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Abstract. Although one of the main promises of aspect-oriented (AO) 
programming techniques is to promote better software changeability than object-
oriented (OO) techniques, there is no empirical evidence on their efficacy to 
prolong design stability in realistic development scenarios. For instance, no 
investigation has been performed on the effectiveness of AO decompositions to 
sustain overall system modularity and minimize manifestation of ripple-effects in 
the presence of heterogeneous changes. This paper reports a quantitative case 
study that evolves a real-life application to assess various facets of design stability 
of OO and AO implementations. Our evaluation focused upon a number of 
system changes that are typically performed during software maintenance tasks. 
They ranged from successive re-factorings to more broadly-scoped software 
increments relative to both crosscutting and non-crosscutting concerns. The study 
included an analysis of the application in terms of modularity, change 
propagation, concern interaction, identification of ripple-effects and adherence to 
well-known design principles. 

1   Introduction 

Design stability [1-4] encompasses the sustenance of system modularity properties 
and the absence of ripple-effects in the presence of change. Development of stable 
designs has increasingly been a deep challenge to software engineers due to the high 
volatility of systemic concerns and their dependencies [5]. Contemporary developers 
often need to embrace a plethora of unexpected changes on driving design concerns, 
ranging from simple perfective modifications and re-factorings to more 
architecturally-relevant system increments. In fact, incremental development has been 
established as the de-facto practice in realistic software development in order to 
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progressively cope with such evolving system concerns [1, 3, 5]. Some recent 
industrial case studies have demonstrated that around 50% of object-oriented (OO) 
code is altered between two releases, and 68% of change requests are accepted and 
implemented [1, 3]. 

It has been empirically observed that design stability is directly dependent on the 
underlying decomposition mechanisms [4-6]. For instance, certain studies have 
detected that the versatility of multiple inheritance is one of the main causes of ripple-
effects in OO systems [6]. Interestingly, we are in an age where emerging aspect-
oriented (AO) programming techniques [7] are targeted at improving software 
maintainability. The proponents of aspect-oriented programming argue that superior 
modularity and changeability of crosscutting concerns are obtained through the use of 
new composition mechanisms, such as pointcut-advice and inter-type declarations. It 
is often claimed that such AO mechanisms support enhanced incremental 
development [5, 6, 8], and avoid early design degradation [9]. 

However, there is no empirical evidence AO decompositions promote superior 
design stability in realistic evolutionary software development [1], especially when 
experiencing changes of a diverse nature. Most of the existing case-studies in the 
literature have reported on the positive and negative impacts of aspect-oriented 
programming in the upfront modularization of conventional crosscutting concerns 
such as: persistence [9-11], distribution [11], exception handling [12, 13], and design 
patterns [14-16]. More fundamentally, these evaluations do not compare the stability 
of AO and OO decompositions while applying heterogeneous types of changes to 
both crosscutting and non-crosscutting concerns. As a result, there is no empirical 
knowledge on how aspect-oriented programming contributes to the reduction of 
ripple-effects and design principle violations in incremental development scenarios. 

This paper presents a case-study that quantitatively assesses the stability of OO and 
AO design versions of a real-life Web-based information system, called Health 
Watcher (HW). The OO version was implemented in Java, while the AO versions 
were implemented in AspectJ [17] and CaesarJ [8]. Our evaluation focused upon ten 
releases of the HW system, which underwent a number of typical maintenance tasks, 
including: re-factorings, functionality increments, extensions of abstract modules, and 
more complex system evolutions. Some of the crosscutting concerns were 
“aspectized” from the first release, while others were modularized as new HW 
versions were released. Very often, additive and subtractive modifications required 
the alteration of how two or more concerns were inter-related. The design stability of 
OO and AO versions was evaluated according to conventional suites of modularity 
and change impact metrics. Such measures allowed us to analyze the extent to which 
the OO and AO implementations were vulnerable to ripple-effects, and exhibited 
symptoms of violations of fundamental design properties, such as the narrow 
interfaces and the Open-Closed principle [18]. 

The main outcomes of our analysis in favour of AO designs were: 

(1) the concerns aspectized upfront tended to show superior modularity stability in 
the AO designs; changes tended to be confined to the target module and only 
minor fragility scenarios were observed in the aspect interfaces; 

(2) AO solutions required less intrusive modification (e.g. changes to existing 
operations and lines of code) even when the change focused on a non-
crosscutting concern; 



178 P. Greenwood et al. 

(3) aspectual decompositions have demonstrated superior satisfaction of the Open-
Closed principle [18] in most of the maintenance scenarios; 

(4) both OO and AO implementations have exhibited a significant stability of 
high-level design structures; however, architectural ripple effects (i.e. changes 
to architectural elements) were observed when persistence-related exceptions 
needed to be introduced in the OO design; 

Alternatively, the main findings against aspectual decompositions were: 

(1) significant incidence of violation of pivotal design principles – such as narrow 
interfaces and low coupling – were detected in evolutionary scenarios 
involving classical design patterns, such as the  Command and State design 
patterns [19]; 

(2) although invasive modification was more frequent in the OO solution, the AO 
modifications tended to propagate to seemingly unrelated modules; 

(3) in general the aspectization of exception handling has shown no improvement; 
in addition, certain design degeneration was observed due to the creation of 
artificial method signatures in order to expose contextual information to the 
aspectized exception handlers. 

The remainder of the paper is structured as follows: Section 2 describes the 
experimental settings and justifies the decisions made to ensure the study is valid. 
Section 3 describes the Health Watcher system used as the base for this study and also 
describes the changes applied. The results gathered from applying modularity metrics 
are discussed in Section 4. Section 5 discusses how the changes propagate within each 
paradigm. The evolution of the concern interactions are discussed in Section 6. Other 
related discussions of the results are conducted in Section 7. Finally, Sections 8 and 9 
conclude this paper by discussing related work and summarizing this paper’s findings. 

2   Experimental Settings 

This section describes the configuration of our study including the choice of the target 
application (Section 2.1), and the evaluation methodology (Section 2.2). 

2.1   Target System Selection 

The first major decision that had to be made in our investigation was the selection of 
the target application. The chosen system is a typical Web-based information system, 
called Health Watcher (HW) [11]. The main purpose of the HW system is to allow 
citizens to register complaints regarding health issues. This system was selected 
because it met a number of relevant criteria for our intended evaluation. First, it is a 
real and non-trivial system with existing Java and AspectJ implementations (each 
around 4000 lines of code). The HW system is particularly rich in the kinds of non-
crosscutting and crosscutting concerns present in its design. HW also involves a 
number of recurring concerns and technologies common in day-to-day software 
development, such as GUI, persistence, concurrency, RMI, Servlets and JDBC. 
Second, each HW design and implementation choice for both OO and AO solutions 
has been extensively discussed and evolved in a controlled manner. Both the OO and 
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AO designs (Sections 3.1 and 3.2) of the HW system were developed with modularity 
and changeability principles as main driving design criteria. Third, qualitative and 
quantitative studies of the HW system have been recently conducted [9, 11] allowing 
us to correlate our results with these previous studies. Finally, the first HW release of 
the Java implementation was deployed in March 2001, since then a number of 
incremental and perfective changes have been addressed in posterior HW releases; it 
has allowed us to observe typical types of changes in such an application domain.  

2.2   Study Phases and Change Scenarios  

The study was divided into three major phases: (1) the development and alignment of 
HW versions, (2) the implementation of change scenarios, and (3) the assessment of 
the three versions (developed in phase 1) and the successive releases (delivered in 
phase 2). In the first phase, we prepared the base versions of the OO and AO 
implementations of the HW system. The OO solution was already available and 
implemented in Java. Two AO implementations were assessed: one based on a  
pre-existing AspectJ version (implemented after the original OO implementation)  
[11, 17], and a newly created CaesarJ [8] version for this study. Both the Java and 
AspectJ implementation have been successfully used in other studies [9, 11], and so 
provided a solid foundation for this study. An independent post-graduate student was 
responsible for implementing the CaesarJ version by re-factoring the Java 
implementation. We would like to highlight that this study has not targeted the 
comparison of the two AO programming languages (i.e. AspectJ and CaesarJ). On the 
contrary, the objective of using more than one particular language was to allow us to 
yield broader conclusions that are agnostic to specific AO language features.  

All three base HW versions were verified according to a number of alignment rules 
in order to assure that coding styles and implemented functionality were exactly the 
same. Moreover, the implementations followed the same design decisions in that best 
practices were applied in all implementations to ensure a high degree of modularity 
and reusability. This alignment and validation exercise was performed by an 
independent post-doc researcher. A number of test-cases were exhaustively used for 
all the releases of the Java, AspectJ and CaesarJ versions to ease the alignment 
process. These alignment procedures assure that the comparison between versions is 
equitable and fair. Inevitably, some minor re-factorings in the three versions had to be 
performed when misalignments were observed at the composition-level, interface-
level, module-level or even LOC-level. When these misalignments were discovered 
the implementers for that particular version (in the case of the Java and AspectJ 
versions this was the original HW developers) were notified and instructed to correct 
the implementation accordingly. 

The second phase involved the implementation of nine changes (Section 3.3) in all 
three HW versions (available from [20]). Each change involved: (i) the design and 
implementation of new modules to be included or existing modules to be removed 
from the system, (ii) the use of language mechanisms to compose such new modules 
with existing ones, and (iii) if necessary, changes to the modules already present in 
the previous HW release. Also, for each change, we needed to again ensure that the 
Java, AspectJ and CaesarJ implementations were aligned and so the alignment 
process described above was applied to each subsequent version of HW developed.  
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The goal of the third phase was to compare the design stability of AO and OO 
designs. In order to support a multi-dimensional data analysis, the assessment phase 
was further decomposed in four main stages. The first two stages (Section 4) are 
aimed at examining the overall maintenance effects in fundamental modularity 
properties through the HW releases. The third stage (Section 5) evaluates the  
three implementations from the perspective of change propagation. The last stage 
(Section 6) focuses on assessing design stability in terms of how the implementation 
of concern “boundaries” and their dependencies have evolved through the HW 
releases. Section 7 also discusses architecture-level design stability. Traditional 
metrics suites were used in all the assessment stages, and will be discussed in the 
respective sections. Although design stability is discussed in terms of these metrics, 
the metric measurements are a direct reflection of design changes, i.e. any variations 
in the metric values are evidence of changes that occurred in the code structure. 

3   Health Watcher System 

Both the OO and AO architectural designs of the HW system are mainly determined 
by the conjunctive application of both client-server and layered architectural styles 
[21]. The original architecture aimed at modularizing user interface, distribution, 
business rules, and data management concerns. Most of them are layers in both the 
OO and AO architectures; the only exception is the distribution concern that has been 
aspectized and is no longer a layer in the AO architectural design. All the 
corresponding OO and AO design structures that realize such driving design concerns 
have been successfully reused in several applications [3, 10, 11]. Fig. 1 and Fig. 2 
present representative slices of both OO and AO architecture designs. 

3.1   The Object-Oriented Design 

In the HW system, complaints are registered, updated and queried through a Web 
client implemented using Java Servlets [22], represented by the components in the 
view layer. Accesses to the HW services are made through the IFacade interface, 
which is implemented by the HealthWatcherFacade. This facade works as a portal to 
access the business collections, such as ComplaintRecord and EmployeeRecord. 
Records access the data layer using interfaces, like IComplaintRep, which decouple 
the business logic from the specific type of data management in use. For example, 
Fig. 1 shows a ComplaintRep class that implements a repository for a database. 

This structure prevents some code tangling, because it clearly separates some main 
concerns in layers. However, tangling is not completely avoided [11]. For example, 
the HealthWatcherFacade implements several concerns, including transaction 
management (persistence) and distribution. One possibility is the use of adapters [19] 
to take care of transaction functionality, but at a high price, since developers must 
maintain both the facade and the adapter.  

The design of the OO HW system also fails to completely prevent code scattering. 
For example, business components implement the distribution concern; this comes from 
the need to implement the Serializable interface to allow them to be sent across a 
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network. Furthermore, almost all components must deal with the exception handling 
concern. However, despite not completely separating concerns, the layered architecture 
gives some support to adaptability. For instance, in the system configuration used in our 
experiment, instead of RMI, one could use EJBs. 

 

Fig. 1. OO HW architecture. A sub-set of scenarios and the modules they affect are marked. 

3.2   The Aspect-Oriented Design 

Fig. 2 displays a diagram that is essentially the same for both AO implementations 
(AspectJ and CaesarJ). The AO versions modularize some concerns that were tangled 
and scattered in the OO decomposition counterpart. Basically, in the first AO release 
of the HW system, crosscutting elements relative to distribution, persistence, and 
concurrency control concerns were modularized as aspects.  

For instance, the concurrency control concern was removed from the layers and 
encapsulated in two aspects, namely HWManagedSync and HWTimestamp; each of 
these deals with a specific facet of concurrency control. Timestamp is a technique 
used to avoid object inconsistency. This problem can occur when two copies of an 
object are retrieved by different requests before one of them can update its version. 
The technique uses a timestamp field to avoid object updating if there is a newer 
version of it stored in the persistence mechanism. 
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Fig. 2. AO HW architecture. A sub-set of scenarios and the modules they affect are marked. 

3.3   Change Scenarios 

The selected changes to be applied to the HW system are varied in terms of the types 
of modifications performed. Some of them add new functionality, some improve or 
replace functionality, and others improve the system structure for better reuse or 
modularity. The purpose was to expose the OO and AO implementations to distinct 
maintenance and evolution tasks that are recurring in incremental software 
development. These changes originated from a variety of sources: the experiences of 
the original developers of HW including changes they would like to implement (that 
are actually necessary) and changes from previous empirical studies [9, 12]. The 
remaining changes were created by the students and researchers involved in this 
study, where certain extensions and improvements that could be applied were 
identified. This ensured a variety of sources of changes was used and so would not 
artificially bias one paradigm. Before the changes were applied, the original 
developers of HW were consulted to confirm whether these changes were valid. 

This wide range of modifications provide an indication as to whether one paradigm 
supports better design stability for certain types of change. The changes were 
implemented using the best possible practices in the given paradigm to ensure a fair 
comparison. Each of the scenarios is summarized in Table 1, a sub-set of the 
scenarios and the modules that they affect in the OO and AO paradigm are marked on 
Fig. 1 and Fig. 2 according to whether a component is added, removed or modified 
during a particular scenario. 
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Table 1. Summary of the scenarios used in the study 

Scenario Change Impact 
1 Factor out multiple Servlets to improve extensibility. View Layer 

2 Ensure the complaint state cannot be updated once closed to protect 
complaints from multiple updates. 

View/Business Layers 

3 Encapsulate update operations to improve maintainability using 
common software engineering practices. 

Business/View Layers 

4 Improve the encapsulation of the distribution concern for better 
reuse and customization. 

View/Distribution/ 
Business Layers 

5 Generalize the persistence mechanism to improve reuse and 
extensibility. 

Business/Data Layers 

6 Remove dependencies on Servlet response and request objects to 
ease the process of adding new GUIs. 

View Layer 

7 Generalize distribution mechanism to improve reuse and 
extensibility. 

Business/View/ 
Distribution Layers 

8 New functionality added to support querying of more data types.  Business/Data/View 
Layers 

9 Modularize exception handling and include more effective error 
recovery behaviour into handlers. 

Business/Data/View 
Layers 

4   Modularity Analysis 

We have described earlier how the assessment procedures were organized in four 
stages (Section 2.2). This section presents the results for the first two stages, where we 
primarily analyze the initial modularity of each OO and AO solutions (Section 4.1). 
Then we analyze their stability throughout the implemented changes (Section 4.2). 
Both the first and second assessment phases are supported by a metrics suite that 
quantified four fundamental modularity attributes, namely separation of concerns 
(SoC), coupling, cohesion, and conciseness [23]. Such metrics were chosen because 
they have already been used in several experimental studies and proven to be effective 
quality indicators (e.g. [9, 12, 14, 15, 24]). 

The metrics for coupling, cohesion, and size were defined based on classic OO 
metrics [25]; the original metrics definitions were extended to be applied in a 
paradigm-independent way, supporting the generation of comparable results. Also, 
this suite introduces three new metrics for quantifying SoC. They measure the degree 
to which a single concern in the system maps to: (i) the design components (i.e. 
classes and aspects) – based on the CDC metric (Concern Diffusion over 
Components), (ii) operations (i.e. methods and advice) – based on the CDO metric 
(Concern Diffusion over Operations), and (iii) lines of code – based on the CDLOC 
metric (Concern Diffusion over Lines of Code). The majority of these metrics can be 
collected automatically by applying the appropriate tool [26, 27].  

The separation of concern metrics had to be calculated manually. This involved a 
post-graduate student (not involved in the implementation phase of the study) 
‘shadowing’ the code to identify which segment of code contributed to which concern. 
In circumstances when it was not clear which concern the segment contributed to, 
discussions between all people involved in the implementation took place to reach a 
common agreement. For all the employed metrics, a lower value implies a better result. 
Detailed discussions about the metrics are out of the scope of this work and appear 
elsewhere [14, 23].  
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4.1   Quantifying Initial Modularity  

This stage evaluates the modularity of the base versions in order to have an overall 
understanding of the modularity attributes of the first release of each OO and AO 
implementation. Hence, it can support our further analysis on how the maintenance 
changes affected the degree of modularity initially obtained in the Java, AspectJ and 
CaesarJ implementations. Instead of analysing each individual metric result, we 
provide a general view of the meanings behind the results. Fig. 3 presents the 
modularity results for SoC, coupling, cohesion, and size in the base version. The 
concurrency concern is representative of all the analysed crosscutting concerns which 
included: concurrency, persistence, distribution and exception handling. Furthermore, 
other architectural and design elements were analysed using the SoC metrics that are 
discussed later, these elements included: view (GUI) layer, business layer and various 
design pattern. The metrics raw data can be found at [20]. 

 

Fig. 3. Relative SoC metric values for concurrency (CDC, CDO and CDLOC), and absolute values 
for coupling, cohesion, lines of code and vocabulary size for the base version of Health Watcher 

A careful analysis of the measures (Fig. 3) determines that the AO implementations 
offer superior modularity in these initial versions. Even though the base AO 
implementations have more modules (measured by the Vocabulary Size metric which 
counts the number of components) and a higher Concern Diffusion over Components 
(CDC), this does not automatically mean that separation of concerns is worse. It is 
due to the fact that additional aspectual modules have been created for the purpose of 
isolating certain crosscutting concerns (Section 3.2). When other values are analysed 
together, such as Concern Diffusion over Lines of Code (CDLOC) and over 
Operations (CDO), Coupling between Components (CBC), Lack of Cohesion over 
Operations (LCOO), it becomes clear that AO implementations create more cohesive 
and self-contained modules that are less coupled to each other. They create dedicated 
components for each concern, but they also require fewer Lines of Code (LOC), since 
they reduce the duplicated code. The subsequent sections will analyse how these 
modularity properties alter due to the application of change scenarios (Section 3.3). 

4.2   Quantifying Modularity Stability 

After producing an overview of the modularity attributes in the base versions we 
proceeded with the analysis regarding the stability of these attributes. In the following 
we present the most significant results for each modularity attribute. 
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The variations in the modularity metrics are traced back to the implementations in 
order to determine the causes of instability. Generally, any variation to their values is 
considered undesirable. Often the variations are unavoidable, particularly when a 
certain module is the focus of an implementation change. Thus, we categorise the 
variation in the values as either being unavoidable or negative. Unavoidable 
variations occur when a component that is directly related to the affected concern is 
altered. For example, if a scenario targets the GUI concern, then variations in the 
metric values for the view related modules are generally expected and unavoidable. 
However, if unrelated modules are affected, then these should be considered as being 
negative variation. As a result, the approach with the most stable design is the one 
which minimises the number of negative variations. 

Concern Measures. The analyzed crosscutting concerns included concurrency, 
distribution, persistence, and exception handling. These were selected because they 
were the main modularization target either at the initial HW design decomposition 
(Sections 3.1 and 3.2) or subject to change when applying the scenarios described in 
Section 3.3. For the same reasons, other non-crosscutting concerns were also analyzed 
including the view and business layers of the HW architecture. Finally, the modularity 
of concerns relative to some key design patterns adopted during the system HW 
evolutions –  such as the Command and State design patterns [19] – were analyzed. 

From the analysis of SoC metric results, three distinct groups of concerns 
naturally emerged, with respect to which type of modularization paradigm presents 
superior stability. The following set of figures illustrates the relative variations 
between versions in the Java, AspectJ and Caesar implementations. When no bar for a 
particular implementation is present, this means no variation in that particular 
measure was observed for the corresponding scenario. We do not distinguish in the 
graphics the difference between an increase in a metric value and a drop in a metric 
value. 

Concerns with Superior AO Design Stability. Most of the concerns that present a 
widely-scoped crosscutting nature have presented superior design stability when 
implemented using AO techniques. This includes concurrency, persistence and 
distribution, with the sole exclusion of exception handling (discussed later). All of 
these concerns were modularized into aspects from the first AspectJ and CaesarJ 
implementations. Fig. 4 presents the metrics results for the concurrency concern, the 
representative of how concerns in this group have behaved. In general, the concern 
diffusion over components (CDC) metric is less affected on AO implementations as 
the initial modules seem to cope well with newly introduced scenarios and the 
changes are localized in these modules.  

The concern diffusion over operations (CDO) metric also presents a very superior 
result for the AO implementations. This difference largely comes from the 
quantification properties in AO, where the use of declare statements and regular 
expressions in pointcuts eliminates the need for some operations. For example, in the 
specific case of concurrency, the timestamp behaviour affects CDO in the OO 
implementation (particularly in Scenario 2), but has less influence on the values for 
AO version, where it is implemented with advice and intertype declarations (or 
bindings in CaesarJ). The results for concern diffusion over lines of code (CDLOC) 
provide evidence that AO implementations present better stability.  
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Fig. 4. Changes in the SoC metrics for the concurrency concern 

Concerns with Superior OO Design Stability. Concerns that are widely scoped but 
that do not have a crosscutting nature, such as view and business; have presented 
slightly superior design stability in the OO implementation. Fig. 5 presents the 
metrics results for the view concern. In general, this type of concern is already well 
modularised by OO decompositions and this modularisation is stable throughout the 
changes. AO implementations do not visibly modify this OO modularisation, but the 
transfer of some functionality affects the stability of these concerns. Using the view 
results as an example, we observe that the concerns are spread over the same number 
of more components (CDC) in AO. That is because the AO implementations not only 
suffer from the same unavoidable changes as OO, but also may present some negative 
changes, such as new pointcuts having to be introduced to aspects related to the view 
layer. In contrast, the OO implementation will have the necessary functionality 
inserted directly to the view layer and so will not impact the CDC metric. The number 
of operations per concern (CDO) also shows the same general trend. The concern 
diffusion over lines of code (CDLOC) results provide additional evidence of the 
superiority of OO decompositions for these concerns, because the AO 
implementations are more instable with respect to how certain concerns interact with 
each other (Section 6). 

 

Fig. 5. Changes in the SoC metrics for the view layer 

Concerns with no Stability Superiority Observed. Some concerns have not presented 
explicit superiority in either of the paradigms. These include the exception handling 
(EH) concern and also the more localized concerns, such as the Command and State 
patterns [19]. As can be observed in Fig. 6, both paradigms experience similar high 
degrees of variation in all the metrics for the EH concern. This similarity occurs for 
two main reasons. First, the EH concern was not explicitly modularised in the AO 
implementations until the last scenario (Section 3.3). Before that, the exception 
handlers were just aspectized when they related to other concerns that were also 
aspectized. For example, when concurrency was aspectized, its handlers were also 
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removed from the base code and encapsulated in a new module. Second, AO 
implementations were not able to promote modularization gains in terms of this 
concern even in Scenario 9. The general problem with using AO to encapsulate EH is 
that it usually involves negative changes through the creation of artificial operations 
in order to expose context information for the aspectized exceptional behaviour [12]. 

When analysing the results for the more localized concerns we were confronted 
with very distinct and irregular patterns. It was not possible to generalize about their 
stability, because specific characteristics of the concerns and their applications play a 
major role on the results. For example, the State pattern was very stable and similar 
for all metrics in both paradigms. However, the Command pattern was stable through 
several scenarios but was largely affected by the last two scenarios, in a similar 
proportion on AO and OO. We conclude that, due to the narrow scope of these 
concerns, their stability largely depends on the localization of the change. 

   

Fig. 6. Changes in the SoC metrics for the exception handling concern 

 

 

Fig. 7. Size metric variation through the 10 versions 

Size Measures. Both OO and AO implementations present very similar stability with 
respect to size measures. Fig. 7 shows the absolute results for Weighted Operations per 
Component (WOC – i.e. complexity of operations based on number of parameters) and  
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Vocabulary Size (VS – i.e. number of components) through the versions. The VS curves 
show that AO implementations tend to be worse, and this difference gets larger, 
rendering AO less stable regarding the number of components needed to modularize the 
concerns. The Lines of Code (LOC) curves, present an inverted result, where AO 
implementations scale better, due to being able to avoid repeated code. 

The WOC curves show that AO implementations are usually more complex, as 
they introduce pointcuts and advice that are counted as operations. In general the 
curves are very similar. However, AO performs better for functional changes (i.e. 
Scenario 9), due to better quantification, but poorly in the exception handling scenario 
as new advice and artificial methods must be created for each handler. As a general 
conclusion for the size attribute, AO is more stable with respect to LOC and for 
functional changes, while OO is better in VS and in exception handling. 

Coupling and Cohesion Measures. Due to the strong synergy between coupling and 
cohesion, we will discuss these two attributes together. The Depth of Inheritance Tree 
(DIT) metrics are largely the same and do not bring any interesting insights. In this 
section we will refer to Coupling Between Components (CBC) and Lack of Cohesion 
over Operations (LCOO) metrics as coupling and cohesion. 

Fig. 8 displays the graphs for the average cohesion and coupling per component. 
Observing the curves, AO implementations have generally much more stable values 
for both coupling and cohesion. It can be seen that most of the scenarios actually 
improve their values, while OO implementations are affected in different ways. The 
only major changes for AO occur in version three and the last two scenarios. In the 
former, the cohesion values are worsen due to hook methods having to be inserted in 
the base code for the newly added aspects to be executed correctly. In general, AO 
implementations were much better and more stable with respect to coupling and 
cohesion attributes due to the generic capabilities of AO techniques. 

 

Fig. 8. Average results for cohesion (left) and coupling (right) per component throughout the 
versions 

5   Change Impact Analysis 

This section describes the third assessment stage where we quantitatively analyze to 
what extent each maintenance scenario entails undesirable change propagations in the 
AO and OO HW implementations.  
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5.1   Impact of the Change Nature 

This phase relies on a suite of typical change impact measures [3, 4] presented in 
Table 2, such as number of components (aspects/classes) added or changed, number 
of added or modified LOC, and so forth. The purpose of using these metrics is to 
quantitatively assess the propagation effects, when applying the various changes, in 
terms of different levels of abstraction: components, operations, lines of code and 
relationships. The lower the change impact measures the more stable and resilient the 
design is to a certain change.  

Table 2. Change propagation metrics for Java (J), AspectJ (A) and CaesarJ (C) 

 Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sc. 8 Sc. 9 
J 24 12 2 3 4 4 4 12 5 
A 29 16 3 0 4 4 2 12 6 

Added 
Components 

C 25 16 3 0 4 4 2 12 6 
J 2 6 14 25 1 24 2 23 46 
A 2 5 4 0 1 26 2 19 52 

Changed 
Components 

C 2 4 5 0 1 25 2 18 21 
J 4 4 10 0 0 0 0 62 5 
A 2 7 1 0 0 0 0 40 16 

Added 
Operations 

C 2 7 1 0 0 0 0 32 17 
J 3 61 15 19 2 25 1 21 94 
A 0 57 3 0 1 25 0 10 94 

Changed 
Operations 

C 0 57 6 0 1 25 0 14 99 
A 5 12 8 0 2 0 2 0 16 

Added Pointcuts 
C 5 12 11 0 1 0 0 4 9 
A 1 0 0 0 0 1 2 3 1 

Changed 
Pointcuts 

C 1 0 0 0 0 1 0 4 1 
J 72 59 123 294 6 1 0 653 109 
A 4 34 4 0 1 2 0 290 60 Added LOC 
C 8 35 6 0 1 2 0 300 70 
J 4 53 12 40 1 107 1 13 177 
A 2 50 0 0 5 110 4 9 141 Changed LOC 
C 2 52 5 0 5 110 4 5 187 

Adherence to the Open-Closed Principle. AO solutions generally require more new 
components to implement a change. In comparison the OO implementation require 
existing components to be modified more extensively to implement the same change. 
This behaviour is confirmed in the change propagation metrics (see Table 2) whereby 
much more extensive changes (in terms of added operations and LOC) occur in the 
OO version. Up to 30% fewer operations and up to 60% fewer LOC are added in the 
AO implementations throughout the scenarios. This indicates that the AO solutions 
conform more closely to the Open-Closed principle [18] which states that “software 
should be open for extension, but closed for modification”.  

The scenario which demonstrates this difference best is Scenario 3. The purpose of 
this scenario is to isolate the update method calls, which is implemented in the form 
of the Observer pattern [19]. This involves modifying a sub-set of the command 
classes in the view layer by removing the update calls. However, the OO 
implementation requires further modification, for example a variety of classes within 
the business layer require modification (marked on Fig. 1) so that the update method 
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is called when the state of business objects alters. The AO implementation is able to 
quantify and capture these state changes via pointcuts and so the Observer pattern is 
able to be applied by introducing new components rather than modifying existing 
ones (the added modules are marked on Fig. 2). 

In order to analyse the results more closely and to identify specific reasons for 
these changes the results will be split into three categories: the first examines groups 
of scenarios where the AO versions are superior, the second focuses on scenarios 
where the AO and OO implementations are comparable and the final category looks 
at scenarios where the OO version is superior.  It is interesting to note that these 
categories can be mapped to particular types of change.  

Propagation of Functional Changes is Superior in AO Designs. When considering the 
scenarios (1, 3, 8 and 9) where the AO solutions are superior, they require fewer 
changes to components (in terms of modified LOC, added LOC, etc). It is also clear 
that these changes are absorbed in other ways. For example, we can see that pointcuts 
must either be modified or added in these scenarios. Equally, the OO implementation 
requires new fields/parameters to be added directly to the base classes in order to 
implement the changes in these scenarios. These additions can be directly absorbed 
within new aspects. What is not clear from analysing these metrics in isolation is 
which type of change propagation is more desirable and which paradigm provides the 
better mechanism for absorbing these changes. When considering the earlier 
modularity metrics we can conclude that the AO implementation has less impact on 
these attributes and so AO provides better mechanisms for absorbing these changes. 
Note that the changes performed in Scenario 4 reflect an attempt to improve the 
modularity of the distribution concern, as this concern was already well modularised 
in the AO versions no changes were necessary. 

AO and OO are Comparable when Implementing Perfective Changes. In the cases 
where (Scenarios 5, 6, and 7) the AO and OO implementations have similar change 
propagation metrics, the modifications are related to improving the design structure of 
HW in terms of extensibility and reusability. These improvements to the design 
generally target OO concepts, this can be inferred from the metrics due to the low 
number of pointcuts added or modified in these scenarios. For example, two of the 
scenarios (6 and 7) involve splitting a class implementation in two parts. As this 
structure is repeated in both the AO and OO implementation it is natural that they are 
both affected in similar ways. This is also reflected in the earlier modularity metrics. 

OO Implementation of the State Pattern was Superior. Finally, the OO implementation 
is clearly superior in Scenario 2, which basically involves the instantiation and 
inclusion of the State pattern [19]. Although the added state update behaviour is 
crosscutting, it does require ‘hook methods’ to be inserted in the base components for 
advice to be executed at the correct events. This results not only in the same structural 
changes as the OO implementation (introduction of methods, fields and inheritance 
relationships) but also in new aspects to be added. In comparison, the OO solution can 
encapsulate the same behaviour using OO mechanisms and, as a consequence, 
reduces the need for changes across modules. There are other scenarios (such as 
Scenario 1) where the suitability of using AO is questionable but due to the fact that 
multiple concerns are involved (view and distribution), the AO solutions are able to 
capture these relationships more cleanly and, so, offer improvements over OO. 
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5.2   Overall Stability Measurements 

From these change propagation metrics various attributes can be extracted that can be 
used to comment on the implementations’ stability. One of the most significant results 
from these stability metrics is the number of unique components modified through the 
nine scenarios applied. For each paradigm 72 different modules are modified 
throughout all the scenarios. It may appear at first glance that because this measure is 
the same the stability is also the same. However, the actual number of potential 
modules that could be modified has to be taken into account. In the case of the OO 
design, this is 1113 potential classes (the cumulative figure of all classes in all 
versions). The AO versions have over 250 more classes/aspects that could be 
modified. As a result, the fact that the number of modified modules is the same for the 
AO versions despite this, illustrates that the AO implementations are more stable.  

Similarly, when analysing the changes to the LOC that are made to these 72 
modules the AO solutions again show more stability. For example, in version 10 of 
the OO implementation of HW there are in total 5453 LOC of which 32% of these 
have either been modified or added during the course of the study. This is compared 
to around 4000 LOC in version 10 of the AO implementations of which only 18-19% 
have been added or modified. 

6   Concern Interaction Analysis  

We have presented results concerning the first three assessment phases. This section 
discusses the last evaluation stage: the scalability of OO and AO solutions from the 
viewpoint of stability in concern interactions. 

The analysis of the data gathered based on the modularity and change impact 
metrics (Sections 4 and 5) makes it evident that most of the concerns involved in HW 
are scattered and tangled with each other over the system classes. For example, the 
class HealthWatcherFacade implements a business layer facade (Fig. 1), but also 
incorporates code for distribution- and persistence-specific functionalities. The 
implementation of certain system concerns and the way they interact through the 
system modular decomposition change as the system evolves. As a consequence, this 
section discusses how the concern interactions changed over time in the three HW 
implementations. The goal is to observe how changes relative to a specific concern 
“traversed the boundaries” of other concern implementations and/or generated new 
undesirable inter-concern dependencies. 

6.1   Concern-Interaction Categories  

We have performed an analysis of AO and OO design stability when there are 
interactions involving two or more concerns. In order to support such an analysis, we 
have observed different categories of interactions involving the analyzed concerns. In 
the context of the HW system, there are different ways in which the concerns interact 
with each other: invocation-based interaction, interlacing, and overlapping. Our 
classification of concern interactions is based on how the concern realizations share 
elements in the implementation artefacts, which have been defined and exploited in 
previous studies [12, 15]. 
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Invocation-based Interactions. This is the simplest form of composition. The 
invocation-based interaction occurs when a component realizing the first concern is 
connected to a component realizing another concern based on one or more method 
calls. An example of this form of interaction is when the business facade class calls 
persistence methods to invoke transaction management in the OO HW version.  

Interlacing. In this case, implementations of two concerns, C1 and C2, have one or 
more components in common [12, 15]. However, C1 and C2 are implemented by 
different sets of methods, attributes and statements in the shared classes. In other words, 
the involved concerns have common participant components, but there is no common 
element implementing both. We can identify interlacing either in the component level or 
in the method level. Both component- and method-level interlacing produce concern 
tangling but at different levels of abstraction. Alternatively, in the method-level 
interlacing the implementations of concerns C1 and C2 have one or more methods in 
common. However, different pieces of code in these methods are dedicated to 
implement both concerns. An example of this interaction category is the concurrency 
control implemented in some methods of data management classes of the OO HW 
version. In these methods there is exception handling code that is not related to the 
concurrency control concern. 

Overlapping. The implementations of concerns C1 and C2 share one or more 
statements, attributes, methods, and components. This dependency style is different 
from interlacing because here the shared elements contribute to both concerns rather 
than being disjoint. Depending on the kind of elements participating in the interaction, 
it can be classified as component overlapping, operation overlapping, or attribute 
overlapping. The update methods are examples of operation overlapping. They are 
used to guarantee that in a distributed environment the modified data in one (client) 
machine is reflected to another (server) machine and that persistence data modified in 
memory is also reflected to the persistence mechanism. 

6.2   Concern Interactions in the Base Versions  

We explore the categories of concern interactions (previous subsection) in the base 
version in order to provide a general idea of how each pair of concerns depends on 
each other. This first analysis allows us to track the stability of these dependences 
through the software scenarios. We have analyzed all the 15 possible pair-wise 
concerns of the three HW implementations (Java, AspectJ and CaesarJ) and we have 
found many similarities between them. The results regarding the types of interactions 
are essentially the same for AspectJ and CaesarJ; therefore, we discuss them as AO 
issues. Our first observation is that, in general, concern boundaries are wider in the 
OO implementation, i.e. the concerns interact in more components in OO than in AO. 
Although the AO compositions usually present fewer components in the concern 
boundaries, these components usually present more intricate interactions. Fig. 9 
presents two illustrative instances of concern interactions, concurrency with 
distribution and concurrency with persistence. The left side of the pie chart (Fig. 9) 
shows that 5 components present interlacing between the concurrency and distribution 
concerns in the OO version, while only 3 components present interlacing of these 
concerns in the AO version. In this interaction, it is not clear that components in the 
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concern boundaries of the AO design have stronger interaction. On the other hand, in 
the concurrency with persistence interaction (Fig. 9, right side) the same number of 
operations (17) realizes the interaction between these two concerns. However, AO 
composition has more methods with overlapping of concerns (6 against 2). 
Furthermore, the AO version has fewer components with interlacing which also 
means a stronger dependency of concurrency with persistence in these components.  

 

Fig. 9. Pie charts of interactions between concurrency and distribution concerns (left) and con-
currency and persistence concerns (right) in the base versions 

6.3   Scalability of Aspectual Decompositions 

In this section we focus on the stability of each pair of concerns through the 
implementations. We verify for each concern the number of components it shares 
with other concerns. This kind of analysis supports assessment of concern 
modularization and stability because it shows whether the inter-concern coupling 
drops with the software evolution or not. Table 3 shows the obtained results for each 
pair-wise concern in terms of the number of components in the boundaries. Due to 
space limitations, this table presents only the results for the base version and 
Scenarios 3, 6 and 9 for all the 15 compositions. We have selected these versions 
because (i) they group together each 3 sequences of evolution and (ii) they represent 
scenarios with more extensive changes, including architectural ones. 

The results in Table 3 show that, in general, concern interactions are more stable in 
the AO implementations through all scenarios. Only one composition, concurrency 
with view (see Table 3, line 9), presents stability in favour of OO. Alternatively, 5 
compositions in AspectJ (and 4 in CaesarJ) present stable results: business with 
concurrency (line 1), concurrency with distribution (line 6), concurrency with EH 
(line 7), concurrency with persistence (line 8), and persistence with view (line 15). 
This last one is not totally stable in CaesarJ, but a minor variation occurs between the 
Scenarios 3 and 6. Besides, all the other AO compositions involving at least one 
crosscutting concern show an almost stable behaviour, such as business with 
persistence, distribution with view and business with distribution. This stability of AO 
solutions is a result of the better separation of crosscutting concerns. For instance, 
concurrency is far more stable in all of its compositions in AO solutions than in OO 
ones, which is explained by its better modularization (Section 4.2). 

Similarly to concurrency, the concern interaction analysis summarized in Table 3 
also shows that the distribution concern is far better separated in the AO versions. All 
compositions of distribution (lines 2, 6, 10, 11, and 12 of Table 3) have fewer shared 
components in AspectJ and CaesarJ. Although the introduction of the Adapter pattern 
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Table 3. Number of shared components of the pair-wise concerns through the HW implementat-
ions in Java (J), AspectJ (A) and CaesarJ (C) 

Base Scenario 3 Scenario 6 Scenario 9 Concerns 
Interaction J A C J A C J A CJ J A C 
1 Bus + Conc 3 5 5 4 5 5 5 5 5 6 5 5 
2 Bus + Dist 29 10 18 32 8 19 22 8 19 29 11 23 
3 Bus + EH 26 30 29 28 30 29 29 30 29 38 41 40 
4 Bus + Per 23 12 12 24 10 10 24 10 10 34 12 12 
5 Bus + View 18 19 19 17 21 20 17 21 20 25 29 28 
6 Conc + Dist 5 3 3 7 3 3 8 3 3 8 3 3 
7 Conc + EH 7 11 11 9 11 11 10 11 11 11 11 11 
8 Conc + Per 4 3 3 6 3 3 6 3 3 6 3 3 
9 Conc + View 0 2 2 0 3 2 0 3 2 0 2 1 

10 Dist + EH 40 32 32 44 29 29 33 29 29 37 31 32 
11 Dist + Per 28 16 16 32 13 13 21 14 14 27 15 15 
12 Dist + View 16 5 5 16 2 2 4 2 2 6 2 2 
13 EH + Per 40 32 31 42 30 29 41 30 29 48 34 32 
14 EH + View 20 24 24 23 28 28 23 28 28 32 38 39 
15 Per + View 17 5 5 15 5 5 15 5 4 22 5 4 

(Scenario 5) improves the separation of the distribution concern in the Java version 
and it also drops interaction of this concern, this improvement is not enough to make 
it superior to the AO implementations. In spite of the superiority of AO compositions 
of crosscutting concerns, OO is no worse in the interaction of non-crosscutting 
concerns. In fact, in most of compositions involving either business or view, OO is 
comparable to AO implementations or even better. For instance, the OO composition 
of concurrency with view has no shared classes in the base version and this situation 
remains stable in the following scenarios. This result is not surprising, as OO 
decomposition is suitable to modularize non-crosscutting concerns. 

As mentioned earlier and also presented in Table 3, CaesarJ has very similar results 
to AspectJ. However, there are some exceptions which present significant difference, 
such as the business with distribution composition. In this composition the CaesarJ 
solution is worse than AspectJ, but better than Java. The difference between AspectJ 
and CaesarJ is due to their distinct composition mechanisms. The AspectJ solution 
uses declare parents construct to introduce the Serializable interface into classes, but 
CaesarJ does not provide such a construct. Therefore, this piece of code which is part 
of the distribution concern remains scattered in the CaesarJ implementation which 
contributes to the high interaction between business and distribution. 

7   Discussions 

7.1   Observing Ripple Effects 

A further analysis performed was centred on identifying ripple-effects caused by 
changes that propagate between unrelated components. For example, if a change 
targets the Servlets then it would be hoped that these changes would be localised to 
the view layer. Any change which targets a particular concern and is propagated to 
other concerns is considered a negative change. Typically scenarios which target a 
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crosscutting concern (i.e. Scenarios 5 and 7 which target persistence and distribution) 
the AO paradigm is able to localise these changes to specific components. In 
comparison the change has to span multiple layers/concerns in the OO version. 

In scenarios which typically target the layers of the HW system the OO 
implementation performs better or comparable to the AO implementations. This is 
interesting as the AO implementation has the same core behaviour (in terms of layers) 
so the changes should propagate in a similar manner. As in the OO version, the AO 
core layers require modification but changes also propagate to other (seemingly) 
unrelated concerns. For example, Scenarios 1 and 6 specifically target the view layer; 
the OO implementation is able to contain these changes entirely within this layer. 
However, the AO versions require other additional concerns to be modified such as 
distribution and pattern implementations but not at the expense of modularity. 
Although the OO implementation also has these dependencies, the increased tangling 
prevents the modifications from spreading to multiple components but do affect more 
operations and LOC. A similar ripple-effect occurred between the persistence and 
concurrency concerns within Scenario 3, whereby the AO implementations required 
modification of the timestamp behaviour but the OO implementation did not due to 
the differences in the levels of concern locality (Section 4.2). 

However, within the same scenario (Scenario 3) and Scenario 5 the OO 
implementation demonstrates a significant weakness that occurs in the majority of the 
scenarios. This is the high fragility [2, 28] of the HealthWatcherFacade class (see 
Fig. 1) which is caused by the extremely high tangling of concerns within this class. 
Although this may not seem a bad property due to the fact that it appears to reduce the 
ripple-effects it does increase the complexity and reduces the modularity. 

Generally, we can conclude that ripple-effects occur in both the AO and OO 
versions. The improved SoC within the AO versions causes the changes to propagate to 
more unrelated components, making the changes less obvious as unexpected 
components are affected. In turn the OO version requires more extensive changes within 
each affected component making these changes more obvious. These differences lead to 
a notion of ‘deep’ and ‘wide’ ripple-effects. The AO ripple-effects tend to go ‘deeper’ in 
that the changes propagate to unrelated components. In comparison the OO ripple-
effects tend to go ‘wider’ in that the ripple-effects tend to more extensively affect the 
modified components. 

This notion is illustrated in Scenario 8, which focuses on modifying the business, 
view and data layers. The changes in the OO version tend to be located in each of 
these layers (marked on Fig. 1), however, the AO version requires additional 
behaviour to be added in seemingly unrelated components (marked on Fig. 2). The 
concurrency concern within OO implementation requires a concurrency manager to 
be inserted directly into the new classes added (hence being “wider”). In comparison 
the AO versions needs extra logic to determine which class is currently being 
accessed and then delegate to the appropriate concurrency manager and is “deeper” 
by affecting an unobvious component. 

It would appear that wider ripple-effects were less problematic due to the changes 
having to be made being more obvious. However, when taking into account the earlier 
modularity metrics it is clear that if these ripple-effects could be identified or limited 
then the AO paradigm would be superior. Pointcut fragility [29] is the significant 
factor that contributes to these AO ripple-effects. For example, in Scenarios 6 and 8 
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the re-factorings and component additions that take place invalidate pointcuts that are 
used to apply the Observer pattern. This results in unintuitive changes having to be 
made. This trade-off that must be accounted for; future AO techniques should take 
this pointcut fragility into account and allow more expressive and semantic-based 
pointcuts to be specified. 

7.2   Architecture Stability Analysis 

Our policy to analyse design stability at the architecture level followed the same 
principle and relied on similar measures as in the implementation level. The analysis 
at the architecture level was supported by a modularity suite of metrics based on 
measures for SoC, component coupling and cohesion, and interface complexity. 
However, now the metrics are defined in terms of architecture-level abstractions, such 
as components, interfaces and operations [30]. First, we compared the modularity of 
the OO and AO HW architectures in the base version. For SoC, we assessed the 
scattering of the concerns over the design elements and the architecture description. 
The considered concerns during the analysis were: distribution, persistence, 
concurrency, exception handling, view, and business. 

The most significant difference between the two solutions was related to the 
persistence concern. The persistence concern was present in many more architectural 
elements in the OO solution than in the AO solution. For instance, in the OO 
architecture more components (5 vs. 2), more interfaces (22 vs. 9) and more operations 
(154 vs. 45) have the persistence concern. The reason for this phenomenon is that, in the 
OO architecture, the persistence-specific exceptional events are propagated from 
components in the data layer to components in the view layer. Therefore, these 
persistence exception events are handled by almost all interfaces between the data, 
business, distribution, view layers. In the AO architecture, these exceptions are caught 
and treated via the persistence aspect earlier in the interfaces of the data layer and do 
not propagate through the other interfaces and respective layers. 

After applying the metrics to the base version, we applied the metrics for both  
OO and AO architectures in the other versions of the HW system. The goal was to 
analyse the impact of the evolution changes in the architecture modularity. The 
scenario which changes impact most in the architecture was Scenario 8. This occurred 
because this scenario demanded the addition of a number of operations in the 
interfaces between each connected pair of layers. Note that Scenario 8 impacts the 
boundaries of every layer in Fig. 1 and Fig. 2. For instance, it affected IFacade, 
HealthWatcherFacade and IHealthUnitRep interfaces in the distribution, business and 
data layers respectively. In fact, the measures showed that the persistence concern is 
more stable in the AO architecture. As the persistence concern is not well 
modularized in the OO architecture (as stated earlier), every operation added in 
Scenario 8 had to address the persistence concern. Each new operation had to 
consider the persistence-specific exceptional events. The concern metrics highlighted 
that the number of operations containing the persistence concern in the OO 
architecture increased 38 (from 154 in the base version to 192) in the version 
produced after applying Scenario 8. In comparison, the increase that occurred in the 
AO architecture was just one operation. This result confirmed the previous results for 
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the implementation level that Scenario 8 favours the AO implementation of the 
persistence concern due to the quantification mechanisms. 

8   Related Work and Study Constraints 

8.1   Related Work 

The current body of empirical knowledge on AO techniques cannot explain the 
influence of compelling aspect interactions on long-term design stability. Lopes and 
Bajracharya [31] presented an analysis of modularity in AO design using the theory of 
modular design developed by Baldwin and Clark [32]. They have studied the design 
evolution of a Web Service application where they observed the effects of applying 
aspect modularisations using Design Structure Matrix and Net Option Value. It was 
an interesting first experiment that observed that there was added value in introducing 
aspects into an already modularized design. It contributes to an earlier work by 
Sullivan [33] by: (i) providing a realistic and modern example, and (ii) the analysis of 
effects of AOP on the value of the overall design. However, this study involved only 
the application of only two kinds of aspects: logging and authentication. 

There is little related work focusing either on the quantitative assessment of AO 
solutions in general, or on the empirical investigation about the design stability of AO 
decompositions. Substantial empirical evidence is missing even for crosscutting 
concerns that software engineers face every day, such as persistence, distribution, and 
exception handling. There are several case studies in the literature involving the 
“aspectization” of such pervasive crosscutting concerns [10-12]. However, these 
studies mainly focus on the investigation on how the use of AO abstractions supports 
the separation of those concerns. They do not analyze other effects and stringent 
quality indicators in the resulting AO systems. Furthermore, they do not quantify the 
benefits and drawbacks of AO techniques in the presence of widely-scoped changes. 
A number of empirical analyses need to be carried out, since certain typical criticisms 
that AOP has suffered [34] and the initial studies have exhibited some controversies 
even when aspectizing classical crosscutting concerns, such as transaction 
management [10, 11], exception handling [12, 13], and design patterns [14-16].  

We have previously performed a far-reaching maintenance study [24], but our 
target was aspects specific to multi-agent systems. In addition, the aspects used in this 
system have a localized scope and tend to affect a few modules; they do not have a 
major influence on the architectural design of the system. In addition, the introduced 
changes were restricted to simple changes in few classes or aspects. Also, we did not 
evaluate aspect interaction issues. In another study, we evaluated how AspectJ scales 
to modularize pattern compositions [15]. However, the stability of the aspectized 
pattern combinations was not assessed. Our previous study documented in [19] 
evaluated the scalability of the AspectJ implementation by performing some initial 
changes to the HW system. These changes correspond to a subset of the changes 
made in Scenario 8. However, this previous study did not examine concern 
interaction, design stability or the affect on design principles. Nevertheless, the study 
presented in this paper has confirmed and expanded in scope our previous findings. 
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8.2   Study Constraints 

Although it can be argued that using a single system for such a study is a limiting 
factor we feel that the HW system is representative of modern systems and the 
scenarios applied are extensive and so reduces the necessity of additional systems. 
Naturally it is desirable to involve more systems and more approaches. 

As stated previously one of the aims of this study was to perform a general 
comparison of the OO and AO paradigms. This was achieved by re-implementing 
HW using CaesarJ, however, a similar OO re-implementation was not performed for 
Java. As such the study could be viewed as a Java vs. AO comparison but we feel this 
would be unfair. Java is a good representative of OO techniques and re-implementing 
it would be a wasted exercise. Equally, it would be difficult to reproduce a similar 
implementation due to the techniques used in the OO implementation i.e. Servlets, 
etc. Fundamentally for this type of study we require good representatives of AO 
techniques for the base language. Unfortunately this range does not exist for other OO 
languages and so limits the benefits of studying other OO languages.  

The concerns analysed tended to focus on ones that were more significantly 
affected by the changes applied in either the AO or OO versions. Due to the nature of 
the study and the fact that separation of concerns is central to this study the 
crosscutting concerns were naturally the ones which varied the most. We have also 
presented results of other non-crosscutting concerns (e.g. view and business layers) to 
provide a balanced comparison of the AO and OO paradigms. 

The applicability and usefulness of some of the specific metrics used in this study 
has often been questioned such as the cohesion measure. We accept the criticism of 
such metrics. However, it is important to consider the results gathered from all 
metrics rather than just one metric in particular. The multi-dimensional analysis 
allows us to grasp which measurement outliers are significant and which are not. In 
fact, when drawing conclusions from the results we have considered all the gathered 
data and never relied upon one single piece of data from this set. 

9   Concluding Remarks 

The transfer of aspect-oriented technologies to mainstream software development is 
largely dependent on our ability to empirically understand their positive and negative 
effects through design changes. Software designs are often the target of unanticipated 
changes and, as a result, incremental development has been established as the defacto-
practice in realistic software development [1, 5, 6]. This study has followed these 
practices to evolve a real-life application in order to assess various facets of design 
stability of object-oriented and aspect-oriented implementations. This included the 
analysis of the implementations modularity, change propagation, concern interaction 
analysis and identification of architectural ripple-effects. 

From this analysis we have discovered a number of interesting outcomes. Firstly, 
the AO implementations tend to have a more stable design particularly when a change 
targets a crosscutting concern. Furthermore, changes tended to be much less intrusive 
and more simplistic to apply in the AO implementations. This indicates that aspectual 
decompositions are superior especially when considering the Open-Closed principle 
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[18] (Section 5). Significantly, both OO and AO implementations exhibited high 
stability in high-level design structures but with a certain architectural ripple-effect 
occurring within the OO design when persistence-related exceptions had to be 
introduced. In certain circumstances aspectual decompositions did perform worse. 
These tended to occur when evolutionary scenarios targeted classical design patterns 
such as Command and State [19], applying these design patterns violated pivotal 
design principles, such as narrow interfaces and low coupling. Even though as stated 
above the AO implementations tended to require less invasive changes, sometimes the 
modifications propagated to components that were not the direct target of the change 
scenario. The overall conclusion regarding the design stability and concern interaction 
analysis (Section 6) is that aspect decomposition narrows the boundaries of concern 
dependencies, however, with more tight and intricate interactions. 
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