rather than the local node manage its capability).
Furthermore, there may be cases where stricter deployment is
controlled by end-user (system admin) commands.

Finally, we are also investigating the potential for automa-
tion of the deployment process. That is, rather than have
fixed policies reside on hosts, these policies can change
over time based upon the performance of the communication
service. Hence, newer configurations that perform better will
be deployed. We envisage that nodes will collude to provide
information about their operation, and this data will drive rule-
based learning techniques to generate new policy files.
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