
Reflection
Improving research through knowledge transfer

Andre Oboler & Simon Lock
Computing Department

Lancaster University
Lancaster, UK

oboler@comp.lancs.ac.uk, lock@comp.lancs.ac.uk

Ian Sommerville
School of Computer Science

St Andrews University
St Andrews, UK

ifs@dcs.st-and.ac.uk

Abstract— It is through our mental models of the world that we
understand it. 5dvances in science are nothing more than
improvements to the model. This paper presents the development
and refinement of our model of the research process as we seek to
understand and improvement the process through three
generations of case studies. We conclude by introducing an
approach to help manage and plan research pro>ects.

(rocess imrpovement, knowledge trans7er, research
environment, process modeling, so7tware engineering education

I. INTRODUCTION
This paper presents the results of three years of case studies

focusing on researchers in a RAISER [1] setting and examining
ways of improving productivity for now, whilst also capturing
more knowledge to improve productivity in the future. Past
work examined the use of Software Engineering by Computer
Science Researchers [2] and created the RAISER/RESET
Software Development Life Cycle [1] to meet the needs of the
research environment. The RAISER/RESET approach split the
long-term work into Research (carried out by researchers under
a RAISER methodology) and Development (to be carried out
by professionals engineers attached to an academic institution
under RESET guidelines). The RAISER phase aims to increase
productive for the research as well as increasing the amount of
knowledge generated as a result of the work. The Development
phase organises this data and reengineer software code to make
it easier for other researchers to extend the existing work.

In this work we develop an approach that meets RAISER
guidelines and experimentally tests it. Our hypothesis is that
this approach can facilitate an improved research process i.e.
allow researchers to work in a more systematic way, avoid
potential pit falls, and improve knowledge transfer between
themselves and others, and between their development role and
reporting of output. All this requires that the approach has a
low enough burden to encourage adoption. The null hypothesis
is that the default unplanned approach is equally good and the
only approach researchers find acceptable i.e. researchers see
no benefit in the approach and it is either not adopted at all or
found to be a burden with higher cost than value.

Our work uses MSc students at Lancaster University who
undertook research projects between 2004 and 2006. As very
early stage researchers, MSc students were seen as more likely
to try new approaches. As students with hard deadlines and

project that only last about 5 months they were also seen as
being very discriminating when it came to their own cost /
benefit analysis of potential tools. Successful adoption of a tool
is itself a validation of a tool having greater benefit than cost.
Our case studies also involved surveys, interviews, observation
and analysis of students’ final products. After each year
analysis was conducted and our model and methodology
adjusted to provide an improved experience for the following
years set of students and greater over all clarity about the
RAISER enabled research process. Other factors such as
literature and discussion with colleagues also influenced the
development of the model between cycles. Our latest model
and tool to facilitate its implementation (both presented here)
may allow others to improve the way they assist research
students, or indeed allow expert researchers to document and
further improve their own approach.

We begin this paper by outlining the experimental design
employed. Background on our case study based experiment is
provided. We discuss the development of our model of the
improved research process and how the results of our
experiment have provided the rational behind a focus on
knowledge transfer and critical reflection as a key part of the
improvement process. The process model, a key tool to
facilitate the improved model is introduced. We conclude with
a brief discussion on the cost and benefit of our approach and
its viability for real world adoption.

II. E]PERIMENT DESIGN
Case study design requires that goals be established before

data is collected. It has been stated there is a lack of clarity on
the underlying principles in the software development process,
on the effect of various methodologies on the process, and on
what constitutes a better product [3]. Software development
forms a key part of the work the researchers we focus on
undertake. By adopting a definition of research it becomes
possible to focus on the needs of a software development
process and how interventions on the process can be usefully
assessed. The OECD definition of research is “creative work
undertaken on a systematic basis in order to increase the stock
of knowledge” [4]. The underlying principle is to allow
researchers the freedom to creatively explore while still
ensuring there is a systematic basis. A better product is a
greater increase in knowledge. Our goal is to improve the
generation of knowledge (by transferring more mental

information into knowledge in comments and the thesis) and
promote and support both the principle of creative freedom and
of systematic approach.

We chose to use a multi case holistic study [5] as a platform
for our experimentation. Based on the qualitative software
engineering framework in the landmark paper by Basili, Selby
and Hutchens [6] we designed our study in the blocked subject-
project form. Our work is carried out in vivo and makes use of
experts (including the MSc Students’ supervisors). Our case
study approach was designed according to Guidelines outlined
in Kitchenham, L. Pickard and S. L. Pfleeger [7] who along
with Basili [8] have classified our form of approach as a type of
formal experimentation.

Our hypothesis is that the RAISER approach can facilitate
an improved research process, this necessitates the effort
expended being seen as beneficial to the researcher (rather than
third parties), and that the researcher will encounter less
problems or mitigate them. Our null hypothesis is an unplanned
approach would be equally good or better. Observation of tool
adoption, surveys (via e-mail to all student or participants) and
interviews on initial and final impressions of the approach and
tools, and a case study examination (using interviews, technical
reviews, surveys and e-mail communication) of each project,
the student’s experience, and how they cope with or avoid
problems form a basis for our analysis. We also examine
students overall course work marks and project marks. While
the number of students involved and variation due to other
factors make highly statistically significant results unlikely, we
believe we have enough participants to at least get an indication
objectively supporting or refuting the qualitative results.

Glass [9] suggests the solution to improve software
engineering is greater appreciation for “ad hoc” approaches. In
computing, “ad hoc” is defined as “contrived purely for the
purpose in hand rather than planned carefully in advance” [10].
The lack of planning is specific to the definition in a computing
context. The Latin root of ad hoc means “to this”, an approach
can be planned “to this” specific development process without
being made up on the fly. Our null hypothesis refers to
unplanned approaches, i.e. ad hoc in the stricter computer
science sense.

From our perspective the experiment takes place in an
evolutionary paradigm. Basili [8] used “the study of
improvements to methods being used in the development of
software” as an example of an evolutionary paradigm. Basili
also mentions revolutionary change citing as an example “the
proposal of a new method or tool to perform software
development in a new way” [8]. From the view point of the
students both the experiment and the nature of doing research is
a revolutionary development. To provide students with stability
changes will take place between cycles rather than during the
period when MSc students are active.

III. THE E]PERIMENT
Over the course of three years we offered each cohort of

MSc students the opportunity to take part in a trial designed to
assist them with their MSc project. At the end of each year the
assistance offered was to be reviewed and updated. This meant

about 16 students took part in each version of the experiment.
As the model of research was improved in an evolutionary
manner some artefacts available from the first year unchanged
have now been evaluated and in some cases used by a
significant number of students. Other artefacts were developed
as a result of repeated evolutionary improvement.

The trial involved giving students access to a restricted
website containing tools, guidelines and other artefacts.
Meetings and reviews were also offered. The opportunity to
participate was present in a lecture which explained the
RAISER/RESET approach and the goal of our research. In the
first year students who signed up were randomly split into a
control group (with website access but nothing else) and an
experimental group (who were asked to also have meetings and
given additional reminders about tools and when to use them).
The first major evolutionary change to the experiment was the
decision not to have a control group in following years. This
was due to an observation that about half the student self select
to participate and there is no significant difference between the
control group and non participants. This suggested that tool
availability is not enough and guidance and communication
played a large part in enabling self-reflection. It is the self-
reflection that enables researchers (like teachers) to improve.

We gathered results through initial surveys and exit surveys
collected from as many MSc students as possible (participants
and non participants). For participants we also conducted
interviews combined with introductions to artefacts on the
website. In years one and three there were also joint meetings
with students and supervisors. All interviews were recorded.
Students’ final reports and code were collected and examined.
After doing this for each year level we revised our model.

IV. MODEL DEVELOPMENT
In the first year process descriptors (e.g. tools, guides,

recommendations) were created and placed on the website.
Students chose which tools they used. Examples of tools were
dOxygen (an open-source software package), a getting started
document (a guide) and a research journal (a template). This is
presented in Figure 1.

In the second year this evolved with process descriptors
being introduced not as plug-able components, but as more
abstract models for students to consider and adapt to their own
style and needs. The move from tools to a process focus and
the use of process descriptors is based on a very influential
paper by Osterweil [11] describing how “software process are
software too”. He explains that “a process is a vehicle for
doing a job, [while] a process description is a specification of
how the job is to be done”. He states that these descriptors can
be at a low level (e.g. our tools) or a high level. Taking the high
level approach we arrived at the idea of a processor descriptor
template which models the entire research process and provides
options at each stage. Changes for the second year focused on
helper descriptors, such as the creation of an installation and
settings guide for dOxygen, a technical review preparation
checklist and sample input and output to support the coding
guidelines and allow students to quickly assess its cost and
value. The second year model is shown in Figure 2.

Figure 1. First Year model

After year two it became clear improving the research
process had much in common with improving student
learning. Teachers can facilitate student learning but they
cannot learn for students. In Figure 3 the model of research
includes a critically reflective role for researchers. During
this reflection the researcher chooses existing process
descriptors, but then works in an evolutionary way to review
and change their own process and process descriptors. They
also develop and adapt their process through communication
with peers. In the third year we have introduced a tool to
enable communication, self-reflection and planning in a
lightweight and agile manner.

This development of the model allows us to adjust the

underlying research process so that the role of process
improvement becomes one of facilitating enhancement and
an individual (but systematic) approach. This is a significant
step forward particularly in the research setting. Glass (2002)
claims “computer science academics looking for… the one
true approach to build software systems” he juxtaposes this
with software practitioners constant complaint that their
project is different. Our approach now bridges this void. It
enables systematic improvement, yet still ensures and in fact
enhances creativity. Our key tools for facilitating this change
are the process modelling tool described in the next section
and the model present in Figure 3 which has been presented
to students taking part in the third cycle.

Figure 2. Second Year model

Figure 3. Third Year model

This development of the model allows us to adjust the
underlying research process so that the role of process
improvement becomes one of facilitating enhancement and
an individual (but systematic) approach. This is a significant
step forward particularly in the research setting. Glass [9]
claims “computer science academics looking for… the one
true approach to build software systems” he juxtaposes this
with software practitioners constant complaint that their
project is different. Our approach now bridges this void. It
enables systematic improvement, yet still ensures and in fact
enhances creativity. Our key tools for facilitating this change
are the process modelling tool described in the next section
and the model present in Figure 3 which has been presented
to students taking part in the third cycle.

V. RESULTS
In addition to the development and improvement of the

model we can present the following results on adoption,
expected and perceived burden, user impressions, case study
lessons, and finally statistical impact on results.

In each year about half the MSc students opted to
participate. Students consistently felt the approach
encouraged them to do more software engineering than they
would otherwise do (an exception was a student with
industry experience who found the approach helped him
focus and reduce effort), yet feedback consistently indicted
that participation took the same or less time than on software
engineering than expected. Despite this limited effort
expended, all participants in the second year felt they had
benefited. In feedback one student noted how “it helps, as the
project grows, to keep a clear vision of it” another said that
“the tools you would be well advised to use are assembled
for you. Advice on coding, backup, versioning issues etc are
given without first having to ask the question”. The direct
link with knowledge transfer from project to report was
picked up by a few students, one said they were helped by
“code comments and the diary as a rough version of what I
wrote in the final report”. Another noted how it “helped

[with] organizing the work”. In the first year there was a
degree of disappointment by those selected for the control
group who felt they could have benefited more if they had
rather been in the experimental group. The experimental
group likewise felt they could have got more out of it if
they’d put in more effort. These comments are one of the
causes for the additional process deceptions in the second
year that aimed to lower the introduction burden and allow
students to more easily assess potential benefits. The students
found this helpful and this was indicated in the survey where
the sample dOxygen input and output was ranked the 6th
most useful tool, compared to dOxygen itself which ranked
8th (out of 16 tools). The fact that dOxygen was used by the
majority of the students and commented on very positively in
most students feedback shows the value not only of the tool,
but also of the process descriptor allowing fast evaluation.
While the installation and basic setting guide to dOxygen
was used by many students (in the second and third year) it
ranked a poor 10th.

The difference between student course work grades
(completed before they started their project) and their
research project grades are shown in Table I, this is divded
into participants and non participants for each of the first two
years. In the first year participants on average improved
marginally on their course work marks. In the second year
the improvement by participants over coursework grades was
higher at 5.33%. Both are variance of below 1 standard
deviation from the participants mean, but the second years
results are getting more noticeable. The third year’s results
are not yet available as the work is in progress, but with the
methods having been improved further and feedback so far
being even more positive than in the past it’s hoped this will
be reflected in the marks.

Short sessions for PhD students and established
researchers that introduce the tools, followed by interviews,
have indicated potential acceptance and an expectation of the
usefulness of the approach beyond MSc setting. Subjects
evaluated the tools purely on their merit and did not have

access to or knoweldge of the results or feedback from MSc
students.

TABLE I. ANALYSIS OF GRADES

 Coursework
Mean

Aro>ect Mean Aro>ect
improvement

(articipant
 :ear ;

"#$%&
'() "$*"+

"&$,-
'() .$-%+

/$#.

<on (articipant
:ear ;

"#$*/
'() *$%.+

"/$%&
 '() .$"/+

01$"-

=ean di77erence 1$&# #$#. !.#$
(articipant :ear

>
60.99

(SD 6.64)
66.32

(SD 8.86)
5.33

<on (articipant
:ear >

59.4
(SD 7.16)

58.51
(SD 10.4)

-0.53

=ean di77erence 1.95 7.81 B.CB

VI. IMPROVING YOUR PROCESS
In our final set of case studies we have introduced a tool

to assist student plan their research process, reflect on their
choices and requirements, and improve communication with
supervisors and peers.

Based on suggestions in Osterweil’s paper on software
processes being software too [11] we decided to encourage
students to use UML to model (at a high level) their personal
approach and plans for their research process. This is
effectively reapplying Osterweil’s ideas from 20 years ago
while taking into account other advances in software
engineering. Where we differed was a focus on high level
rather than low level process design and a view that models
would be more readable than code. Our solution however
does not involve the student drawing any diagrams.

From the lessons of experience with existing process
descriptors it is clear that class diagrams are more likely to
be updated if they do not need to be manually drawn. It
seemed advice to MSc students to use dOxygen to generate
class diagrams would apply as well to the diagram of the
process. Working on this assumption a model of the research
process was created as a template using java code stubs.
Based on the lessons from our model the file was created as a
generic template and students encouraged not only to fill in
the template but to adjust and rename the stage / tasks (the
classes) as they saw fit.

The generic template has classes for: definition, literature
review, methodology design, collecting results, analysing
results, drawing conclusions, and creating final output. With
in each class are a set of properties representing sub-tasks,
questions, or decisions related to that stage. The class also
has methods representing any tools to be used in this phase.
The detailed comment for the tools includes any instructions
or notes on getting and using the tool.

The tool can be using by a student to plan their approach,
discuss it with their supervisor, reflecting and update the plan
as the research develops. Being stored as just another code
file allows it to be integrated with any IDE allowing the
student to work seamlessly on their code and their process.

Having a generated API for discussion, complete with class
diagrams and modular in the same way as code allows not
only better communication but a more systematic reflection
in a way that is second nature to many computer scientists.

VII. CONCLUSION
From three years of case studies we see that more than

tools are needed to improve the process of developing
research software. Researchers need to plan and reflect on
their own process, even if it does regularly chance, and
experts need to provide opportunities for process
enhancement. We have presented knowledge transfer and a
lack of self-reflection as bottle necks in this process, and
have proposed a solutions including a new model of the
research process (which need to be communicated to
researches) and a tool to facilitate with this.

At a more meta level, our experiment indicates that it is
possible to have a development approach that is personally
tailored yet systematic, that incorporates innovative
approaches but encourages reuse and sharing of tools and
knowledge. Through experimentation we have developed
one such approach and the tools to facilitate it.

We do not suggest that our approach is perfect, but it
does provide a framework for improving the computer
science research experience and in particular the
communication and reflection of researchers over their
research process. We see future work adding new process
descriptors both generically and in more topic specific ways.
Our approach if adopted can assist not only new academics
but we believe experts as well.

REFERENCES
[1] Oboler, A., D.M. Squire, and K.B. Korb, Software

Engineering for Computer Science Research -
Facilitating Improved Research Outcomes.
International Journal of Computer and Information
Science, 2004. B(1): p. 24-34.

[2] Oboler, A. Examining the use of Software Engineering
by Computer Science Researchers. in In
Proceedings of Education Students' Third Regional
Research Conference, Graduate School in
Humanities University of Cape Town. 2003. Cape
Town, South Africa.

[3] Basili, V.R. and M.V. Zelkowitz. The Software
Engineering Laboratory: Objectives. in
Proceedings of the fifteenth annual SIGCPR
conference. 1977.

[4] OECD, The Measurement of Scientific and
Technological Activities - Frascati Manual 2002 :
Proposed Standard Practice for Surveys on
Research and Experimental Development 2002,
Frascati, France: Organisation for Economic Co-
operation and Development. 255

[5] Yin, R.K., Case Study Research: Design and Methods
2nd Edition. 1994, Beverly Hills, CA: Sage
Publishing.

[6] Basili, V.R., R.W. Selby, and D.H. Hutchens,
Experimentation in Software Engineering. IEEE
Transactions in software engineering, 1986: p. 758-
773.

[7] Kitchenham, B., L. Pickard, and S. Pfleeger, Case
Studies for Method and Tool Evaluation, in IEEE
Software. 1995. p. 52-62.

[8] Basili, V.R. The role of experimentation in software
engineering: past, current, and future. in

Proceedings of the 18th international conference
on Software engineering. 1996.

[9] Glass, R.L., Searching for the Holy Grail of Software
Engineering. Communications of the ACM, 2002.
DB(5).

[10] Howe, D., The Free On-line Dictionary of Computing
2005.

[11] Osterweil, L. Software Processes are Software Too. in
9th Int. Conf. on Software Engineering. 1987:
IEEE Press.

