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Bilinear structures are able to represent nonlinear phenomena more accurately than linear 

models, and thereby help to extend the range of satisfactory control performance. However, 

closed loop characteristics are typically designed by simulation and stability is not guaranteed. 

This Letter shows how bilinear systems are a special case of the more general state dependent 

parameter (SDP) model, which can subsequently be utilised to design stabilising feedback 

controllers using a special form of nonlinear pole assignment. In order to establish the link, 

however, an important generalisation of the SDP pole assignment method is developed. 

Introduction: Three–term PID control systems are widely used in the process industries. 

However, the performance of a fixed gain algorithm can be compromised when controlling the 

system over a wide operating region. Potential solutions to this problem include detuning to 

enable a wider range of operation, as well as numerous nonlinear design methods, such as gain 

scheduling and/or the introduction of a bilinear compensator. Bilinear structures are able to 

represent nonlinear phenomena more accurately than linear models, and thereby extend the 

range of satisfactory performance. One of the strengths of PID–based bilinear design is the use 

of classical methods and a relatively straightforward implementation [1–2]. However, closed 

loop characteristics, such as stability, are typically dependent on empirical investigations. 

This Letter shows how bilinear systems are a special case of the more general state dependent 

parameter (SDP) model [3]. Such models form the basis for stabilising feedback design utilising 
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a special form of pole assignment [4]. In fact, the approach uses the Proportional–Integral–Plus 

(PIP) framework [5], albeit in a modified form to address the system nonlinearities. Here, 

algebraic forms of the control gains can usually be derived off–line, to yield a practically useful 

control algorithm that has a similar degree of complexity to the PID–based bilinear compensator. 

However, in contrast to [4], the algorithm below is derived entirely in state space form, 

facilitating a concise stability analysis. Furthermore, in earlier research on SDP pole assignment, 

the model has been limited to a single element associated with the input, i.e. the system has no 

open loop zeros. To now address general bilinear models, it is essential to relax this constraint. 

Generalized Bilinear Model: Consider the following nth order model, with τ  samples time–delay, 

1m τ− +  parameters associated with the input and ( 1)n m τ× − +  additional bilinear terms, 

 
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
m n n m

i i ij
i i i j

y k b k u k i a k y k i y k i u k j
τ τ

η
= = = =

= − − − + − −∑ ∑ ∑ ∑  (1) 

where ( )y k  is the output and ( )u k  the control input. To demonstrate the link with bilinear 

models ijη  are constant coefficients, whilst ( )ia k  and ( )ib k  are assumed to vary over time in a 

state dependent manner, i.e. each parameter is expressed as a function of one or more 

measured variables, not necessarily the input and output. With time invariant ( )i ia k a=  and 

( )i ib k b k= ∀ , equation (1) reduces to the conventional bilinear form [1–2]. 

Controllable Form: An important concept highlighted by this Letter, is that equation (1) can 

always be reduced into a controllable SDP model, 

 
1

( ) ( ) ( ) ( ) ( )
n

i
i

y k b k u k a k y k iτ
=

= − − −∑ɶ ɶ  (2) 

Equation (2) can be derived from (1) or directly estimated [3] in this form. Straightforward 

algebra shows that the parameters in (2) may be defined in various ways, potentially yielding 

control systems with different robustness properties. For the purposes of this Letter, however, it 

is sufficient to note that ( )ib k  for i τ>  and ijη  in (1), are associated with ( )ia kɶ  and ( )b kɶ  in (2). 
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This is best shown by demonstration: consider (1) with 3n m= = , 2τ =  and time invariant 

parameters; here, (2) is based on e.g. 3
12 2( ) ( )i ib k b y k iη== + −∑ɶ , 1 1 13( ) ( 3)a k a u kη= − −ɶ , 

2 2 23( ) ( 3)a k a u kη= − −ɶ  and 3 3 33 3( ) ( 3) ( 3) ( 3)a k a u k b u k y kη= − − − − −ɶ . 

Nonlinear Pole Assignment: Define a state vector, 

 [ ]( ) ( ) ( 1) ( 1) ( 1) ( 1) ( )k y k y k y k n u k u k z k= − − + − − +x … … τ  

and associated non–minimal state space representation of equation (2), 

 ( 1) ( ) ( ) ( ) ( ) ( 1) ; ( ) ( )k k k k u k r k y k k+ = + + + =x F x g d hx  (3) 

where ( )r k  is the command input and ( ) ( 1) ( ) ( )z k z k r k y k= − + −  is an integral–of–error state 

variable, introduced to ensure Type 1 servomechanism performance. Here, ( )kF , ( )kg , d  and 

h  are defined in the obvious way [4–5]. The basic state variable feedback algorithm is, 

 ( ) ( ) ( )u k k k= −c x  (4)  

where ( )kc  is a vector of scheduled gains. However, for nonlinear pole assignment, a non–

singular transformation matrix ( )kT  of the state vector is now introduced, such that, 

 ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( 1)k k k k k k u k r k+ + = + + +T x F T x g d  (5) 

Substituting ( ) ( ) ( ) ( )u k k k k= −c T x  into (5) and re–arranging yields the closed loop state 

equation for ( 1)k +x . Define a matrix D  with user specified (arbitrary) eigenvalues ip , where 

ip  are the roots of the desired characteristic equation 1
1 0

n n
nd d τλ λ −

++ + + =⋯ . If scheduled 

gains ( )kc  can be determined so that the closed loop transition matrix equals k∀D , i.e., 

 
1 1
( 1) ( ) ( ) ( 1) ( ) ( ) ( )k k k k k k k

− −+ − = +T F T D T g c T  (6) 

then the closed loop state equation has the required design eigenvalues. Naturally, such a 

solution does not exist for arbitrary ( )kT  and D . Furthermore, it is well known that for time 

varying systems, as here, these eigenvalues do not necessarily determine the performance and 

stability of the closed loop response. However, now define the following ( )kT  and D  that will 
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meet these control goals. For 1τ = , ( )k = =T T I  is an identity matrix. For 2τ = , using 

[ ]1 1 2( ) ( ) ( ) ( )nk a k a k a k=a ɶ ɶ ɶ⋯ , 

 1

0 0

( ) ( 1) ( 1) 1 ( 1) 0

0 1

k k b k b k

 
 

= + + + 
 
 

I

T a

0

ɶ ɶ  

where 0  is a row of zeros. For 3τ = ,
 

 
2 1

1

0 0 0

( 2) ( 2) 1 ( 2) ( 2) ( 2) 0
( )

( 1) ( 1) 0 1 ( 1) 0

0 0 1

k b k b k a k b k
k

k b k b k

 
 

+ + + + + =
 + + +
 
  

I

a
T

a

0

ɶ ɶ ɶɶ

ɶ ɶ
 

where [ ]2 2 3( ) ( ) ( ) ( ) 0nk a k a k a k=a ɶ ɶ ɶ⋯ . Following this approach, similar transformations can 

be developed for 3τ >  but are omitted for brevity. For 1τ = , 

 

2 1 3 1 1

2 1 3 1 1

1 0 0 0

0 1 0 0

1

n n n

n n n

d d d d d d

d d d d d d

+ + +

+ + +

 + + + +
 
 

=  
 
 − − − − − − − − − 

D

ɶ⋯ ⋯ ⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

ɶ⋯ ⋯ ⋯

 

in which 11 nd d d τ+= + + +ɶ ⋯ . By contrast, for 1τ > , 

 
1 2 3 4 5

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

d d d d d d

 
 
 
 
 =
 
 
 
 

−  

D

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

ɶ ɶ ɶ ɶ ɶ ɶ⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯ ⋯

 

where 1 1n nd d dττττ+ += + +ɶ ⋯ , 2 2n nd d d+ += + +ɶ ⋯τ , 3 nd d +=ɶ τ , 4 11d d= − −ɶ ,  

5 1 11d d d −= − − − −ɶ ⋯ τ . 
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Using these definitions when 1τ > , the first n  and last 1τ −  rows of equation (6) consist only of 

zeros. By equating the ( )1n + th row and solving the resultant set of n τ+  simultaneous 

equations, the control gains ( )kc  are obtained. For 1τ = , the gains are obtained by equating 

either the first or final row of (6). In both cases, the control gains in ( )kc  are identical to those 

quoted without derivation by [4], who also describe several simulated and practical examples. 

Furthermore, substitution using the open loop state equation in the manner of Kuo [6], yields a 

controllability matrix which is non–singular if and only if ( ) 0b k ≠ɶ , a result that is particularly 

easy to check in practice. With time invariant ( )i ia k a=ɶ ɶ  and ( )b k b k= ∀ɶ ɶ , the control gains in 

( )k =c c  are identical to those obtained using linear PIP methods; in this case, reference [5] 

describes a more convenient, computational approach for their calculation. The general form of 

the gains in ( )kc  are not repeated here. However, the novel state space derivation developed 

above is ideal for demonstrating the stability of the solution. In fact, assuming no model 

mismatch, the control law (4), applied to the nonlinear model (1) or its equivalent (3), yields a 

linear response characterized by the design poles ip , as shown below. 

Stability: Substituting (4) into (3) yields ( )( 1) ( ) ( ) ( ) ( ) ( 1)k k k k k r k+ = − + +x F g c x d . When the 

gains are determined as above, the closed loop transition matrix can always be decomposed 

into 
1

( 1) ( )k k
−+T DT . Hence, pre–multiplying by 

1
( 1)k

− +T
 
 and defining 

1
( ) ( ) ( )k k k

−=x T xɶ  

yields 
1

( 1) ( ) ( 1) ( 1)k k k r k
−+ = + + +x Dx T dɶ ɶ . Following a similar approach to Kuo [6], 

successive substitutions using (7) yields 

1 0
( ) ( ) ( 1) ( )

n n
k k n r k n r k

τ ττ τ+ + −= − − + − − + + +x D x D d D dɶ ɶ … . The Cayley–Hamilton theorem 

shows 1
1

n n
nd dτ τ

τ
+ + −

++ + + =D D I 0… , hence  taking 1( ) ( 1) ( )nk d k d k nτ τ++ − + + − −x x xɶ ɶ ɶ…  

and re–arranging yields, 

 
( ) ( )

1

1 2
1 1 1

( ) ( 1) ( )

( 1) ( 1) ( )

n

n n
n

k d k d k n

d d r k n d r k r k

τ

τ τ
τ

τ

τ

+

+ − + −
+ −

= − − − − − −

+ + + + − − + + + + − +

x x x

D D I d D I d d

ɶ ɶ ɶ…

… …
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Since 
1

( ) ( ) ( ) ( ) ( )y k k k k k
−= = =hx hT x hxɶ , it is a trivial matter to obtain the output response. In 

fact, noting 0= =hId hDd  (etc.) and 1n
d

τ+ − =hD d ɶ , the closed loop response reduces to 

1( ) ( 1) ( ) ( )ny k d y k d y k n dr kτ τ τ+= − − − − − − + −ɶ… . Expressed as a linear Transfer Function, 

the poles are identical to the eigenvalues of D  by definition. With design poles inside the unit 

circle on the complex z–plane, closed loop stability clearly follows. †  

Feasibility: Examination of (6) and ( )kT  shows that a τ  sample forward shift of the parameters 

is required. Fortunately, for many systems, the parameters are functions of the delayed input 

and output signals, hence a forward shift does not cause problems. Significantly, generalisation 

from the example above, in which 3n m= =  and 2τ = , shows how a bilinear model can always 

be converted into such a controllable form: here, the SDPs are functions of ( )u k i−  where i τ> ; 

e.g. 3 3 33 3( 2) ( 1) ( 1) ( 1)a k a u k b u k y kη+ = − − − − −ɶ . However, predicted values of the output 

variable are sometimes required. One option is to use ˆ( ) ( )y k j d k j+ = +  where ( )d k  is the 

desired response obtained by open loop simulation. In this manner, the analysis above still 

holds at the design stage, albeit with a robustness penalty in practical applications. 

Example: A bilinear model 0 0 0( ) ( ) ( ) ( ) ( )y t u t y t y t u tβ α ρ= − +ɺ  has been used to develop control 

systems for an industrial furnace [2]. For a sampling rate t∆ , one discrete–time bilinear model is 

1 1 11( ) ( 1) ( 1) ( 1) ( 1)y k b u k a y k y k u kη= − − − + − − , in which ( )1 0 1 01 /b aβ α= +  , 0
1

t
a e

∆= − α
  and 

11 0 tη ρ= ∆ . The controllable SDP model (2) is ( )1 11 1( ) ( 1) ( 1) ( 1)y k b y k u k a y kη= + − − − − . With 

a design polynomial 
2

1 2d dλ λ+ + ,  [ ]( ) ( ) ( )
T

k y k z k=x , ( )k =T I , 

 
1 1 11 2 2 3

1 1 11 2 1 2

0 ( ) 1
( ) ; ( ) ;

1 ( )

a b y k d d d
k k

a b y k d d d

η

η

− + + +     
= = =     − − − − −     

F g D  

and solving the nonlinear pole assignment problem (6), yields [ ]0( ) ( ) ( )Ik f k k k= −c , where  

( ) ( )0 2 1 1 1( ) ( )f k d a b y kη= − + +  and ( ) ( )1 2 1 1( ) 1 ( )Ik k d d b y kη= + + +  are the scheduled 

proportional and integral gains respectively. For this example, an equivalent fixed gain PIP or 

PID design typically yields an unstable response (away from the design operating level). By 
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contrast, SDP–PIP controllers applied to the discrete–time bilinear model, will always yield an 

exact match to the designed for response based on the chosen pole positions. 

When the SDP controller is now applied to the continuous–time bilinear model quoted above, it 

still yields a response almost identical to the required solution, even in the case of dead–beat 

design, in which the closed loop poles are placed at the origin of the complex 

z–plane and the output reaches the set point after τ  sampling intervals (of course, this is not 

usually recommended for practical applications). For this example, a PIP controller [5] combined 

with a bilinear compensator [2] yields similar simulation results to the SDP–PIP approach. In 

fact, the authors are presently investigating the relative performance and robustness of SDP 

and bilinear compensator–based control systems, applied to a range of examples with realistic 

levels of model uncertainty. However, this is beyond the scope of the present Letter. 

Conclusions: This Letter has shown how a bilinear model with open loop zeros may be 

converted into a controllable SDP form, hence allowing for a significant generalisation of a 

previously developed nonlinear pole assignment algorithm. Furthermore, a new demonstration 

of the veracity of the algorithm has been developed, in which the calculation of the control gains 

and the stability proof are now presented in a unified state space form, potentially allowing for 

future extension of these methods to the multivariable and optimal design cases. 
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