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Abstract. Let v be a real polynomial of even degree, representing an electrostatic field and

w the equilibrium density for charge on a long conducting wire. The system of orthogo-

nal polynomials for w gives rise to 2 × 2 rational matrix differential equations Y ′ = AnY

which satisfy a recurrence relation. Here w is algebraic with Riemann surface E , and τn(t) =

det[
∫ t

−∞ xj+kw(x)dx]n−1
j,k=0 belongs to a Liouvillian tower over E . The solutions of Y ′ = AnY

give data for an inverse scattering problem that can be solved via the Gelfand–Levitan equa-

tion in terms of rational operator functions. Using linear systems, the paper shows that a

multiple of sinx is the scattering function for Lamé’s equation −f ′′ + 2℘f = λf and realises

elliptic potentials from periodic linear systems.
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1. Introduction

This paper is concerned with the scattering theory of linear differential equations

dY

dx
= AnY, (1.1)

where An(x) is a rational matrix function. Jimbo, Miwa and Uena [24, 25] introduced the tau

function as a tool for describing the deformations of this equation that preserve monodromy,

and found that tau functions have properties analogous to classical Abelian functions. In this

paper, we consider the differential equations that arise from orthogonal polynomials associated

with an algebraic weight. For applications to random matrices, see [41].

Such weights appear in electrostatics. We consider a unit of charge that is distributed

along an infinite conducting wire in the presence of an electrical field. The field is represented

by a real polynomial v(x) =
∑2N

j=0 ajx
j such that a2N > 0, while the charge is represented by

a Radon probability measure on the real line.
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Boutet de Monvel et al [8, 36] prove the existence of the equilibrium density w that

minimises the electrostatic energy. They proved that there exists a constant Cv such that

v(x) ≥ 2

∫

S

log |x− y|w(y)dy + Cv (x ∈ R), (1.2)

and that equality holds if and only if x belongs to a compact set S. Furthermore, there exists

g ≥ 0 and

−∞ < δ1 < δ2 ≤ δ3 < . . . < δ2g+2 < ∞ (1.3)

such that

S = ∪g+1
j=1 [δ2j−1, δ2j ] (1.4)

has g gaps. It is a tricky problem to find S for a given v, and [15, Theorem 1.46 and p. 408]

contains some significant results including the bound g+1 ≤ N+1 on the number of intervals.

Certainly, v has less than or equal to N local minima. When v is convex, a relatively simple

argument shows that g = 0, so S is a single interval [13, 26].

In section 3, we introduce the system of orthogonal polynomials of the first and second

kinds for w, and in section 4, derive the basic differential equation for this system. This has

the form of (1.1), where An is a 2 × 2 rational matrix function with simple poles at δj . We

also show that the An satisfy a recurrence relation under n 7→ n + 1, which is an instance

of a discrete Schlesinger transformation. As an illustration which is of importance in random

matrix theory, we calculate the An explicitly when w is the semicircular law; see [33]. The

recurrence relation involves the Hankel determinant of the weight w.

Definition. The nth order Hankel determinant for w for (−∞, t) is

Dn(t) = det
[

∫

S∩(−∞,t)

xj+kw(x)dx
]n−1

j,k=0
, (1.5)

and we let Dn = Dn(∞).

Schlesinger showed that when the positions of the poles δj are deformed, the solutions to

(1.1) satisfy a system of partial differential equations. The Schlesinger equations are described

in terms of a complex function τ(δ1, . . . , δ2g+2) such that (∂/∂δj) log τ give Hamiltonians in

involution, as in [24, 25]. In this paper, we consider tau functions of one variable that are

defined in terms of operators, as in [7].

Definition. Let I(t,∞) be the indicator function of (t,∞) and P(t,∞) : L2(w) → L2(w) be

the orthogonal projection given by f 7→ I(t,∞)f , where the variable t is often referred to as an

edge. Given a self-adjoint and trace-class operator K : L2(w) → L2(w), the tau function of K

is τ(t) = det(I − P[t,∞)K), and the potential is q(t) = −2 d2

dt2
log τ(2t). (Usually one assumes

that 0 ≤ K ≤ I).
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Let En : L2(w) → span{xj : j = 0, . . . , n− 1} the orthogonal projection. In Proposition

3.3 we note that the tau function of the edge is given by

det(I − P[t,∞)En+1) =
Dn+1(t)

Dn+1
. (1.6)

Chen and Lawrence [14] investigated a generalization of the Chebyshev polynomials to

[−1, α] ∪ [β, 1], and expressed their Dn in terms of Jacobi’s elliptic theta functions. Chen and

Its [12] considered the w that is analogous to the Chebyshev distribution on multiple intervals,

and found their Dn explicitly in terms of theta functions on a hyperelliptic Riemann surface.

In sections 5 we consider an algebraic weight w(x) = c
√

∏4N−2
k=1 (x− δj) so that w is a

rational function on a Riemann surface E . We show how the moments
∫ t
xjw(x) dx can be

expressed in terms of Abelian integrals on E , and hence we show that Dn(t) belongs to a

Liouvillian field extension of the rational functions on E . The connection between the number

of gaps g and the genus of E is subtle. In section 6 we show that if v is any quadratic, even

quartic or even sextic, then v has an equilibrium weight such that all of the Dn(t) can be

expressed in terms of elliptic and trigonometric integrals, or equivalently, in terms of rational

functions on algebraic curves of genus zero or one. Generally, a quartic potential gives an S

which is the union of two intervals, and the Schlesinger equations reduce to Painlevé’s equation

VI, as in [35, 19, 28].

Jimbo et al [24, 25] observed that the formal solution of (1.1) plays the role of the Jost

solution in inverse scattering. They introduced τn for (1.1) and showed that the logarithmic

derivative τ ′n/τn and the tau quotient τn+1/τn both have rational expressions in terms of the

coefficients of the formal solution; see [25, p. 409]. Following this approach, we consider the

correspondence between tau functions and scattering functions. For q(x) as above, we consider

Schrödinger’s equation − d2f
dx2 + q(x)f(x) = λf(x). Suppose momentarily that q is smooth and

rapidly decreasing as x → ∞; then the scattering function φ(x) is determined by the Jost

solutions f(x). Furthermore, we can recover q, and hence τ , by solving the Gelfand–Levitan

equation

φ(x+ y) + T (x, y) +

∫ ∞

x

T (x, z)φ(z + y) dz = 0 (0 < x < y) (1.7)

and noting that q(x) = −2 d
dxT (x, x). The form of (1.7) suggests that we introduce the Hankel

integral operator Γφ : L2(0,∞) → L2(0,∞) for suitable φ ∈ L2(0,∞) by

Γφf(x) =

∫ ∞

0

φ(x+ y)f(y) dy. (1.8)

The main purpose of this paper is to adapt these methods to establish a correspondence

τ ↔ φ when τ is an elliptic or trigonometric function such as arise in previous sections. In

section 7 we introduce the scattering function for an elliptic τ and modify the Gelfand–Levitan
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equation to establish a correspondence with trigonometric φ. In particular, we show that a

multiple of the sine function is the scattering function for Lamé’s equation with potential ℘ as in

[29]. The main idea is to introduce a linear system (−A,B,C) so as to realise φ(x) = Ce−xAB,

and then solve the Gelfand–Levitan equation by rational expressions in A,B,C and related

operators. Thus we obtain explicit expressions linking φ with τ .

In section 8 we consider tau functions that are rational functions on hyperelliptic curves,

such as arise from typical potentials v of degree greater than or equal to six. A real periodic

potential is algebro-geometric of the spectrum of −f ′′ + qf = λf has only finitely many gaps.

We obtain results which are analogous to those of section 7, by introducing appropriate δj(x)

and
√

∏g
j=1(λ− δj(x)) to play a similar role to w in earlier sections.

In section 9, we consider tau functions associated with kernels defined by the solutions of

(1.1). We introduce the matrix

J =

[

0 −1
1 0

]

, (1.9)

and apply a simple gauge transformation to (1.1). Then for a sequence of real symmetric 2×2

matrices Jβk(n), we consider solutions of the differential equation

J
dZ

dx
=

2g+2
∑

k=1

Jβk(n)

x− δk
Z, (1.10)

and, by analogy with the Bessel and Airy kernels from [40] and [41], form the kernel

K(x, y) =
Z(y)†JZ(x)

y − x
. (1.11)

We show that the properties of K depend crucially upon the sequence of signatures of the

matrices (δj − δk)Jβk(n). In Theorem 9.3, we introduce a symbol function φ from Z, a

constant signature matrix σ and a Hankel operator Γφ such that K = Γ†
φσΓφ.

In section 10, we derive an appropriate version of the Gelfand–Levitan equation for such

a φ, and solve by the method of linear systems from [5]. Thus we obtain the tau function as

a uniform limit of finite determinants.

2. The equilibrium measure

In this section we recall some known results. Given the special form of the potential, the equi-

librium measure and its support S satisfy special properties. To describe these, we introduce

the polynomial u of degree 2N − 2 by

u(z) =

∫

S

v′(z) − v′(x)

z − x
w(x)dx (2.1)
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and the weight w(x) such that w(x)2 = π−2(4u(x)− v′(x)2) and w(x) ≥ 0 on S. Let E be the

compact Riemann surface

E = {(x,w) ∈ C2 : w2 = π−2(4u(x)− v′(x)2)} ∪ {(∞,∞)}. (2.2)

Proposition 2.1. The support of the equilibrium density is S = {x ∈ R : 4u(x)−v ′(x)2 ≥ 0},
which is the image of the real points on E under π : E → C ∪ {∞} : (x,w) 7→ x. The real

endpoints δ1 < . . . < δ2g+2 satisfy

g+1
∑

j=1

∫ δ2j

δ2j−1

xkv′(x) dx
√

−(x− δ1)(x− δ2) . . . (x− δ2g+2)
= 0 (k = 0, . . . , g), (2.3)

w(x) → 0 as x tends to any endpoint of S, and

∫

S

w(x)dx = 1. (2.4)

Proof. By [11] and [34 , (91.12)], the endpoints of S satisfy (2.3). See [36, 8, 37].

We have

w(x) = 2Na2N

(

−Q(x)

2g+2
∏

j=1

(x− δ2j−1)(x− δ2j)
)1/2

, (2.5)

where Q(x) is a monic irreducible factor such that w(x) = 4u(x) − v′(x)2 and w(x) ≥ 0 on S.

The polynomial 4u(x)− v′(x)2 has real zeros δ1, . . . , δ2g+2 and may additionally have pairs of

complex conjugate roots, which we list as δ2g+3, . . . , δ4N−2 with regard to multiplicity.

The following result can be used to compute w in significant special cases. See [39] for a

discussion of hypothesis (i), and [43, p 18] for more about measure-preserving transformations.

Proposition 2.2. Suppose that S consists of m disjoint closed intervals such that

(i) there exists a real polynomial ϕ of degree m such that S = ϕ−1([a, b]);

(ii) there exists a polynomial U such that v(x) = U(ϕ(x)) and such that the equilibrium

measure of mU(x) is µ, with support [a, b].

Then there exists ρ, a pull-back of µ onto S via ϕ, so ρ(ϕ−1(A)) = µ(A) for all Borel

subsets A of [a, b] and ρ is an equilibrium measure for v.

Proof. Let S = ∪mj=1[δ2j−1, δ2j ]. By the inverse function theorem, there exist locally analytic

functions αj such that αj([a, b]) ⊆ [δ2j−1, δ2j ] and

ϕ(x) − y = c
m
∏

j=1

(x− αj(y)), (2.6)
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where c is the leading coefficient of ϕ. Now we define ρ to be the probability measure such

that
∫

S

f(y)ρ(dy) =
1

m

m
∑

j=1

∫ b

a

f(αj(s))µ(ds) (f ∈ C(S)) (2.7)

and check that this has the required properties. From (2.6), we deduce that

∫

S

log |x− y| ρ(dy) =
1

m

m
∑

j=1

∫ b

a

log |x − αj(s)|µ(ds)

=
1

m

∫ b

a

log |ϕ(x) − s|µ(ds) − 1

m
log c, (2.8)

and by the definition of the equilibrium measure µ, we deduce that

2

∫

S

log |x− y| ρ(dy) ≤ U(ϕ(x))− CmU − 2

m
log c

= v(x) −CmU − 2

m
log c (2.9)

with equality for x ∈ S. Hence we have verified that ρ is an equilibrium measure for v.

3. Orthogonal polynomials

First we introduce orthogonal polynomials for w, then the corresponding differential equations.

Let (pj)
∞
j=0 be the sequence of monic orthogonal polynomials in L2(w), where pj has degree j

and let hj be the constants such that

∫

S

pj(x)pk(x)w(x)dx = hjδjk (j, k = 0, 1, . . .); (3.1)

then let (qj)
∞
j=1 be the monic polynomials of the second kind, where

qj(z) =

∫

S

pj(z) − pj(x)

z − x
w(x)dx (j = 1, 2, . . .) (3.2)

has degree j−1. The orthogonal polynomials are semi classical in Magnus’s sense [28], although

the weight typically lives on several intervals.

Lemma 3.1. Let cn = hn/hn−1 and bn = h−1
n

∫

S
xpn(x)

2w(x)dx. Then

(i) the polynomials (pn)
∞
n=0 satisfy the three-term recurrence relation

xpn(x) = pn+1(x) + bn+1pn(x) + cnpn−1(x); (3.3)

(ii) the polynomials (qj)
∞
j=1 likewise satisfy (3.3);

(iii) the Hankel determinant of (1.5) satisfies Dn = h0h1 . . . hn−1.
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Proof. This is standard in the theory of orthogonal polynomials; see [12; 41, section 6].

We introduce also

Yn(z) =

[

pn(z)
∫

S
pn(t)w(t)dt

z−t
pn−1(z)
hn−1

1
hn−1

∫

S
pn−1(t)w(t)dt

z−t

]

(3.4)

and

Vn(z) =

[

z − bn+1 −hn
1/hn 0

]

. (3.5)

The effect of passing from n to n + 1 is to add another row and column to the Hankel

determinant, which by (iii) has the effect of multiplying by hn, since Dn+1 = hnDn. Our next

result gives the corresponding recurrence relation for the Yn.

Proposition 3.2. (i) The matrices satisfy the recurrence relation

Yn+1(z) = Vn(z)Yn(z). (3.6)

(ii) The matrix Yn(z) is invertible, and detYn(z) = 1.

Proof. (i) This follows from (i) and (ii) of the Lemma 3.1.

(ii) This follows by induction, where the induction step follows from the recurrence relation

in (i).

Definition. We restrict w to (s, t) ∩ S and let

µj(s, t) =

∫

S∩(s,t)

xjw(x)dx (3.7)

be the corresponding jth moment. Let En : L2(w) → span{xk : k = 0, . . . , n − 1} be the

orthogonal projection.

Proposition 3.3. (i) The Hankel determinant for (s, t) satisfies

det(I −En+1P(s,t)) =
1

Dn+1
det

[

µj+k(s, t)
]n

j,k=0
. (3.8)

(ii) In particular, the tau function for En+1 is proportional to the Hankel determinant for

(−∞, t) as in (1.5) and the corresponding potential satisfies

qn(t) = −2
d2

dt2
logDn(t). (3.9)

Proof. (i) This is due to Borodin and Soshnikov [7, p. 599].
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(ii) By definition,

qn(t) = −2
d2

dt2
log det(I −En+1P(t,∞)), (3.10)

and this simplifies by (i).

4. The basic differential equations and recurrence relations

In this section we derive a basic differential equation (4.14) which is a rational matrix differ-

ential equation of Fuchsian type, and a recurrence relation for the equations as n changes to

n+ 1. This section follows closely section 4 of [12], and essentially recovers some results from

[4]. See also [25, p. 233].

Invoking Proposition 3.2(ii), we introduce the matrix function

An(z) = Y ′
n(z)Yn(z)

−1 + Yn(z)

[

0 0
0 −w′(z)/w(z)

]

Yn(z)
−1. (4.1)

The basic properties of An(z) are stated in the following Lemma.

Lemma 4.1. Let v′(z)2−4u(z) have zeros at δj for j = 1, . . . , 4N−2. Then An(z) is a proper

rational function so that

An(z) =

4N−2
∑

j=1

αj(n)

z − δj
, (4.2)

where the residue matrices αj(n) depend implicitly upon the δj .

Proof. The defining equation (4.1) for An(z) may be written more explicitly as

[

p′n(z) −
∫

S
pn(t)w(t)dt

(z−t)2
p′n−1(z)

hn−1
− 1
hn−1

∫

S
pn−1(t)w(t)dt

(z−t)2

]

= An(z)

[

pn(z)
∫

S
pn(t)w(t)dt

z−t
pn−1(z)
hn−1

1
hn−1

∫

S
pn−1(t)w(t)dt

z−t

]

+

[

0 w′(z)
w(z)

∫

S
pn−1(t)w(t)dt

z−t

0 w′(z)
hn−1w(z)

∫

S
pn−1(t)w(t)dt

z−t

]

. (4.3)

By considering the entries, we see that An(z) is a proper rational function with possible simple

poles at the δj , as in (4.2). Hence we have a Laurent expansion

An(z) =
1

z

4N−2
∑

k=1

αk(n) +
1

z2

4N−2
∑

k=1

δkαk(n) + O
( 1

z3

)

(z → ∞). (4.4)

Let

Φn(z) =





√
2πipn(z) − iπw(z)pn(z)+qn(z)

w(z)
√

2πi√
2πipn−1(z)
hn−1

− iπw(z)pn−1(z)+qn−1(z)

w(z)hn−1

√
2πi



 , (4.5)
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which is a matrix function with entries in C(z)[w]; note that Φn also depends upon the δj .

Lemma 4.2. The matrix functions Φn satisfy

(i) the basic differential equation

dΦn(z)

dz
= An(z)Φn(z), (4.6)

(ii) and the recurrence relation Φn+1(z) = Vn(z)Φn(z);

(iii) moreover, Φn is invertible since detΦn(z) = 1/w(z).

Proof. (i) We can write

Φn(z) = Yn(z)

[√
2πi 0
0 1/(w(z)

√
2πi)

]

, (4.7)

and then the property (i) follows from (4.1).

(ii) The recurrence relation from Proposition 3.2(i).

(iii) Given (ii), this identity follows from Proposition 3.2(ii).

Proposition 4.3. The discrete string equation holds

An+1(z)Vn(z) − Vn(z)An(z) =
d

dz
Vn(z),

d

dz
Vn(z) =

[

1 0
0 0

]

. (4.8)

Proof. The basic differential equation (4.6) and the recurrence relation in Lemma 4.2(iii) are

consistent, and the Lax pair associated with these conditions gives

An+1(z)Φn+1(z) =
d

dz
Φn+1(z) =

d

dz

(

Vn(z)Φn(z)
)

. (4.9)

In the remainder of this section we consider the equilibrium measure for the Gaussian

unitary ensemble, namely Wigner’s semicircular law. For a < b, let

v(z) =
8

(b− a)2

(

z − a+ b

2

)2

, (4.10)

so, by standard results used in random matrix theory [33], the equilibrium density

w(x) =
8

π(b− a)2

√

(b− x)(x− a) I[a,b](x). (4.11)

Let Un be the Chebyshev polynomial of the second kind of degree n, which satisfies

Un(cos θ) =
sin(n+ 1)θ

sin θ
, (4.12)
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and let

pn(x) =
(b− a)n

22n
Un

(x− (a+ b)/2

(b− a)/2

)

(4.13)

which is monic and of degree n, and the pn are orthogonal with respect to the measure w. By

elementary calculations involving trigonometric functions, one can find the terms in (4.5) and

(4.6) explicitly, and hence show that

An(x) =
1

(x− b)(x− a)

[

n(x− (a+ b)/2) −(n+ 1)(b− a)2n/24n−1

n24n−3/(b− a)2n−2 −(n+ 1)(x− (a+ b)/2)

]

, (4.14)

which has poles at a and b, as expected.

5. Algebraic integrability of tau functions

The algebraic properties of the tau functions Dn(t) and their quotients hn = τn+1/τn are

the subject of this section. Let Fn be the algebraic complex field that is generated by the

elements of the matrix in (1.5) with determinant Dn(t), so that Dn(t) ∈ Fn. Also observe

that Fn ⊆ Fn+1, and that Dn+1(t) is an element of the field extension Fn(hn), obtained by

adjoining hn to Fn. We consider such extensions systematically in this section.

Let F be a field (of complex functions) with differential ∂ that contains the subfield C of

constants, and adjoin an element h to form F(h), where either:

(i) h =
∫

g for some g ∈ F, so ∂h = g;

(ii) h = exp
∫

g for some g ∈ F; or

(iii) h is algebraic over F.

Definition. Let Fj (j = 1, . . . , n) be fields with differential ∂ that contain the subfield C of

constants and suppose that

F1 ⊆ F2 ⊆ . . . ⊆ Fn, (5.1)

where Fj arises from Fj−1 by applying some operation (i), (ii) or (iii). Then the Fj are said

to form a Liouvillian tower, and each Fj is a Liouvillian extension of F1. See [38].

In particular, let E be the algebraic curve defined by W (x)2 =
∏m
j=1(x− δj) where the δj ∈ C

are distinct, and let

F0 = C(x),F1 = F0[W ],F2 = F1

(

∫

dx

W (x)

)

, . . . ,Fn+1 = Fn

(

∫

xn−1dx

W (x)

)

, . . . . (5.2)

Definition. Let the Liouvillian field associated with E be F(E) = Fm. (By Lemma 5.2, this

is the largest field in (5.2), and can be strictly larger than the field of rational functions on E .)

Theorem 5.1. Suppose that the equilibrium density w is supported on g + 1 intervals, so

that w(x) = p(x)W (x) for some polynomial p(x). Then Dn(t) belongs to F(E) for all n.
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Proof. Recall from Proposition 3.3 that Dn(t) = det[
∫

S∩(−∞,t)
xj+kp(x)W (x) dx]n−1

j,k=0 with

pW 2 a polynomial of degree 2N + g. Hence each element of the determinant is a linear

combination of
∫ t

δ1
xj+k+rdx/W , where j, k = 0, . . . , n− 1 and r = 0, . . . , 2N + g; hence by (i)

each element belongs to F2n+2N+g.

To rest of the proof is contained in following lemma, which is no doubt known from the

classical theory of Abelian functions.

Lemma 5.2. The Liouvillian tower (5.2) stabilises, so that Fn = Fm for all n ≥ m.

Proof. We introduce P by P ′(u) = W (P (u)), in local complex variables. Then we form C(P ),

and its algebraic extension C(P )[P ′], where (P ′)2 =
∑m

k=0(−1)m−kσm−kP k; then we adjoin

u =
∫

(1/P ′)dP , ζ1 =
∫

Pdu, . . . , ζm−2 =
∫

P (u)m−2du.

We deduce that
∫

P (u)kdu =
∫

xkdx/W (x) belongs to C(P )[u, ζ1, . . . , ζm−2] for all k =

m− 1,m, . . .. Indeed, we observe that

2P ′′ =

m
∑

k=1

m
∏

j=1;j 6=k
(P − δj), (5.3)

so we have coefficients aj such that

2

∫

P ′′P ` du = m

∫

Pm+`−1 du+

m−2
∑

j=0

aj

∫

P j+` du, (5.4)

so for ` = 0 we have

m

∫

Pm−1du = 2P ′ −
m−2
∑

j=0

aj

∫

P j du (5.5)

and for ` = 1, 2, . . . we integrate (5.4) by parts, to obtain

2P ′P ` − 2`

∫

(P ′)2P `−1 du = m

∫

Pm+`−1 du+

m−2
∑

j=0

aj

∫

P j+` du, (5.6)

and hence we obtain the recurrence relation

(2`+m)

∫

Pm+`−1 du = 2P ′P ` − 2`

m−1
∑

k=0

(−1)m−kσm−k

∫

P `+k−1 du−
m−2
∑

j=0

aj

∫

P j+` du.

(5.7)

To take advantage of Theorem 5.1, we need to identify F(E) for v of low degree and seek

to deal with integrals over algebraic curves that have as small a genus as possible. We deal

with g = 0 and g = 1 in this section, and in section 6 we refine the result to deal with even

polynomials. In later sections, we will also need the exponential operation to integrate τ ′/τ .
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Lemma 5.3. All integrals of the form

∫ t

a

xj
√

(b− x)(x− a)
dx (j = 0, 1, . . .) (5.8)

belong to

C
[

t,
√

(b− t)(t− a), cos−1
(t− (a+ b)/2

(b− a)/2

)]

. (5.9)

Proof. These results follows from elementary integration.

The following result concerns the natural Liouvillian tower associated with elliptic func-

tions, such as appear in subsequent sections. Let ℘ be Weierstrass’s elliptic function with

e3 < e2 < e1 as in [32]; also, let ζ be Weierstrass’s zeta function, which is meromorphic and

singly periodic, but not elliptic. Let θ1 be Jacobi’s elliptic theta function, which is entire.

Lemma 5.4. Any integral of the form

∫ t

e3

xjdx
√

(x− e3)(x− e2)(x− e1)
(j = 0, 1, 2, . . .) (5.10)

may be reduced via the substitution x = ℘(u) to an element of C[u, ℘′(u), ℘(u), ζ(u)].

Proof. This follows from Theorem 5.1 and its proof. The element ℘′ satisfies (℘′)2 = 4(℘−
e3)(℘− e2)(℘ − e1), so the elliptic function field C(℘)[℘′] is an algebraic extension of C(℘).

Then we adjoin u =
∫

d℘/℘′ and ζ =
∫

(℘/℘′)d℘ to the elliptic function field, and the resulting

field C(℘)[℘′](u, ζ) contains all
∫

℘ndu.

6. The tau function for even quartic and sextic potentials

In this section we show that Dn(t) for even quartics and sextics can be expressed in terms of

trigonometric and elliptic integrals. If we wish to find Dn(t) for a typical even polynomials v

of degree 8, then we need to consider hyperelliptic curves as in section 8.

Theorem 6.1. Let v be an even polynomial of degree 2N that has positive leading coefficient

and has equilibrium density w supported on N disjoint intervals. Then there exist algebraic

curves E1 and E2, both of genus less than or equal to bN/2c, such that Dn(t) belongs to the

Liouvillian function field generated by F(E1) and F(E2).

Proof. We introduce the polynomial U of degree N by U(x2) = v(x), and consider the

variational problem

inf
µ

{

2

∫ ∞

0

U(x)µ(dx) +

∫ ∞

0

∫ ∞

0

log
1

|x− y|µ(dx)µ(dy)
}

, (6.1)
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where the infimum is taken over all Radon probability measures on (0,∞) that have no atoms.

By results of [37], there exists a unique µ with compact support S+, and a constant C, such

that

U(x) ≥
∫

S+

log |x− y|µ(dy) +C (6.2)

with equality on S+. Furthermore, S+ is a finite union of intervals and µ is absolutely contin-

uous, so we can recover µ by solving the singular integral equation

U ′(x) = PV

∫

S+

1

x− y

dµ

dy
dy (y ∈ S+) (6.3)

by the method of [15, Theorem 1.38]. The density w with support S is symmetric about zero,

and as in Proposition 2.2, the map x 7→ x2 pushes w(x)dx forwards to µ with support S+.

The most difficult case to deal with is when N is odd, and µ tends to accumulate mass near

to the hard edge at zero. We consider

S+ = [0, a2] ∪
(N−1)/2

⋃

j=1

[c2j , b
2
j ] (6.4)

and introduce, as in [34, section 84],

R(z) =
z − a2

z

(N−1)/2
∏

j=1

(z − b2j )(z − c2j) (6.5)

which has a pole at zero and zeros at the other endpoints of S+ and such that
√

R(z) is

analytic on C \ S+ and z(1−N)/2
√

R(z) → 1 as |z| → ∞. We have

√

(x+ i0 − b2j )(x+ i0 − c2j) = i
√

(b2j − x)(x− c2j) (c2j < x < b2j ).

Let Cr be the circle of centre 0 and radius r > |b(N−1)/2|2 + |z|, taken once in the positive

sense, and observe that

p(z) =
1

2π

∫

Cr

U ′(ζ)dζ
√

R(ζ)(ζ − z)
(6.6)

does not depend upon r; indeed, the Taylor expansion reduces to

p(z) =

(N−1)/2
∑

`=0

z`

2π

∫

Cr

U ′(ζ)dζ
√

R(ζ)ζ`+1
. (6.7)

Now we consider the function F (z) = U ′(z)+ ip(z)
√

R(z) which is holomorphic on C\S+

and has jump F (x+ i0)−F (x− i0) = 2i
√

R(x+ i0)p(x) across S+ and F (x+ i0)+F (x− i0) =

2U ′(x) on S+. Hence by Plemelj’s formula

U ′(x) = PV
1

π

∫

S+

p(y)
√

R(y + i0) dy

y − x
(x ∈ S+). (6.8)
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The integrand is unbounded at y = 0. From Proposition 2.2, we deduce that w(x)dx has

support

S = [−a, a] ∪
(N−1)/2

⋃

j=1

[−bj ,−cj ] ∪ [cj , bj ], (6.9)

and is given by the weight

w(x) = −|x|
√

R(x2 + i0)p(x2)/π. (6.10)

We introduce the algebraic curves

E1 : W 2
1 = (x− a2)

(N−1)/2
∏

j=1

(x− b2j )(x− c2j) (6.11)

of genus (N − 1)/2 and

E2 : W 2
2 = x(x− a2)

(N−1)/2
∏

j=1

(x− b2j )(x− c2j ) (6.12)

of genus (N − 1)/2 and observe that

∫ t

0

xkw(x) dx =
−1

2π

∫ t2

0

uk/2(u− a2)p(u)

(N−1)/2
∏

j=1

(u− b2j )(u− c2j)
du

W2(u)
, (6.13)

which belongs to F(E1) for k odd and F(E2) for k even. Whereas the curves E1 and E2 are

birationally isomorphic when N is odd, we need elements of both Liouvillian towers to express

Dn(t). When N is even, the required curves can have distinct genus.

The field that is generated by F(E1) and F(E2) is a Liouvillian extension of C(x). Indeed,

given Liouvillian towers

C(x) ⊆ F1 ⊆ F2 ⊆ . . . and C(x) ⊆ F′
1 ⊆ F′

2 ⊆ . . . ,

there exists a Liouvillian tower C(x) ⊆ F′′
1 ⊆ F′′

2 ⊆ . . . such that Fj ,F
′
j ⊆ F′′

2j and that is

constructed by alternately applying the operations that produced the original towers.

Corollary 6.2. Let v be an even quartic with positive leading coefficient and equilibrium

density w.

(i) If the density w is supported on the pair of intervals [−b,−a] ∪ [a, b], then Dn(t) may

be expressed as trigonometric and elliptic integrals as in Lemmas 5.3 and 5.4.

(ii) If the density w is supported on a single interval [−b, b], then Dn(t) may be expressed

as a trigonometric integral.
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Proof. (i) By scaling, one can reduce to the case of v(x) = (1/4)x4 − (1/2)m2x2 + a0, where

m > 21/2. Then we let U(x) = (1/4)x2 − m4/4 and ϕ(x) = x2 − m2 in Proposition 2.2,

and obtain the equilibrium measure for v from the semicircular law on [−2, 2] for 2U . With

a2 = m2 − 2 and b2 = 2 +m2, we obtain a constant c such that

w(x) = c|x|
√

(b2 − x2)(x2 − a2). (6.14)

Now for any polynomial f(x), there exist a constant c0 and polynomials f1(x) and f2(x) such

that f(x) = c0+xf1(x
2)+x2f2(x

2). Hence we can express the indefinite integral
∫

f(x)dx/w(x)

as a sum of

∫

c0dx

x
√

(b2 − x2)(x2 − a2)
+

∫

f1(x
2)dx

√

(b2 − x2)(x2 − a2)
+

∫

xf2(x
2)dx

√

(b2 − x2)(x2 − a2)
(6.15)

which reduce by x2 = u or x2 = 1/u to

−
∫

c0du

2
√

(b2u− 1)(1− a2u)
+

∫

f1(u)du
√

u(b2 − u)(u− a2)
+

∫

f2(u)du
√

(b2 − u)(u− a2)
. (6.16)

By Lemma 5.3, the first and last of these integrals are trigonometric, whereas by Lemma 5.4

middle integral is elliptic.

(ii) In this case, the integral equation shows that w(x) = (c2x
2 + c0)

√
b2 − x2 for some

constants c0 and c2. Hence we can obtain the result from Lemma 5.3.

Corollary 6.3. Suppose that v is an even sextic such that the equilibrium measure is sup-

ported on the three intervals [−b,−c] ∪ [−a, a] ∪ [c, b]. Then Dn(t) belongs to the Liouvillian

fields F(E1) and F(E2) over elliptic curves E1 and E2 as in Lemma 5.4.

Proof. This follows directly from Theorem 6.1 and Lemma 5.4.

In the remainder of this section, we describe the situation for typical quartic v, and how

Schlesinger’s equation reduces to Painlevé’s equation PV I in the present situation. Suppose

that S+ = [δ1, δ2] ∪ [δ3, δ4]. There exists a Möbius transformation ϕ such that ϕ(δ1) = 0,

ϕ(δ2) = 1 and ϕ(δ4) = ∞; then we let t = ϕ(δ3). Having fixed three of the endpoints, we can

introduce the differential equations from section 4, and then describe the effect of varying the

endpoint t. Let

A(x, t) =
α0

x
+

α1

x− 1
+

αt
x− t

; (6.17)

then by Lemma 4.2,
d

dx
Φ(x) = A(x, t)Φ. (6.18)
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We now deform the differential equation by varying the position of the branch point at t, while

keeping fixed the singularities at 0, 1 and ∞. By analysis of the formal solution as in [24], one

can show that this deformation gives the differential equation

∂Φ

∂t
=

−αt
x− t

Φ (6.19)

which is consistent with (6.18). By forming the Lax pair of (6.18) and (6.19), one can show

that the matrix coefficients satisfy

∂α0

∂t
=

[α0, αt]

−t ,
∂α1

∂t
=

[α1, αt]

1 − t
,

∂αt
∂t

=
[αt, α0]

−t +
[αt, α1]

1 − t
, (6.20)

which is a particular case of Schlesinger’s equation; see [19, 4.0.3]. Considering the top right

corner of the matrices, we introduce x(t) = t((α0)1,2)/(t((α0)1,2 +(α1)1,2)− (α1)1,2) such that

A(x, t)1,2 = 0; then by [25, C.57], the corresponding Schlesinger equations give a version of

PV I in terms of x, namely

d2x

dt2
+

(1

t
+

1

t− 1
+

1

x− t

)dx

dt
− 1

2

(1

x
+

1

x− 1
+

1

x− t

)(dx

dt

)2

=
1

2

x(x− 1)(x− t)

t2(t− 1)2

(

k∞ − k0t

x2
+
k1(t− 1)

(x− 1)2
− (kt − 1)t(t− 1)

(x− t)2

)

. (6.21)

Proposition 6.4 Let F be a differential field that contains C(t) and a solution x(t) of (6.21).

Then τ , defined by
d

dt
log τ(t) = trace

(α0αt
t

+
α1αt
t− 1

)

, (6.22)

belongs to a Liouvillian extension field of F.

Proof. The matrices α0, α1 and αt can be expressed as rational functions of t, x(t), x′(t)

and
∫

x(t)dt as in [23, p. 11975] and [25, (C.57)]. Starting from one solution of (6.21), one

can construct a solution of Schlesinger’s system (6.19) and (6.20) by using the formulas from

[25], hence once can obtain all of the solutions of (6.21). It follows that the right-hand side of

(6.22) belongs to a Liouvillian extension of F, and we can solve for τ(t) in a further Liouvillian

extension of this field. See also [27, p. 12043].

Fuchs [21] used the elliptic change of variable

u(x) =

∫ x

0

ds
√

s(s− 1)(s− t)
(6.23)
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to obtain solutions of (6.21) when k0 = k1 = k∞ = 0 and kt = 1. Magnus [28, p. 228] obtained

PV I for the orthogonal polynomials with a generalized Jacobi weight with three factors. See

also [20].

7. Scattering functions for elliptic potentials

In previous section we have obtained elliptic and trigonometric τ functions from algebraic

weights. In this section, we show how to realise elliptic τ from linear systems and establish

a correspondence between τ and scattering functions φ. We take the scattering function φ as

the starting point and, as in inverse scattering, seek to reconstruct q.

Definition. A linear system (−A,B,C) consists of complex Hilbert spaces called the state

space H and the input and output space H0 and (bounded) linear operators A : H → H ,

B : H0 → H and C : H → H0. The associated linear differential equation is

dX

dt
= −AX + BU

Y = CX (7.1)

for U, Y : (0,∞) → H0 and X : (0,∞) → H . The scattering function is φ(x) = Ce−xAB and

the transfer function is its Laplace transform φ̂(s) = C(sI + A)−1B.

Proposition 7.1. Let t = 2−1(b+ a) + 2−1(b− a) cosx, so a typical element of (5.9) is

φ(x) =

m
∑

j=1

(

ajx
nj cosmjx+ bjx

kj sinmjx
)

(7.2)

where mj , nj , kj ∈ {0, 1, . . .} and aj , bj ∈ C. Then φ(x) is the scattering function Ce−xAB of

a linear system with H0 = C and H = CN for some N < ∞. If nj = kj = 0 for all j, then A

may be chosen to be real and skew symmetric.

Proof. By induction on degree, one proves using the trigonometric addition rules that (7.2)

gives a typical element of (5.9). For this φ, the transfer function is a proper rational function

and hence may be realised from a linear system with finite-dimensional state space. One can

produce A,B and C by considering the Jordan canonical forms of various matrices. See [10,

p. 55].

We formulate a version of the Gelfand–Levitan equation that is appropriate when φ(x) =

Ce−xAB is periodic. Demontis and van der Mee used a variant of this idea in [16] to solve the

matrix nonlinear Schrödinger equation explicitly by linear algebra. McKean and Ercolani also

considered scattering for periodic functions in [17].
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Definition (Periodic linear system (−A,B,C;E)). Let A,B,C andE be finite square matrices

of equal size; let ε = ±1, and suppose that BC = ε(AE + EA), BE = EB, EA = AE and

exp 2πA = I . Define φ(x) = Ce−xAB to be the scattering function for (−A,B,C) and then

introduce

W (x, y) = Ce−xA
(

I − e−xAEe−xA
)−1

e−yAB. (7.3)

We define the tau function to be

τ(x) = exp
(

∫ x

0

traceW (y, y) dy
)

(7.4)

and let q(x) = −2 d2

dx2 log τ(x) be the potential function. See also [10, p. 114].

These definitions are justified by the following, which is analogous to [5, p. 324].

Lemma 7.2. (i) The matrices satisfy the Gelfand–Levitan equation

−φ(x+ y) +W (x, y) − ε

∫ 2π

x

W (x, z)φ(z + y) dz = W (x, y)E (0 < x < y < 2π), (7.5)

and
d

dx
log det(I − e−xAEe−xA) = εtraceW (x, x). (7.6)

(ii) Let F be a differential field that contains all the entries of e−xA. Then τ(x) belongs

to a Liouvillian extension of F, and τ(x + 2π) = κτ(x) where κ = exp
∫ 2π

0 traceW (y, y) dy.

(iii) Suppose moreover that ε = 1 and 2π‖φ‖∞ < 1. Then

∂2W

∂x2
− ∂2W

∂y2
= −2

( d

dx
W (x, x)

)

W (x, y). (7.7)

Proof. (i) One can check that

∫ 2π

x

e−zABCe−zA dz = εe−xAEe−xA − εE (7.8)

and it is then a simple matter to verify the integral equation (7.5).

By rearranging terms, one checks that

traceW (x, x) = trace
(

(I − e−xAEe−xA)−1e−xABCe−xA
)

= ε
d

dx
trace log(I − e−xAEe−xA)

= ε
d

dx
log det(I − e−xAEe−xA). (7.9)

(ii) By (i), τ is given by exponential integrals of the entries of e−xA. Note that W (x, y) is

periodic in both x and y, so W (x, x) is periodic and hence
∫ x

0
traceW (y, y) dy changes by the

same amount as x increases through any interval of length 2π.
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(iii) By repeatedly differentiating (7.5), and using periodicity, one derives the identity

∂2W

∂x2
− ∂2W

∂y2
+ 2

( d

dx
W (x, x)

)

φ(x+ y) +W (x, 0)φ′(y) − ∂W

∂y
(x, 0)φ(y)

−
∫ 2π

x

(∂2W

∂x2
− ∂2W

∂y2

)

φ(z + y) dz =
∂2W

∂x2
E − ∂2W

∂y2
E. (7.10)

Since ABC −CBA = 0, we obtain

W (x, 0)φ′(y) − ∂W

∂y
(x, 0)φ(y) = 0, (7.11)

so (7.10) is a multiple of the original integral equation by −2 d
dxW (x, x). By the assumptions

on ‖φ‖∞, the solutions are unique, hence the differential equation (7.7) is satisfied.

In view of Corollaries 6.2 and 6.3, we aim to realise elliptic tau functions in terms of

linear systems. By introducing infinite block matrices, we obtain an analogue of Proposition

7.1. Clearly we can replace ε in (7.3) by a diagonal matrix with blocks of ±1 entries on the

diagonal. One can interpret the following result as saying that Lamé’s operator − d2

dx2 + 2℘

has the scattering function proportional to sinx. Note that φ lies in the ring of trigonometric

functions as in (5.9), and trigonometric functions may be viewed as rational functions on

C ∪ {∞} via the substitution t = tanx/2. However, the potential lies in the elliptic function

field, which gives the rational functions on a curve of genus one.

Elliptic functions may also be viewed as doubly periodic meromorphic function on C.

Let ω1 and ω2 be the periods, so that ω = ω2/ω1 has =ω > 0; then let e1 = ℘(ω1/2),

e2 = ℘((ω1 + ω2)/2) and e3 = ℘(ω2/2); then let Jacobi’s modulus be m2 = (e2 − e3)/(e1 − e3)

and the elliptic nome be q = eiωπ . To be specific, we choose ω1 = 2π and ω2 = 2πi. Let A,B

and C be the infinite block diagonal matrices with 2 × 2 diagonal blocks

A = diagonal
[

J
]∞
n=−∞, C = A,

E = diagonal
[

q2|n|I2
]∞
n=−∞, B = 2E. (7.12)

Proposition 7.3. (i) The functions φ(x) = Ce−xAB and W (x, y) of (7.3) satisfy the Gelfand–

Levitan equation (7.5) and

traceφ(x) = 4
1 + q2

1 − q2
sinx (x ∈ R). (7.13)

(ii) The corresponding tau function is τ(x) = c(q)θ1(x)
2 with c(q) constant, so τ is entire,

belongs to the Liouvillian extension C(℘′, ℘, ζ, θ1) of the standard elliptic function field and

satisfies

2℘(x) = − d2

dx2
log τ(x) (x ∈ R). (7.14)
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Proof. (i) The matrices satisfy EB = BE,AE = EA and BC = AE +EA, so Lemma 7.2(i)

applies. Note that the entries of E are summable, so E defines a trace-class operator, hence

the trace exists and a simple calculation gives (7.13).

(ii) Observe also that

det(I − q2|n|e−2xA) = det

[

1 − q2|n| cos 2x −q2|n| sin 2x
q2|n| sin 2x 1 − q2|n| cos 2x

]

= 1 − 2q2|n| cos 2x+ q4|n|, (7.15)

so one has

det(I − e−xAEe−xA) = 4 sin2 x

∞
∏

n=1

(1 − 2q2n cos 2x+ q4n)2; (7.16)

for comparison, by [32, p 135] the Jacobi elliptic function satisfies

θ1(x) = 2q1/4 sinx

∞
∏

n=1

(

1 − 2q2n cos 2x+ q4n
)

(1 − q2n) (7.17)

where the infinite product is absolutely and uniformly convergent over compact subsets of C.

So we have an entire function

τ(x) = det(I − e−xAEe−xA) =
θ1(x)

2

q1/2
∏∞
n=1(1 − q2n)2

. (7.18)

Moreover, we have [32, p. 132]

℘(x) = − d2

dx2
log θ1(x) + e1 +

d2

dx2
log θ1(x)

∣

∣

x=1/2
, (7.19)

hence we obtain (7.14). The differential field C(℘, ℘′, ζ, θ1) is a Liouvillian extension of the

standard elliptic function field C(℘)[℘′] and contains τ and ℘.

Theorem 7.4. Let τ be an elliptic function.

(i) Then there exists a periodic linear system (−A,B,C;E), where A,B,C and E are

infinite block diagonal matrices with 2 × 2 blocks, such that

τ ′(x)

τ(x)
= traceW (x, x). (7.20)

(ii) There exists a sequence of periodic linear systems with finite matrices and tau func-

tions τN such that τN (x) → τ(x) as N → ∞, and with eix = z, each quotient hN(z) =

τN (x)/τN−1(x) is a rational function such that hN (0) = hN(∞) = 1.
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Proof. Any elliptic function is of rational character on C/(ω1Z + ω2Z), and is the quotient

of theta functions by [32, p 105], so

τ(x) = c

m
∏

j=1

θ1(x− aj)

θ1(x− bj)
(7.21)

where aj , bj and c are constants. Suppose for notational simplicity that c = 1.

First we construct a periodic linear system with θ1 as its tau function. For n = 0, let

A0 = J/2, E0 = −iJ , B0 = iI and C0 = I , then (−A0, B0, C0;E0) is a periodic linear system

such that det(I − e−xA0E0e
−xA0) = 2i sinx.

For n = 1, 2, . . . and q as in (7.12), let An = Cn = J , En = q2nI and Bn = 2En;

then (−An, Bn, Cn;En) is a periodic linear system such that det(I − e−xAnEne
−xAn) = 1 −

2q2n cos 2x + q4n. Hence we can introduce block diagonal matrices A = diagonal[A0, A1, . . .]

and E = diagonal[E0, E1, . . .], and so on to give a periodic linear system (−A,B,C;E) such

that

det(I − e−xAEe−xA) = 2i sinx

∞
∏

n=1

(1 − 2q2n cos 2x+ q4n)

=
iθ(x)

q1/4
∏∞
n=1(1 − q2n)

. (7.22)

Next we replace (−A,B,C;E) by the terms (−A, eajAB,CeajA; eajAEeajA) which give

Wj by (7.3); likewise we introduce (−A, ebjAB,−CebjA; ebjAEebjA) which give Ŵj by (7.3).

We then form the block diagonal matrix

⊕mj=1

(

(−A) ⊕ (−A), eajAB ⊕ ebjAB,CeajA ⊕ (−CebjA); eajAEeajA ⊕ ebjAEebjA
)

(7.23)

which gives the required W (x, y) = ⊕m
j=1Wj(x, y) ⊕ Ŵj(x, y) by (7.3), and we verify

traceW (x, x) =

m
∑

j=1

(

traceWj(x, x) + trace Ŵj(x, x)
)

=
d

dx

m
∑

j=1

(

log θ1(x− aj) − log θ1(x− bj)
)

=
d

dx
log τ(x). (7.24)

One can check thatW satisfies (7.5) with ε replaced by a diagonal matrix with diagonal entries

±1.

(ii) We introduce the 2(N + 1) × 2(N + 1) block diagonal matrices

A(N) = diagonal [A0, A1, . . . , AN ] and E(N) = diagonal [E0, E1, . . . , EN ], (7.25)
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with 2 × 2 blocks Aj and Ej as above, such that

det(I − e−xA(N)E(N)e
−xA(N)) = 2i sinx

N
∏

j=1

(1 − 2q2n cos 2x+ q4n). (7.26)

Then by (7.21) and (7.22), we have

τN (x) =

m
∏

j=1

det(I − e−xA(N)eajA(N)E(N)e
ajA(N)e−xA(N))

det(I − e−xA(N)ebjA(N)E(N)e
bjA(N)e−xA(N))

→
m
∏

j=1

θ(x − aj)

θ(x − bj)
(N → ∞).

(7.27)

Hence we can adjust the construction to produce the sequence of finite linear systems as above.

By passing from N − 1 to N , we introduce an extra factor

τN (x)

τN−1(x)
=

m
∏

j=1

1 − 2q2n cos(x− aj) + q4n

1 − 2q2n cos(x− bj) + q4n

=

m
∏

j=1

−q2ne−2iajz4 + (1 + q2n)z2 − e2iaj q2n

−q2ne−2ibjz4 + (1 + q2n)z2 − e2ibj q2n
, (7.28)

which corresponds to the blocks on the diagonal indexed by N in the block diagonal form of

the Gelfand–Levitan equation. Evidently this is a rational expression, and at z = 0,

τN (i∞)

τN−1(i∞)
= exp

(

2i

m
∑

j=1

(aj − bj)
)

= 1, (7.29)

where the final identity follows from Abel’s theorem [32, p. 105]; likewise, the quotient τN/τN−1

converges to one as z → ∞.

Let q(t) = −2 d2

dt2 log τ(2t) be an elliptic potential as in Theorem 7.3. Then −d2f/dt2 +

q(t)f = λf is Hill’s equation on the torus, as considered in [22]. In the next section, we

consider potentials on hyperelliptic curves.

8. Linear systems for potentials on hyperelliptic curves

In this section, we extend results from section 8 from elliptic to hyperelliptic curves. Suppose

that q : R → R is C2 and periodic with period one; introduce Hill’s operator − d2

dx2 + q(x) in

L2(R). Let Φ be the 2 × 2 fundamental solution matrix that satisfies

d

dx
Φ(x) =

[

0 1
−λ+ q(x) 0

]

Φ(x), Φ(0) =

[

1 0
0 1

]

, (8.1)

and let ∆(λ) = trace Φ(1) be the discriminant of Hill’s equation. We can characterize S =

{λ ∈ R : ∆(λ)2 ≤ 4}, and its connected components are known as the intervals of stability.

Suppose further that q is algebro-geometric, so that the Bloch spectrum

S = [λ0, λ1] ∪ [λ2, λ3] ∪ . . . ∪ [λ2g,∞) (8.2)
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has g gaps. The λj are the points of the simple periodic spectrum, such that −f ′′ + qf = λjf

has a unique solution, up to scalar multiples, that is periodic with period one or two. Let λ′
j

be the zeros of ∆′(λ) that are not zeros of
√

4 − ∆(λ)2; then Hochstadt [31, p 219] proved

that
∆′(λ)

√

4 − ∆(λ)2
= c

∏g
j=1(λ− λ′j)

√

∏2g
j=0(λ− λj)

(8.3)

for some constant c. Moreover, Hochstadt [31] proved that g = 1 if and only if q(x) =

c1 + 2℘(x+ c2) where c1 and c2 are constants, as in Proposition 7.3.

Now supposing that g > 1, we form the hyperelliptic curve

C : w2 = −
2g
∏

j=0

(x− λj) (8.4)

of genus g. As in [18], we introduce a homology basis for C; we choose a two-sheeted cover of

C with cuts along S, and introduce the canonical homology basis consisting of:

• loops αj that start from [λ2g,∞), pass along the top sheet to [λ2j−2, λ2j−1], then return

along the bottom sheet to the start on [λ2g ,∞);

• loops βj that go around the intervals of stability [λ2j−2, λ2j−1] that do not intersect

with one another, for j = 1, . . . , g.

Let Ω0 = [
∫

αk
xg−jdx/w]nj,k=1, which is invertible, and then form the g×1 vector of holomorphic

one-forms

dζ =







dζ1
...
dζg






= Ω−1

0







xg−1dx/w
...

dx/w






. (8.5)

Then as in [18, p 61], we form the g × 2g Riemann matrix [I ; Ω] from the g × g blocks

I =
[

∫

αk

dζj

]g

j,k=1
, and Ω =

[

∫

βk

dζj

]g

j,k=1
. (8.6)

Let Λ be the lattice generated by the columns of [I ; Ω], and note that Cg/Λ is a complex

torus, called the Jacobi variety of C. Let Cg be the space of integral divisors of degree g on

C, and let p0 be a fixed point in C, and p = p1 . . . pg be a variable in Cg. Then there is a

holomorphic and surjective map Cg → Cg/Λ given by p1 . . . pg 7→
∑g

j=1

∫ pj

p0
dζ , or x 7→ Zx.

Definition. Let Sx be the spectrum of −d2/dt2 + q(x+ t) on the domain {f ∈ L2[0, 1] : f ′′ ∈
L2[0, 1], f(0) = f(1) = 0}. Then Sx consists of the double zeros of ∆(λ)2 − 4 = 0, which do

not depend upon x, together with the auxiliary spectrum δj(x) ∈ [λ2j−1, λ2j ] for j = 1, . . . , g.

Then the auxiliary spectrum determines q, up to translation and some constants, as follows

from [31]. Let

R(x, λ) = (λ− δ1(x)) . . . (λ− δg(x)), (8.7)
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and introduce σk(x) such that R(x, λ) =
∑g

k=0 σk(x)λ
k. The function

√

R(x, λ) has a strong

formal resemblance to (2.5).

Theorem 8.1. (i) Let τ be a rational function on C such that τ(z̄) = τ(z). Then there exists a

periodic linear system (−A,B,C;E), where A,B,C and E are infinite block diagonal matrices

with 2 × 2 blocks, such that
τ ′(x)

τ(x)
=

1

2
traceW (x, x). (8.8)

(ii) In particular, such a periodic linear system exists for each σk(x).

(iii) Let λ ∈ R satisfy ∆(λ)2 < 4 and let F be a differential field that contains all of the

σk(x). Then there exists a Liouvillian extension Fλ of F and an eigenfunction fλ ∈ Fλ such

that −f ′′λ + qfλ = λfλ.

Proof. (i) Koebe proved the retrosection theorem that every compact Riemann surface of

genus g is conformal to the quotient of a planar domain D under the action of a discrete

group Γ of Möbius transformations, so Tr : z 7→ zr for r ∈ Γ is given by Tr =

[

a b
c d

]

where ad − bc = 1; see [3]. Hence C may be identified with a fundamental cell C0, where the

images of C0 under Γ tessellate D. The group Γ has identity T0 and free generators Tj for

j = 1, . . . , g. Choosing γ0 to be the unit circle, and γ1, . . . , γg to be Jordan curves inside γ0 that

are exterior to one another, we then let γ−j be the Jordan curves in the exterior of γ0 so that

the γ±1, . . . , γ±g are mutually exterior. The generators may be so chosen that Tj(γj) = γ−j

and Tj maps the exterior of γj with respect to C∞ onto the interior of γ−j for j = 1, . . . , g.

Diagrams of the appropriate D appear in [1, 3].

Given u, v ∈ C0, we introduce

Su,v(ζ, ξ) =
∏

r∈Γ

(ur − ζ)(vr − ξ)

(ur − ξ)(vr − ζ)
, (8.9)

a variant of the Schottky–Klein prime function. Baker [1, section 230] shows that ζ 7→ Su,v(ζ, ξ)

defines a meromorphic function on C which is invariant under the action of Γ, and hence

defines a meromorphic function on C; moreover, Su,v(ζ, ξ) has only a simple zero at ζ = u and

a simple pole at ζ = v inside C0. Baker proves convergence of the product, but we do not have

an effective estimate on the rate of convergence.

Let ζ = eis, ξ = eit and ur = qre
iψr , vr = pre

iφr where qr , pr > 0 and s, t, ψr , φr are

real. For each r ∈ Γ, we introduce a periodic linear system by (−Ar, Br , Cr;Er) where Ar =

Cr = J/2, Er = qr exp(ψrJ) and Br = 2Er ; likewise, we introduce (−Ar, B̃r , Cr, Ẽr) where

Ar = Cr = J/2, Ẽr = pr exp(φrJ) and B̃r = −2Ẽr ; then

det(I − e−sArEre
−sAr)

det(I − e−sArẼre−sAr)
=

∣

∣

∣

eis − ur
eis − vr

∣

∣

∣

2

. (8.10)
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We sum these linear systems over r ∈ Γ and obtain the tau function

∣

∣Su,v(e
is, eit)

∣

∣

2
=

∏

r∈Γ

det(I − e−sArEre
−sAr) det(I − e−tAr Ẽre

−tAr )

det(I − e−sAr Ẽre−sAr) det(I − e−tArEre−tAr )
. (8.11)

Now each σk(x) is meromorphic on C, hence has zeros a1, . . . , am and poles b1, . . . , bm

such that Za1...am
= Zb1...bm

modulo Λ. Therefore by Liouville’s theorem we can write

σk(ζ) = c(ξ)

m
∏

j=1

Saj ,bj
(ζ, ξ) (8.12)

for some meromorphic c(ξ) and then express |σk(ζ)|2 as a product of determinants.

Note that (ζ, w) lies on C if and only if (ζ̄, w̄) lies on C, so the operation τ(ζ) 7→ τ(ζ̄) is

well defined. Finally, we take the derivative with respect to x ∈ R of the real function τ(x)

and find (log |τ(x)|2)′ = 2τ ′(x)/τ(x).

(ii) Let M be the set of C2 potentials q : R → R that are 1-periodic and such that the

simple periodic spectrum consists of {λ1 < . . . < λg}; then M is diffeomorphic to a real torus

Rg/Zg, and is known as the isospectral torus. In particular, the set {q(t+ x) : 0 < x < 1} of

translations of q gives a torus T inside M , so it is natural to parametrize T by e2πix on the

circle. Differentiation along [0, 1] transforms to differentiation along a direction in Rg/Zg.

McKean and van Moerbeke [31] showed that q is the restriction to a straight line in Cg/Λ

of a function of rational character. Likewise, each σk(x) is meromorphic on C, and real for

x ∈ R, so we can obtain an expression analogous to (7.19) by (i).

(iii) Note that R(x, λ) belongs to F, and as a function of x satisfies Drach’s equation [9,

p. 927]
1

4
R′(x, λ)2 − 1

2
R(x, λ)R′′(x, λ) + (q(x)− λ)R(x, λ)2 = w(λ)2 (8.13)

as [31, p. 235]; where, crucially, the right-hand side is a polynomial in λ independent of x.

In particular, if λ is a simple periodic eigenvalue, then w(λ) = 0 and fλ(x) =
√

R(x, λ) gives

a corresponding eigenfunction as in [31, p. 235]. When ∆(λ)2 < 4, R(x, λ) is never zero for

0 ≤ x ≤ 1, and we can form

fλ(x) =
√

R(x, λ) sin
(

iw(λ)

∫ x

0

dy

R(y, λ)

)

, (8.14)

as in [9, p. 932]. Evidently this is obtained from R(λ, x) by Liouvillian operations and by

using (8.13) one shows that fλ is an eigenfunction as in [31, p 237].

Remarks 8.2. (i) Whereas Theorem 8.1 enables us to express all rational functions on a hy-

perelliptic curve C in terms of block diagonal linear systems, the tau functionDn(t) of Theorem
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5.1 could involve elements of Fm(C) for m = 2g + 1, which are generally rather complicated.

Nevertheless, in [2], the authors give criteria in terms of the action of the symplectic group on

Ω for a special hyperelliptic curve C to be a finite cover of an elliptic curve.

(ii) For integers ` ≥ 2, Lamé’s operator −d2/du2 + `(`+ 1)℘ has S with ` gaps, and the

hyperelliptic spectral curve C has genus `. Using this, Maier [29, Theorem 4.1] has constructed

a cover of degree N = `(` + 1)/2 of the elliptic curve by C, and thus obtains hyperelliptic

integrals that reduce to elliptic integrals.

(iii) The elliptic potentials that are algebro–geometric are characterized in [22].

9. Kernels associated with rational matrix ODE

In this section, we introduce kernels that are associated with the basic differential equation

(4.6), and then factorize them in terms of Hankel operators; then in section 10 we derive a

Gelfand–Levitan equation that produces (log τ)′′. We wish to introduce a differential equa-

tion that is equivalent to (4.6), but which involves a rational matrix function Bn(x) with

traceBn(x) = 0. First we let νj = −2−1traceαj(n) and observe that νj does not depend

upon n. Indeed, by multiplying the recurrence relation (4.20) by V −1
n , one deduces that

traceAn+1(z) = traceAn(z), and since traceαj(n) = limz→δj
(z − δj)traceAn(z), we deduce

that traceαj(n) is constant with respect to n. By following calculations in [12], one can show

that
∑4N−2

j=1 traceαj(n) = 1 − 2N. Now, given Φn as in (4.5), let

Ψn(z) = Φn(z)

4N−2
∏

j=1

(z − δj)
νj . (9.1)

We next introduce the matrix valued kernel

Mn(z, ζ) =
Ψn(z)

tJΨn(ζ)

−2πi(z − ζ)
, (9.2)

where t denotes the matrix transpose and analyse the top left entry of Mn as an integral

operator on L2(S;C2).

Proposition 9.1. Let En(z, ζ) be the kernel of the orthogonal projection in L2(w) onto

span{xj : j = 0, . . . , n− 1}. Then the top left entry of Mn(z, ζ) equals

Mn(z, ζ)11 =
hn
hn−1

4N−2
∏

j=1

(z − δj)
νj

4N−2
∏

j=1

(ζ − δj)
νjEn(z, ζ). (9.3)

Proof. The Christoffel–Darboux formula [33] gives

En(z, ζ) =
pn(z)pn−1(ζ)− pn−1(z)pn(ζ)

hn(z − ζ)
. (9.4)
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One can find Ψn(z)
tJΨn(ζ) by direct calculation, and compare (9.2) with (9.4).

Let βj(n) = αj(n) + νjI2, which has zero trace. Furthermore, if Φn is a solution of the

basic differential equation (4.6), then

d

dz
Ψn(z) = Bn(z)Ψn(z) (9.5)

where

Bn(z) =
4N−2
∑

j=1

βj(n)

z − δj
. (9.6)

We pause to note an existence result for solutions of the matrix system (9.5).

Lemma 9.2. Suppose that βj(n) has eigenvalues ±κj(n) where 2κj(n) is not an integer. Let

Cj be the connection matrix associated with δj . Then on a neighbourhood of δj , there exists

an analytic matrix function Ξn,j such that

Ψn(z) = Ξn,j(z)(z − δj)
βj(n)Cj (9.7)

satisfies (9.5).

Proof. This follows from Turrittin’s theorem; see [5, 42]. The matrix Cj diagonalizes the

monodromy matrix corresponding to a circuit round the pole δj ; see [24, p. 308].

In this section we are concerned with local behaviour of the kernels, and how they operate

on single intervals, so we can assume that Cj = I for this particular interval in S.

Let Jν be the Bessel function of the first kind of order ν. Tracy and Widom showed that

the Bessel kernel, often used to describe eigenvalue distributions near to hard edges, may be

expressed as the square of a Hankel operator on (0, 1) so that

√
xJν+1(

√
x)Jν(

√
y) − Jν(

√
x)
√
yJν+1(

√
y)

x− y
=

1

2

∫ 1

0

Jν(
√
xt)Jν(

√
yt) dt; (9.8)

see [40]. The following result extends this idea. For notational simplicity, we consider the

interval (δ1, δ2) and assume that δ1 = 0 and 1 < δ2; the general case follows by scaling

and translating. For a continuous function φ : (0, 1) → R8N−6, the Hankel operator Γφ :

L2((0, 1); dy/y;R) → L2((0, 1); dy/y;R8N−6) is given by

Γφf(x) =

∫ 1

0

φ(xy)f(y)
dy

y
. (9.9)
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Since βk(n) has zero trace, the matrix (−δk)Jβk(n) is real and symmetric, hence is con-

gruent to either

σk = ±
[

1 0
0 1

]

, ±
[

1 0
0 0

]

,

[

1 0
0 −1

]

,

[

0 0
0 0

]

. (9.10)

Definition. Let the signature matrix of Bn(z) be σ = diagonal[σk ]
4N−2
k=2 in M8N−6(R) be the

block diagonal sum of these matrices over the various k.

Theorem 9.3. (i) Let β1(n) be as in Lemma 9.2; assume henceforth that κ1(n) > 0. Then

there exists Zn, a 2 × 1 real vector solution of (9.5) such that Zn(x) → 0 as x→ 0.

(ii) The integral operator on L2((0, 1); dx/x) with kernel

Kn(z, ζ) =

√
zζZn(ζ)

†JZn(z)

z − ζ
(9.11)

is of trace class; moreover, there exists a vector Hankel operator Γψn
: L2((0, 1);R; dy/y)

→ L2((0, 1);R8N−6; dy/y) such that

Kn = Γ†
ψn
σΓψn

. (9.12)

(iii) If σ ≥ 0, then Kn ≥ 0.

Proof. (i) There exists an invertible constant 2 × 2 matrix Sn such that

Snz
β1(n)S−1

n =

[

zκ1(n) 0
0 z−κ1(n)

]

, (9.13)

where κ1(n) > 0. Hence by Lemma 9.2, there exists a constant 2 × 1 matrix C such that

Zn(z) = Ψn(z)C is a solution of (9.5), and Zn(z) = O(|z|κ1(n)) as z → 0.

(ii) Hence we can introduce Kn by (9.11), and next we prove that the kernel satisfies

(

x
∂

∂x
+ y

∂

∂y

)

Kn(x, y) =

4N−2
∑

k=2

−δk
√
xy

(x− δk)(y − δk)
Zn(y)

†Jβk(n)Zn(x). (9.14)

First note that by homogeneity (x ∂
∂x + y ∂

∂y )(
√
xy/(x − y)) = 0. Since the βk(n) have zero

trace, we have Jβk(n) + βk(n)†J = 0 and hence the differential equation (9.5) gives

(

x
∂

∂x
+ y

∂

∂y

)

Zn(y)
†JZn(x)

= Zn(y)
†Bn(y)†JZn(x) + Zn(y)

†JBn(x)Zn(x)

=

4N−2
∑

k=2

Zn(y)
†Jβk(n)Zn(x)

( x

x− δk
− y

y − δk

)

; (9.15)

28



note that the term k = 1 gives zero contribution. On dividing by x − y and multiplying by
√
xy, we obtain

(

x
∂

∂x
+ y

∂

∂y

)

√
xyZn(y)

†JZn(x)

x− y
=

4N−2
∑

k=2

−δk
√
xy

(x− δk)(y − δk)
Zn(y)

†Jβk(n)Zn(x) (9.16)

as in (9.14). Noting the shape of the final factor in (9.16), we choose

φn(x) = column
[

√
xZn(x)

x− δk

]

k=2,...,4N−2
(9.17)

which has a 2 × 1 entry for each endpoint δk of S to the right of 0, and the block diagonal

matrix

β(n) = diagonal
[

−δkJβk(n)
]

k=2,...,4N−2
(9.18)

with 2 × 2 blocks, and we consider

K̃n(x, y) =

∫ 1

0

φn(yz)†β(n)φn(zx)
dz

z
. (9.19)

Next note that since κ1(n) > 0, we have K̃(x, y) → 0 as x, y → 0. Then

(

x
∂

∂x
+ y

∂

∂y

)

K̃n(x, y) =

∫ 1

0

(

yφ′n(yz)†β(n)φn(zx) + xφn(yz)†β(n)φ′n(xz)
)

dz

= φn(y)†β(n)φn(x) − φn(0)†β(n)φn(0), (9.20)

and we have φn(0) = 0, so

Kn(x, y) = K̃n(x, y) + ξ(x/y) (9.21)

for some function ξ. But Zn(z)/z
κ1(n) is analytic on a neighbourhood of 0, so it is clear that

Kn(x, y) → 0 and K̃n(x, y) → 0 as x → 0 or y → 0; hence ξ = 0.

By the choice of σ, there exists a block diagonal matrix γ(n) such that γ(n)†σγ(n) = β(n),

so we can introduce ψn(x) = γ(n)φn(x) such that φn(x)†β(n)φn(y) = ψn(x)
†σψn(y). For this

symbol function ψn we have

Kn(x, y) =

∫ 1

0

ψn(yz)
†σψn(zx)

dz

z
, (9.22)

or in terms of Hankel operators Kn = Γ†
ψn
σΓψn

. We have

∫ 1

0

(

log
1

u

)

‖ψn(u)‖2 du

u
< ∞, (9.23)

so Γψ is Hilbert–Schmidt and hence Kn is of trace class.
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(iii) If σ ≥ 0, or equivalently σk ≥ 0 for all k, then Kn ≥ 0 by (ii).

10. The tau function and scattering function for the basic differential equation

In this section, we introduce a matrix scattering function Ψ for express the tau function τ of

Kn from Theorem 9.3. We then establish the correspondence between the scattering function

and τ by an integral equation of Gelfand–Levitan type. The first step is introduce a scattering

function ψ and then to realise this by a linear system as in [5, 6].

The differential equation
dZn
dx

= Bn(x)Zn(x) (10.1)

has a solution from which we constructed a symbol function

ψn(x) = column
[

√
xγ(n)Z(x)

x− δk

]4N−2

k=2
. (10.2)

Recalling that δ1 = 0 and suppressing n for simplicity, we change x ∈ (0, 1) to t ∈ (0,∞) by

letting x = e−t and in the new variables write

ψ(t) =

∞
∑

`=0

χ`e
−(κ1+`+1/2)t, (10.3)

where
∑∞

`=0 ‖χ`‖ < ∞ and κ1 > 0. Likewise, we write τ(t) for τ(e−t).

Let Ω = {z : <z > 0} be the open right half-plane, let

Ψ(x) =

[

0 ψ(x)
ψ(x̄)† 0

]

(10.4)

and extend Ψ to an analytic function Ψ : Ω → M8N−5(C) such that Ψ(x) = Ψ(x)† for x > 0.

Let Ψ(s) = Ψ(x + 2s) and Ψ∗
(s)(x) = Ψ(x + 2s̄)† and let σ be a constant matrix; then let

Ks = ΓΨ∗
(s)
σΓΨ(s)

be a family of operators on L2(0,∞).

Proposition 10.1. (i) The tau function associated with K = ΓΨ∗σΓΨ is τ(2s) = det(I−Ks),

which gives an analytic function on Ω.

(ii) Let q(s) = −2 d2

ds2
log τ(2s). Then q(s) is meromorphic on Ω, and analytic where

∫ ∞
0
x‖Ψ(x+ s)‖2dx < 1.

(iii) If 0 ≤ K ≤ I as an operator, then τ(s) is non-negative for 0 < s <∞, increasing and

converges to one as s → ∞.

Proof. (i) The kernel of the Hankel operator ΓΨ(s)
has a nuclear expansion

ΓΨ(s)
↔

∞
∑

`=0

e−(κ1+`+1/2)(x+y+2s)

[

0 χ`
χ†
` 0

]

(10.5)
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where
∑∞

`=0 ‖χ`‖
∫ ∞
0
e−2(κ1+`+1/2)(x+<s)dx < ∞, so the Fredholm determinants are well de-

fined. As in Schwarz’s reflection principle, s 7→ Ψ∗
(s) is analytic, and ΓΨ(s)

is Hilbert–Schmidt,

so Ks is an analytic trace-class valued function on Ω. Using unitary equivalence, one checks

that

det(I −Ks) = det(I − P(2s,∞)K) (s > 0). (10.6)

(ii) Except on the discrete set of zeros of τ(2s), the operator I −Ks is invertible and

q(s) = 2
d

ds
trace

(

(I −Ks)
−1 dKs

ds

)

. (10.7)

(iii) This follows from (10.6).

We wish to express τ ′/τ as a rational expression in certain infinite matrices with entries

from C(e−t, e−(κ1+1/2)t). To do so, we realise Ψ via a linear system suggested by the inverse

scattering transform as in [6]. Let H0 = C8N−6 be the column vectors, H = `2 be Hilbert

sequence space, written as infinite columns, and introduce an infinite row of column vectors

C ∈ `2(H0) by C = (χ`/‖χ`‖1/2)∞`=0 and a column B ∈ `2 by B = (‖χ`‖1/2)∞`=0 and the infinite

square matrix A = diagonal [`+ κ1 + 1/2]∞`=0. Whereas A is real and diagonal, we shall write

A† in some subsequent formulas, so as to emphasize their symmetry.

In the following result we use the (8N − 5) × (8N − 5) block matrices

W (x, y) =

[

U(x, y) v(x, y)
w(x, y)† z(x, y)

]

, Ψ(x) =

[

0 ψ(x)
ψ(x̄)† 0

]

, (10.8)

so that Ψ(x̄) = Ψ(x)† and the matrix Hamiltonian

H(x) =

[

U(x, x)σ v(x, x)
w(x, x)†σ z(x, x)

]

(10.9)

where v, w ∈ H0, U operates upon H0 and z is a scalar. To simplify the statements of results,

we use a special non-associative product ∗, involving σ, that is defined by

[

U v
w† z

]

∗
[

0 ψ
ψ† 0

]

=

[

vψ† Uσψ
zψ† w†σψ

]

. (10.10)

Theorem 10.2. (i) The linear system (−A,B,C) realises ψ(t) = Ce−tAB of (10.3).

(ii) There exists a solution of the Gelfand–Levitan equation

W (x, y) + Ψ(x+ y) +

∫ ∞

x

W (x, s) ∗ Ψ(s+ y) ds = 0 (0 < x < y) (10.11)

such that τ of Proposition 10.1(i) is holomorphic on {t : <t > 0} and satisfies

d

dx
log τ(2x) = traceH(x) (x > 0). (10.12)

31



(iii) Suppose moreover that
∫ ∞
0
x‖Ψ(x)‖2dx < 1. Then

( ∂2

∂x2
− ∂2

∂y2

)

W (x, y) = −2
dH

dx
W (x, y). (10.13)

Proof. (i) This identity follows from (10.3). Since κ1 + ` + 1/2 > 0, the semigroup e−tA =

diagonal [e−t(κ1+`+1/2)]∞`=0 consists of trace-class operators, and the integrals in the remainder

of the proof are convergent.

(ii) To obtain an expression for the solution, we introduce auxiliary operators Lx and

Qσx, then express τ as a Fredholm determinant of LxQ
σ
x, and finally write τ ′/τ as a rational

expression in the various operators. We introduce the observability Gramian with its matrix

representation

Qσx =

∫ ∞

x

e−sA
†

C†σCe−sA ds↔
[ e−(`+m+2κ1+1)xχ†

`σχm

(`+m+ 2κ1 + 1)‖χ`‖1/2‖χm‖1/2

]

`,m=0,1,...
, (x > 0),

(10.14)

modified to take account of σ, and the usual controllability Gramian

Lx =

∫ ∞

x

e−sABB†e−sA
†

ds ↔
[e−(`+m+2κ1+1)x‖χ`‖1/2‖χm‖1/2

`+m+ 2κ1 + 1

]

`,m=0,1,...
, (10.15)

both of which define trace-class operators on `2, and where Lx ≥ 0. (The matrix expressions

resemble the soliton determinants of [24, (6.24)] and [25, p. 409].) The controllability operator

Ξx : L2((0,∞);H0) → H is

Ξxf =

∫ ∞

x

e−sABf(s) ds (10.16)

while the observability operator is Θx : L2((0,∞);H0) → H is

Θxf =

∫ ∞

x

e−sA
†

C†f(s) ds. (10.17)

Finally, we let ψ(x)(s) = ψ(s+ 2x), so that ψ(x) is realised by (−A, e−xAB,Ce−xA). In terms

of these operators, we have the basic identities

Γψ(x)
= Θ†

xΞx, Γ†
ψ(x)

= Ξ†
xΘx (10.18)

while

Lx = ΞxΞ
†
x and Qσx = ΘxσΘ†

x. (10.19)

Hence we can rearrange the factors in the Fredholm determinants

det(I − λΓ†
ψ(x)

σΓψ(x)
) = det(I − λΞ†

xΘxσΘ†
xΞx)

= det(I − λΞxΞ
†
xΘxσΘ†

x)

= det(I − λLxQ
σ
x). (10.20)
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We deduce that

log τ(2x) = log det(I − Γ†
ψσΓψP(2x,∞))

= log det(I − σΓψP(2x,∞)Γ
†
ψ)

= log det(I − σΓψ(x)
Γ†
ψ(x)

)

= log det(I − Γ†
ψ(x)

σΓψ(x)
)

= trace log(I − LxQ
σ
x), (10.21)

and hence

d

dx
log τ(2x) = trace

(

(I − LxQ
σ
x)

−1
(

e−xABB†e−xA
†

Qσx + Lxe
−xA†

C†σCe−xA
)

)

= B†e−xA
†

Qσx(I − LxQ
σ
x)

−1e−xAB

+ traceσCe−xA(I − LxQ
σ
x)

−1Lxe
−xA†

C†. (10.22)

The integral equation

[

U(x, y) v(x, y)
w(x, y)† z(x, y)

]

+

[

0 ψ(x+ y)
ψ(x+ y)† 0

]

+

∫ ∞

x

[

U(x, s) v(x, s)
w(x, s)† z(x, s)

]

∗
[

0 ψ(s+ y)
ψ(s+ y)† 0

]

ds = 0 (10.23)

reduces to the identities

U(x, y) = −
∫ ∞

x

v(x, s)ψ(s+ y)† ds, (10.24)

z(x, y) = −
∫ ∞

x

w(x, s)†σψ(s+ y) ds, (10.25)

and the pair of integral equations

v(x, y) + ψ(x+ y) −
∫ ∞

x

∫ ∞

x

v(x, t)ψ(t+ s)†σψ(s+ y) dsdt = 0 (10.26)

and

w(x, y) + ψ(x+ y) −
∫ ∞

x

∫ ∞

x

ψ(s+ y)ψ(t+ s)†σw(x, t) dtds = 0. (10.27)

To solve these integral equations, we let

v(x, y) = −Ce−xA(I − LxQ
σ
x)

−1e−yAB (10.28)

and

w(x, y) = −Ce−yA(I − LxQ
σ
x)

−1e−xAB; (10.29)
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then by substituting these into (10.24) and (10.25) we obtain the diagonal blocks of the solution

W , namely

U(x, y) = Ce−xA(I − LxQ
σ
x)

−1Lxe
−yA†

C† (10.30)

and

z(x, y) = B†e−yA
†

Qσx(I − LxQ
σ
x)

−1e−xAB; (10.31)

note that these are rational operator expressions in e−xA, e−xA
†

, Lx, Q
σ
x, B,B

† , C and C†.

Hence we can identify the trace of the solution (10.9) as

traceH(x) = traceσU(x, x) + z(x, x)

= traceσCe−xA(I − LxQ
σ
x)

−1e−xA
†

C†

+ B†e−xA
†

Qσx(I − LxQ
σ
x)

−1e−xAB

=
d

dx
log τ(2x). (10.32)

(iii) By integrating by parts, we obtain the identity

( ∂2

∂x2
− ∂2

∂y2

)

W (x, y) − 2
dH

dx
Ψ(x+ y) +

∫ ∞

x

( ∂2

∂x2
− ∂2

∂s2

)

W (x, s) ∗ Ψ(s+ y) ds = 0 (10.33)

for 0 < x < y. One can easily verify that the product ∗ and the standard matrix multiplication

satisfy (QW ) ∗ Ψ = Q(W ∗ Ψ), hence the formula

−2
dH

dx
W (x, y) − 2

dH

dx
Ψ(x+ y) −

∫ ∞

x

(

2
dH

dx
W (x, s)

)

∗ Ψ(s+ y) ds = 0 (10.34)

follows from multiplying (10.33) by −2 dHdx , and this shows that both −2 dHdxW (x, y) and ( ∂
2

∂x2 −
∂2

∂y2
)W (x, y) are solutions of the same integral equation (10.11). By uniqueness of solutions,

they are equal.

While τ ′/τ would appear to be transcendental over C(e−t, e−(κ1+1/2)t), we can obtain

τ ′/τ as a limit of elements of this field.

Corollary 10.3. (i) There exists a sequence of finite-rank matrices (An)
∞
n=1, with corre-

sponding tau functions τn, such that d
dt

log τn(2t) is a meromorphic function that belongs

to C(e−(κ1+1/2)t, e−t) and τn(2t) → τ(2t) as n → ∞, uniformly on compact subsets of

{t : <t > 0}.
(ii) Suppose further that κ1 is rational. Then there exists a positive integer N1 such that

d
dt log τ(2t) is periodic with period 2πiN1, and τn(2t) is given by elementary functions as in

(10.37) below.
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Proof. (i) Let F = C(e−(κ1+1/2)t, e−t) and observe that the entries of the matrices that

represent e−tA, Lt and Qσt all belong to F. We introduce the finite-rank matrices

An = diagonal [κ1 + 1/2, κ1 + 3/2, . . . , κ1 + n+ 1/2, 0, 0, . . .] (10.35)

so that ‖e−tA − e−tAn‖c1 ≤ e−(κ1+n+1)<t/(1 − e−<t). Similarly, we cut down B to its first

n rows Bn ∈ Mn×1(C) and C to its first n columns Cn ∈ M1×n(C); then we introduce the

corresponding Lt,n and Qσt,n by the formulas (10.14) and (10.15), suitably adjusted, then we

follow through the proof of Theorem 10.2 to produce the appropriate choice of Wn(t, t) by

the prescription of (10.8). By inspecting matrix entries, we see that Lt,n, Qσt,n and hence

det(I − Lt,nQ
σ
t,n) are entire, and hence Wn(t, t) is meromorphic on C. Likewise, we observe

that det(I−Lt,nQσt,n) ∈ F, and hence we can solve the Gelfand–Levitan equation (10.12) with

matrices with entries in F. In particular, from (10.32) we obtain d
dt

log τn(2t) = traceHn(t) in

F, where τn(2t) → τ(2t) as n→ ∞, uniformly on compact subsets of {t : <t > 0}.
(ii) In this case, the set {mκ1 +m/2 + n`;m,n ∈ Z; ` = 0, 1, 2, . . .} is a finitely generated

subgroup of the rationals, and hence has a smallest positive element M/N1, where M,N1 ∈ N

with M < N1. Then all the terms N1(κ1 + ` + 1/2) are positive integers, so exp(−(t +

2πN1i)A) = exp(−tA) for all <t > 0, hence τ ′(2t)/τ(2t) is periodic.

By (i), there exists a rational function rn such that

d

dt
log τn(2t) = rn(e

−t/N1). (10.36)

Suppose for simplicity that rn(z)/z has only simple poles; then from the partial fractions

decomposition, there exist coefficients αj, βj and γj and bj , cj such that b2j < cj , real poles ak

and a polynomial qn(z) such that (10.36) integrates to

log τn(2t) = qn(e−t/N1) +
∑

k

αk log |e−t/N1 − ak| +
∑

j

βj log(e−2t/N1 + 2bje
−t/N1 + cj)

+
∑

j

γj
√

cj − b2j

tan−1 e
−t/N1 + bj
√

cj − b2j

. (10.37)

When rn(z)/z has higher order poles, one likewise obtains expressions for log τ(2t) that involve

similar, but more complicated, elementary functions.

Remark 10.4. Let qn(t) = −2 d2

dt2
log τn(2t) be as in Corollary 10.3(ii). Then −d2f/dt2 +

qn(it)f = λf has the form of a complex Hills equation. The criteria for integrability are

considered in [9, 31]. Typical periodic potentials are not of finite gap and may be associated

with curves of infinite genus; see [30, 17].
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the Riemann–Hilbert approach (Providence, R.I.: American Mathematical Society).

[20] Forrester P J and Witte N S 2006 Random matrix theory and the sixth Painlevé equation
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