
Targetted Improvements
Focusing improvement to maximize benefits and minimize impact

Andre Oboler & Simon Lock
Computing Department

Lancaster University
Lancaster, UK

Oboler@comp.lancs.ac.uk, Lock@comp.lancs.ac.uk

Ian Sommerville
School of Computer Science

St Andrews University
St Andrews, UK

ifs@dcs.st-and.ac.uk

Abstract— In the creative environment where research takes
place not everything can be improved. The creative “essence” of
research must be undisturbed while “accident” wasted effort is
reduced to a minimum. In this paper we discuss the types of
knowledge at play in the research environment, introduce a new
abstract model of knowledge, and using the model explain how
we should focus our effort on research students and on particular
types of knowledge transfer in order to gain an over all
improvement in our research processes. Just as we teach to
facilitate student learning, so too can we supervise, teach and
guide to facilitate better and faster researching in our academic
computer science departments.

Computer science education, process improvement, knowledge
management, research environment

I. INTRODUCTION
With increased pressure on the research community a way

is needed to improve efficiency and productivity. Researchers
in Computer Science are in a prime position since research
approaches to date have been ad hoc and thus finding
improvement (any improvement) should be a simple matter. To
cater for the wide breadth of work in the discipline we believe a
high level abstraction of the problem and similarly high level
meta solutions are needed at least initially. There will always
be new research students constructing their approach to
research for the first time. We must gain new insight into the
research process and into the way researchers develop their
approaches. With this knowledge we can facilitate improved
research for them and greater and faster advances for the field.

Before we begin we must understand what we mean by
research and what we consider an improvement in it.
Improving research efficiency is an optimization problem
under certain constraints. Should your definition of research or
your measure of improvement differ from ours the approach we
recommend may not be for you.

This paper speaks of research set within certain boundaries.
Research is “original investigation undertaken in order to gain
knowledge and understanding” [1] according to the UK’s RAE
2001 guidelines designed to measure research and allocate
funding accordingly. Put another way it is “creative work
undertaken on a systematic basis in order to increase the stock
of knowledge” according to an OECD definition and perhaps
more importantly to the Higher Education Statistics Agency

who quoted it [2, 3]. Computer Science Research is taken to
mean research that focuses on the creation, adaptation or
analysis of computer systems. We limit ourselves to the typical
projects in the university research environment, those involving
a student and a supervisor, with occasional input from colleges
working in the same area. The typical computer science
research project is an idea subject for this discussion as it is
effectively a task of pure knowledge in various forms, from
creative ideas, to instantiations of algorithms in code and
advances in our understanding of the world through
experimental results. The lessons drawn may well apply to a far
wider areas of research, but we have not systematically
examined this.

To begin, we divide the knowledge needed for research in
our field (and presumably all others) into three types. All are
required for research, yet only two of these types may be
realistically improved. By creating this separation we invalidate
the notion that research as a whole cannot be improved because
it is all a creative process. Fredri

Having isolated the types of knowledge we can target for
improvement, we discuss how knowledge can be abstractly
measured. We present a model, drawing from it concrete ideas
on improving efficiency, and explaining why current software
engineering fails to meet the requirements. Finally we discuss
one possible way of taking these ideas from abstraction to
reality and implementing them in a real research environment.

II. TYPES OF KNOWLEDGE
Lord Kelvin [4] in 1883 said that "When you can measure

what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it… it
may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of science". We present
here three types of knowledge followed by a conceptual model
of research as an individual’s path to new knowledge. As we
try to model something as ethereal as “knowledge” we may not
be at an advanced stage of science, but we have at least
advanced to the beginning of knowledge, a definition, a model
and an encompassing context for further work. Our work
relates old concepts in philosophy (stretching back to biblical
times) to the modern Information Science and Knowledge
Management domains, and finally applies these concepts to the
problem of research which is at its core no more than the

pursuit of knowledge. To improve the research processes
capacity for knowledge generation it is vital we have an
understanding of the various types of knowledge, who has
them, how they can be created and transferred, and from this
we can see how to aid the transfer and facilitate the generation
of relevant knowledge while not expending effort to capture
data that is superfluous to researchers needs.

In the old testament three types of knowledge are
mentioned, Wisdom “chochma”, Insight “bina” and
Knowledge “daat”. Rav Kook, an eminent Jewish scholar and
philosopher explained the distinction saying that Wisdom
provides the underlying framework that allows understanding.
Insight is a vision of the future and how things may fit together,
the Hebrew word Bina is related to the Hebrew word “boneh”
meaning “to build”. Knowledge (Daat) means a complete
attention to detail, i.e. to the facts of the current issue [5]. This
is summarized in Table 1. While this is not the only scheme for
understanding and partitioning knowledge, it does provide a
well establish and useful starting point for discussion.

Table 1 The Biblical System

Type Explanation

Wisdom underlying framework

Insight vision of the future and path

Knowledge attention to detail / facts

In a research setting one can expect a supervisor to have
wisdom that the student must master; the student and
supervisor together provide insight when they meet and discuss
issues; the student alone will generally generate the knowledge
that the research is based upon. As Lord Kelvin says, without
this building process to test and prove our theories, through
coding, experimentation and measurement, we have only the
beginning of knowledge. Domain knowledge (which is really
Wisdom, not knowledge in this frame work) and a new idea
complete with theories on its use and relevance are useful
insight, but are not enough to qualify as scientific thought. This
is where the postgraduates come in with their knowledge
generation and measurement, in the case of computer science
usually through the creation of software to test the theories and
the production and manipulation of data and information.

One organization that does teach scientists about different
types of knowledge is the Intergovernmental Oceanographic
Commission (IOC), a part of UNESCO. The IOC maintains a
digital library as a training tool on Oceanographic Data and
Information Exchange [6]. The libraries overview article on
Information Technology and Scientific Communication by
Jonathan Hey uses the Data, Information, Knowledge, Wisdom
Chain (DIKW) to separate types of knowledge. Hey notes that
“the concepts themselves, not to mention the transitions
between them still resist clear definition” and proceeds in the
paper to use metaphors from every day English to analyse and
explain the differences between them. Early work on DIKW
did not include data, and some researchers have included a
higher stage of “understanding” [7] or “Enlightenment” [8].
The model is shown in chain form in Figure 1, taken from [9].

Figure 1 DIKW Chain (from [9])

Hey notes that “like data, we conceptualize Information As
A manipulability object”. This separates Data and Information
from Knowledge and Wisdom. Based on metaphor usage of
Data, Information and Knowledge Hey notes that
“significantly, knowledge appears to be a quite different
‘entity’ to either information or data.” He finds it
metaphorically similar to a liquid or sticky substance that can’t
pinned down and notes its personal nature.

The DIKW chain is a useful partition of knowledge, and
consistent with our previous model, but adding the “physical
artifacts” of raw data and information. The DIKW model also
adds a temporal relationship which we believe an over
simplification. Data may be ordered to produce information,
and any researcher with the same knowledge could do the same
job of data to information conversion, but at the level of
wisdom and insight the creativity of the researcher plays a role.
Even at the level of knowledge ones wisdom and insight play a
role in creating cognitive links which may differ for different
people presented with the same information.

The lesson for those wishing to improve the computer
science research experience is that the data to information stage
should be as automated as possible. There is a difference
between students gaining information that could be provided to
them, and them gaining wisdom. Sometimes one must move
from data to information in order to acquire wisdom, but this is
not always needed and if kept to a minimum can greatly reduce
wasted effort. For example, not all students understand that the
process of coding standard algorithms at undergraduate level is
about acquiring wisdom and once gained those algorithms
should be reused rather than recoded. This needless recoding
(seen in research students work) leads invariably to longer
coding times and the introduction of avoidable bugs [10].

While Knowledge Management tries to treat everything as
information, at the other extreme many have been of the
opinion that “research is pure inspiration and therefore the
research process cannot be improved”, in our past work we
have rejected this notion [11]. In previous work looking at
academics working in computer science departments across
Australia we have shown figures as high as 40% using an
unplanned approach [11]. In a US sample, which was skewed
(72%) towards software engineering lecturers, 20% still replied

that their approach was unplanned and a further 20% chose not
to use any recognised software development life cycle but said
they had another approach [11]. This shows that a systematic
approach is not used by a large percent in both the over all
population, and even amongst those who we would consider
up-to-date and experts in the area there is deep reluctance. Of
interest is that the sample bias occurred as a survey e-mailed to
hundreds of computer science department heads in the US for
distribution was in fact mostly passed to the departments
software engineering lecture. This was confirmed not only by
the data, but also by a number of e-mails back from heads of
department helpfully informing us of this initiative. The bias
was removed from the Australian sample by simply referring to
software engineering in different terms. The
compartmentalization of software engineering knowledge as
something taught to students but not applied to computer
science research gives some concern. Based on these results we
reject the notion that supervisors work in a perfect way and
students can learn through osmosis.

We have previously introduced an outline for a software
development process (known as RAISER/RESET) designed for
the research environment and argued that due to its specific
needs, researchers require a different approach to that of
industry [12]. The key reason for this is that researchers work
not just with information (their observable output), but also
with generating more knowledge, wisdom and insight about
their topic, this in turns allows more data and information to be
produced, but the information is a by-product in the pursuit of
knowledge.

To further develop our approach we returned to the
definition of research: “creative work undertaken on a
systematic basis in order to increase the stock of knowledge”
[2]. The task, to improve research, is to make it easier to be
systematic without impacting on the creative process. This new
work puts this in a context that allows further understanding
and analysis. Using out model of knowledge we see that the
application of insight (a creative process) cannot be considered
as a process for improvement. We have already suggested
automating as much of the data to information transfer process
as possible. Looking at our model, we can add that knowledge
generation and the transfer of wisdom are additional processes
ready for systematic improvement in efficiency (time) and
effectiveness (depth of understanding). We have created a
model and an abstraction of a unit of measurement to further
examine this concept.

III. MEASURING KNOWLEDGE
The Standard Knowledge Unit (SKU) is a hypothetical unit

of measurement we introduce here as a metric for our model.

There is no way of measuring such a unit, but abstractly, a
SKU is a finite amount of new and relevant knowledge. It is an
additional step along the road from the knowledge you have
now to the knowledge you will have in future. In Figure 2 we
introduce the pipe model, a hypothetical model that allows us
to apply a degree of abstract thinking to SKU optimisation.

The pipe model shows knowledge as steps of work
measured in SKUs, thought with varying level of effort

attached to each of them. The effort can be measured as the
volume filling the pipe to move one SKU forward.

More formally we can adapt the definition of Work from
physics. Imagine all effort is moving forward at an angle to the
direct path, with some effort always wasted. This gives the rule
that: The Work (W) done by a researcher when exerting a
constant effort () and gaining a fixed amount of useful
knowledge () equals the magnitude of the displacement, s
(how much was learnt), times that component of which is
along the direction of (i.e. increase in relevant knowledge).
Put another way, work (W) is the part of the effort that is
effective, multiplied by the time this effort is applied.

What we observe is that different stages of the research
process have different amounts of wastage. By allowing
researcher to focus more of their effort on knowledge
generation and automating time consuming aspects we can
increase research efficiency markedly.

We can also further develop the idea of knowledge being a
series of steps to “right size” the research process. In addition
to efficiency increases, we can begin further into the process
(though better transfer of Wisdom), and we can end earlier by
correctly identifying when enough steps have been made that
the required contributed of new knowledge is assured. While
some might argue that these steps only work for new
researchers, as has previously pointed out, it is new researchers
who are doing the bulk of the detailed knowledge work. A gain
for these researchers is a gain for the entire knowledge system.

In addition, there seems to be a mythological assumption
that more established academics know something the rest of us
don’t. Waite explained that “the major problem is that research
projects tend to be opportunistic rather than planned” [13]
therefore this can’t be true. Bertrand Meyer [14] adds "I know
about designing software, I don't know about designing
research". An improved way for approaching research more
systematically can potentially benefit even the experts.

IV. CHANGE WITHOUT DAMAGE
In today’s academic environment there are pressures

pushing for faster through-put of PhD students. These range
from official pressures on supervisors to ensure students
complete “on time” to students own demands as funding runs
out. With students ever more the consumers of education, the
student voice in particular is getting louder. How do we
balance the demand for quality research with the push for
quantity and rapid progression?

Prof Farr poses the problem when he remarks that he
thought "there's a bit of a trend to turn research into a process
that can be managed like an industrial process and I think that
is really antithetical to the nature of research...we still need to
recognise that it is at its heart a creative and somewhat
unpredictable process" [15]. Pressman [16] however suggests
the first step to a solution “the implication (to me) is that any
SE approach for research software (that would have any chance
of adoption) would have to be agile and evolutionary in
nature”. This is due to the fast pace of change in research as
knowledge is acquired and plans adapted. In the case of

research students this is an accelerated process as students’
underlying understand is still forming and greatly influenced by

the work at hand.

Figure 2 The effort vs. progress pipe Model

What we need is a way to improve the research process that
does not damage the insight of the researcher nor devalue the
wisdom of either them or their supervisor, nor limit creativity
and innovation. By focusing on the knowledge transfer process,
that is the way researchers (particularly students) gain their
background understanding, we can add value to wisdom. By
helping researchers record their insight we can share these
visions with others and prevent a researcher losing touch with
them unintentionally. By finding the right tools we can
automate aspects of the research work. Finally, through a loose
and adaptable planning tool we can make better use of time,
allowing more consistent levels of productivity and greater
quality in the final stages when time pressures inevitably start
having their effects.

V. FACILITATING CHANGE
It’s obvious that students still need to do the volume of the

leg work. One major improvement would be to reduce their
leg work. It would be even better, if we could give them a map
and the tools to undertake (and document) their journey more
efficiently. A journey with an initial plan and the tools to
reduce effort is still a journey of discovery. It’s just quicker,
has fewer dead ends and greater thought before taking a
diversion.

So how do we achieve this? What form should this map and
tool set take? We suggest starting by asking researchers to plan
their route. With a written plan, supervisors can highlight skills
and tools students will need to know well in advance of the
need arising. Relevant papers on the methodology may come to
mind. This is currently done in some sense during the project
proposal stage, however many proposals are (like other
required documentation) written after the fact, that is after the
direction has already been worked out and agreed. In other
cases the proposal is very vague and completed early on. In
both cases it tends to be a static document. Instead (or given
external requirements, as well,) we propose that computer
science researchers create their research plan as set of classes
with comments explaining what each class does, what steps are
planned and what tools and skills will be needed. This new idea
is not the static research proposal many are used to, but rather a
live “process plan”.

The key difference between a proposal and a process plan is
that the plan adapts and changes, at times on a daily basis. The
plan can also be recorded as short hand notes, to be expanded
upon later. There is no due date, no “finalizing” of the plan and
no penalty for adapting the project as new information is
learned.

A live document discusses the mechanics, approach, and
questions that still need to be answered. We’ve reached this
conclusion after three years of incremental improvement on a
facilitation process for students undertaking Masters level
research projects. Our conclusion is that research improvement
can only come with self-reflection and a quality peer review
process. It has much in common with more familiar facilitation
processes such as that to improve teaching standards. Our
approach integrated guidance and tools both for the job, and for
reflection on it.

Originally we used a journal approach, later some of the
process information was integrated into internal code
comments, and finally the process plan idea took shape. In
implementation, students in the final year of our three year
experiment were given a “generic template” java source code
file. The file contained a class called ResearchProcess and
within this class, a list of subclasses was declared. Each
subclass referred to a different aspect of the research process.
The subclasses were:

• ProblemDefinition

• LiteratureReview

• MethodologyCreation

• ResultsCollection

• AnalysisOfResult

• DrawConculsions

• CreationOfOutput

Some of these contained further subclasses, and all were
documented with questions about this stage to help get students
started. Once basic information was recorded students were
encouraged to adapt the model to suit their own purposes.

a b c d e f

SKUs

Three students used the process model, and did so very
extensively. One of these in a post project interview described
the benefit of the process model approach as “clarity, also in
terms of neatness and presentation”. Another student, when
introduced to the process model saw immediate benefit, they
explained, “I have a learning difficulty that effects my memory
of sequential reasoning, which means that, if in 10 minutes
time you meet me outside and ask to go through everything
we've discussed today I couldn't do it, I have all the pieces but
can't link them together” the student went on to say that the
idea of a structured document for storing their ideas would help
them over come this difficulty. After their project the same
student commented, “although it was very handy and I got
quite a lot out of it for the report, if I’d done that sooner I
probably would have got a little bit extra in terms of planning”.

A tool called dOxygen was used in conjunction with the
process plan. The Open Source dOxygen is a package that can
generate class diagrams from code and comments. We’ve
increased its relevance by providing addition guidance on
documenting code for research [17], providing process
templates, and integrating a technical review into our
facilitation process. We’ve also begun to use dOxygen along
with the template as a meta-tool to graphically model students’
process plans and generate the map mentioned above as a class
diagram. Each time a student changes their plans it takes only a
click to update the diagram and documentation. Documentation
is a useful tool for discussion and the sharing of wisdom,
particularly with a supervisor or through self-reflection. There
is an additional benefit as much of the information can be
copied to the final thesis or papers, increasing the information
value and decreasing the work that takes place in the final
stages when time is critical.

At the end of the day it’s not so important our researchers
get to their initial goal. Any novel contribution will do, as long
as it is of interest and they know how they got there. Add a
plan not only lets our researcher know how they got there, but
also lets them know where they are going as the research
progresses. These plans may be of use not only to them but to
future researchers who continue the process. Better yet, it
might allow us to share insight, increase wisdom and retain a
little more of the knowledge our students generate.

VI. MAKING IT EASIER TO TACKLE HARD PROBLEMS
The problem of improving research is hard, largely because

research problems themselves are by their nature difficult to
solve. Brooking in his famous paper “No silver bullet - Essence
and Accidents of Software Engineering” [18] note how the
hard part of software development is the problem solving
essence. He notes how breakthroughs to that time had tackled
the accidental and not the essential difficulties. By dividing up
our types of knowledge we separate the accident and essential
factors and allow improvement to be focused on removing the
remaining accidental factors. We also eliminate not the
essential problem, but the side effects that come with complex
problems – such as difficulties in communication, or size of the
task of keeping documentation up to date in a rapidly changing
research project. This won’t solve hard problems, but it will
make them easier to tackle.

In discussing the DIKW model we mentioned the additional
final stage of enlightenment which some include. In our initial
work which led to the RAISER/RESET SDLC, one of our case
study subjects noted that initially class diagrams were used and
found useful for learning about the existing code, yet slowly
they became a burden as the information in them no longer
needed to be looked up and was rapidly changing [19-21]. “We
were so involved in it that everything was in our heads. We
were sort of living and breathing it” [21] the time it was taking
to update document “just got radiculous” [21]. The participants
in the project were at this point at a level of enlightenment
about their project. In our current research with MSc student
projects we advise students to create high level architectural
models of their projects, but to leave detailed class diagrams
for dOxygen to generate from their source code. Not only does
this save them time, it also ensures the accuracy of the class
diagrams and better abstraction of the architecture. This
reduced non essential effort.

Our recommendation of the process modeling tool allows
researchers to be more systematic with their project planning
while still being highly adaptable over time. We borrow the
concept of a rapidly improving and changing information
source from participants’ knowledge of code, and have the
information entered using their usual programming tools to
reinforce this. The hard problem of ideas must still solved by
the researcher, but by recording and presenting these ideas it
becomes possible to facilitate more useful communication with
their peers and supervisor. This allows additional wisdom and
insight to be provided to them, in exchange for their own
knowledge and perceived wisdom (their explicit rational for
decisions made) being presented and explained. This bridges
the knowledge gap, a non essential hurdle to making research
progress, but one that allows far greater collaboration once
subdued.

Gorman notes that as a consequence of the modern
‘information explosion’ “instead of storing information in our
brains, we design our environments to make it easy to find the
information we need.” [22] Our approach to documentation
moves students from storing information, to planning how it
can be made available and used. This is based directly on past
case study observations. Gorman also cites Wegner who said
that “knowing where things are to be found can be a more
important consequence of education than merely knowing
things” [23]. Our approach provides a map, or at least the
outlines of a map that students can fill in based on their
understanding and then check over with their supervisors. For
supervisors and later researchers it records essential
information about rational, design or the lack thereof in certain
aspects of a piece of work. We may not generate this essential
knowledge, but with a new approach to research we enable
knowledge that is currently lost to be saved. This in turn makes
it easier to solve the harder problems.

Our discussion of knowledge and pipe model will we hope
encourage others to find areas for improvement, and steer clear
of approaches that disrupt the essential tasks. With our own
work on the Software Engineering in the Research
Environment project (SERE) we have created one approach,
but this only a start. With a better understanding of the nature
of research far more improvements can be made. Computer

science research is not just behind most established fields in
eliminating accidental work, it is also behind the computing
industry where appropriate tools and methodologies have been
worked on since the advent of software engineering. We may
have a beginning to knowledge, but there is much work still to
be done.

VII. CONCLUSION
Knowledge comes in three forms. In the beginning the

supervisor is king, bringing wisdom, knowledge and insight. In
time as the student grows, the knowledge they generate on a
particular subject will surpass that of the supervisor. They will
absorb much of the relevant wisdom of their supervisor. When
they meet, the insight of one will be shared with the other. For
all of this to happen though, knowledge is required. Detailed
knowledge, the sort generated with practical experience and
experimentation. This is where the research students excels as
they explore their chosen question and gain a unique insight
into their work. To improve research, this time consuming step
of knowledge generation must be made faster and more
efficient, with the generated insight and knowledge being
shared more easily. The research student, properly equipped
and with a realist and adaptable plan (process model) can move
quickly and efficiently through their work and better share their
findings with others.

References

[1] HERO, "RAE Circular 2/00," vol. 2006: Higher

Education Research Organisation, 2000.
[2] OECD, The Measurement of Scientific and

Technological Activities - Frascati Manual 2002 :
Proposed Standard Practice for Surveys on Research
and Experimental Development Frascati, France:
Organisation for Economic Co-operation and
Development, 2002.

[3] HESA, "HESA Finance Record Coding Manual,"
2004.

[4] W. T. Lord Kelvin, "Lecture to the Institution of Civil
Engineers, May 3rd 1883," in Popular Lectures and
Addresses, vol. 1. London & New York: Macmillan
and Co., 1891, 1883, pp. 80.

[5] A. I. Kook, Ein Eyah, vol. II.
[6] J. Hey, "The Data, Information, Knowledge, Wisdom

Chain: The Metaphorical link," Intergovernmental
Oceanographic Commission 2004.

[7] R. L. Ackoff, "From Data to Wisdom," Journal of
Applied Systems Analysis, vol. 16, 1989.

[8] M. Zeleny, "Management Support Systems: Towards
Integrated Knowledge Management," Human
Systems Management, vol. 7, 1987.

[9] D. Clark, "Understanding," in
http://www.nwlink.com/~donclark/performance/unde
rstanding.html 2004.

[10] A. Oboler, "USE CSR," in School of Computer
Science and Software Engineering, vol. B. Computer
Science (Honours): Monash University, 2002.

[11] A. Oboler, "Examining the use of Software
Engineering by Computer Science Researchers,"
presented at In Proceedings of Education Students'
Third Regional Research Conference, Graduate
School in Humanities University of Cape Town,
Cape Town, South Africa, 2003.

[12] A. Oboler, D. M. Squire, and K. B. Korb, "Software
Engineering for Computer Science Research -
Facilitating Improved Research Outcomes,"
International Journal of Computer and Information
Science, vol. 5, pp. 24-34, 2004.

[13] W. Waite, "Re: Use of software engineering in
computer science research, personal communication,"
A. Oboler, Ed., 2002.

[14] B. Meyer, "Interview with Prof Bertrand Meyer,
Interview conducted for the USE CSR project," 2002.

[15] G. Farr, "Interview with Prof Graham Farr," in
Interviews from the USE CSR Project, A. Oboler, Ed.
Melbourne: Monash University, 2002.

[16] R. Pressman, "Re: SE practise in Comp. Sci.
Research, personal communication," A. Oboler, Ed.,
2002.

[17] A. Oboler and I. Sommerville, "Research
Documentation Guidelines: Capturing knowledge,
improving research," in Fourth International
Conference on Information Technology : New
Generations (ITNG 2007). Las Vegas, Nevada, USA:
IEEE Computer Society, 2007.

[18] F. P. Brooks, "No silver bullet: essence and accidents
of software engineering," presented at Information
Processing 86, North Holland, 1986.

[19] L. Fitzgibbon, " Interview with Leigh Fitzgibbon," in
Interviews from the USE CSR project, A. Oboler, Ed.
Melbourne: Monash University, 2002.

[20] L. Alison, "Interview with Dr Lloyd Alison," in
Interviews from the USE CSR project, A. Oboler, Ed.
Melbourne: Monash University, 2002.

[21] J. Comley, "Interview with Josh Comley," in
Interview conducted for the USE CSR project., A.
Oboler, Ed. Melbourne: Monash University, 2002.

[22] M. E. Gorman, "Types of Knowledge and Their
Roles in Technology Transfer," The Journal of
Technology Transfer, vol. 27, pp. 219-231, 2002.

[23] D. M. Wegner, "Transactive Memory: A
Contemporary Analysis of the Group Mind," in
Theories of Group Behavior, B. Mullen and G. R.
Goethals, Eds. New York: Springer-Verlag, 1986.

