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Abstract

This paper illustrates the flexibility of the ESTAR model to encompass a numloifert
ent characteristics found in economic and financial series, such as medjigléria, complex
dynamics, chaotic-like behavior, and spurious trends. We then resatise power of the
Kapetanios et al. (2003), Enders and Granger (1998), and AugtBittkey Fuller unit root
tests in the presence of nuisance parameters for parameter values tygrnicalyntered in the
empirical literature. Our results show the lack of dominance of any partimgaand that the
power is not independent to priors about the nuisance parameterBy,Riugaexamine several
asset price deviations from fundamentals and one hyper-inflation sede@nd contradictory
results between the nonlinear fitted models and unit root tests. The findirdightghat new

testing procedures with higher power are desirable.
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1 Introduction

Traditional models in economics and finance establish atifrmework for analyzing prices,

fundamentals as well as the relationship between them. Riegastock markets, the cost of

carry model predicts that stock futures prices should cawath spot prices (Taylor et al., 2000).

Further, loglinear present value models imply a linearti@hship between log dividends and
prices (Campbell and Shiller, 1988). Similarly in the hogsmarket, as long as that the real value
of residential property is a constant proportion of the expe value of future real disposable
income, the house price to income ratio should be stable Kital., 2006).

However, in most cases the results of empirical researcédbas linear unit root tests are
discouraging. Deviations from fundamental values appeavander with no apparent tendency
to revert to a single equilibrium point. This is in sharp gast to the theory. During the last
two decades numerous theoretical and empirical contdbsthave attempted to provide possible
explanations for this empirical regularity. An importamtding of these studies is that the failure
to find economically meaningful results may be attributeth® assumption of linearity. Linear
unit root tests may result in misleading inference in thespnee of nonlinear dynamics regarding
the mechanism characterizing the macroeconomy and assettsa

A family of nonlinear models which is gaining popularity inéince and macroeconomics is the
smooth transition autoregressive (STAR). The STAR funetiéorm has three particularly appeal-
ing features. First, it is in line with the presence of lintdsarbitrage in financial and commaodity
markets due to market frictions, uncertainty regardingléayium asset prices and heterogeneous
agents which make deviations from equilibrium and arb#&ragnditions inherently nonlinear and
persistent. To this end, applications of the STAR proceskud® modeling deviations from the
covered interest parity (Peel and Taylor, 2002), spotraguelationship (Sarno and Monoyios,
2002), dividend-price ratios (Gallagher and Taylor, 20@iBviations of nominal exchange rates

from the equilibrium value suggested by the Purchasing P&asgty (PPP) (Michael et al., 1997;



Taylor et al., 2001; Kilian and Taylor, 2003), as well as o@l money holdings (Sarno et al.,
2003).

Second, this particular type of nonlinear models can dyspialtiple equilibria. This property
might turn out to be crucial for capturing the salient aspaxdtseries such as real interest rates
and inflation. Models of monetary policy rules suggest thateoyou take into account the zero
bound on nominal interest rates, real interest rates maluw a number of equilibria (see, e.qg.,
Benhabib et al., 2001). Moreover, in their seminal paper &#rgnd Wallace (1973) show that
when authorities print money so as to finance a real budgetidefiation is a nonlinear process
with two equilibria, one stable and the other unstabldoreover, a stylized fact regarding inflation
is the high persistence of the series. In numerous empaightheoretical contributions inflation is
assumed to be a linear integrated of order one, I(1), prodéss assumption has severe economic
and statistical implications. The nominal exchange raie PPP, should be an I(2) process, and
nominal asset returns would exhibit unit root behavior,alhs in sharp contrast with the empirical
findings.

Third, STAR models can exhibit complex, possibly chaotimamics. There are a number of
theoretical models that suggest this behavior in econoamdsfinance. Day (1982) modifies the
neoclassical growth model and shows that growth cycles xhibie an asymmetric saw-toothed
pattern. Grandmont (1985) employs overlapping-genaratinodels so as to illustrate how a de-
terministic equilibrium model can produce regular asymioet/cles as well as chaotic dynamics.
Brock (1988) and De Grauwe et al. (1993) construct heteragenagents models which can gen-
erate similar complex behavior, or even chaos, in assetqridoreover, De Grauwe and Grimaldi
(2006) and Kaizoji (2004) show that the presence of hetereges agents can lead to the genera-
tion of speculative bubbles in asset prices and financisgésriChapell (1997) shows how a discrete

version of the Sargent and Wallace (1973) model of hypeatioth can exhibit both complex and

1In the case that agents form adaptive expectations the lealibrium is stable but not the higher, ruling out
steady states of high inflation. However, Evans et al. (18@6}rate that two stable solutions can occur and, theegfo
a stable high inflation state may arise with adaptive legrnin



chaotic dynamics. All these arguments motivate a nonlimelgastment mechanism with possi-
ble multiple equilibria and complex dynamics such as themoeided by the smooth transition
regression model. Some of the properties of STAR modeldlastrated below, in Section 2.

Given the widespread application of ESTAR models to timesavhich are highly persistent it
is useful to examine the properties of a unit root test whietivés from this family, and compare it
with more general unit root tests. Kapetanios et al. (2003 hereafter) propose a testing proce-
dure so as to formally distinguish between nonlinear siegldlibria globally stationary processes
and unit root processes. On the basis of Monte Carlo simulatiperiments the authors conclude
that their procedure improves substantially upon existeggs. In particular, their nonlinear unit
root test appears to have better power properties thataineatd Augmented Dickey-Fuller test,
ADF hereatfter, and the statistic proposed by Enders andgerdt998), EG hereatfter.

In Section 3 of this paper we attempt to extend the analyd$S& in three directions. First, we
employ a different range of parameter values than the ormesd®red initially by Kapetanios et al..
The new range approximates the range of values typicallgrteg in the empirical literature and
corresponds to ESTAR processes which exhibit more clog@tyroot like behavior. Second, we
examine the impact of uncertainty regarding the presendeteirministic components in the Data
Generating Process (DGP) on the performance of the testri{;lessearchers are often ignorant
and in many cases have no priors about the true DGP so thataveyto rely on hypothesis testing
to determine the significance of deterministic componeninally, we investigate further the
impact of multiple equilibria on the performance of the noe&r test. This exercise is interesting
given that the test is based on the assumption of a singlélagun point.

Section 4 examines the performance of the unit root testiandial and macroeconomic time

series that have been suggested to follow nonlinear pres@ssmentioned above.

2Given that ESTAR models can exhibit spurious constants @mti$ (see Paya and Peel, 2003), the examination
of the impact of the specification procedure on the perfoceari nonlinear tests appears important.



2 Modeling Nonlinear Economic & Financial Dynamics with

the STAR model

A typical Exponential STAR (ESTAR) model for a univariate &érseriesy, is given by

Yo = BYi—1 + 11 [1 — exp(—0y2 )] + e,

or, equivalently,

Ay = ¢yt + Y1 [1 — exp(—0y;_,)] + &, 1)

where, v andf are constantsp = 3 — 1 ande; ~ iid(0, 0?) is the disturbance terQw.When
v < 0and¢ + v < 0 the process is globally mean reverting although close tethalibrium it
may exhibit unit root or even explosive behavior. As aforatimned, the fact that STAR models
allow the speed of mean reversion of the process towardsgléleium to be a function of the
distance from the equilibrium is particularly appealingmmodeling several macroeconomic and
financial variables. It has been proved that the presence$dctions costs and other market
frictions in arbitrage models imply this type of nonlineajustment mechanism.

However, for different parameter values the ESTAR model @iaplay multiple equilibria,
complex dynamics and chaotic-like behavior that can leamisteading conclusion when unit root

tests are employed. For instance, consider the followindeho
yr = 1.1y exp (—8.059(y—1 — 0.175)%) + & (2)

which is globally stationary. Figure 1, which depias); againsty;_,, shows that the process
has three equilibria which correspond to the cases whereuthve intersects with the horizontal

axis. The stable equilibria are given by 0 and 0.283. To sheteright on the properties of

3The assumption can be relaxed to allow be a martingale difference sequence.



the process, we simulate (2) without noise and a startingevaf 0.1. The first 100 realizations
of the series are presented in Figure 2. The process mowvesth® starting value to the high
equilibrium with oscillations. This behavior could be nalkénly interpreted as either explosive or
suggestive of a time trend in small samples. Figure 3 shoWobBervations of the same process
with the noise switched on. It can be observed that the sexbibits high persistence which
makes it difficult to distinguish from a process with an icegt and trend, a unit root or even
an explosive procegsLundbergh and Tésvirta (2002) conduct a similar simulation experiment
using a stationary Logistic STAR model with realizationattfluctuate between two local means.
Their overall conclusion is that standard unit root testemvhpplied to these series do not reject

the unit root hypothesis.
Figures 1,2 and 3

Macroeconomic and financial series may in fact exhibit thpetof behavior. Byers and Peel
(2000) motivated by the theoretical literature on inflatiymamics fit ESTAR models to the infla-
tion series of high-inflation countries. They examine Branill Argentina in the second half of the
twentieth century and Germany in interwar pev@oﬂheir results support the presence of multiple
equilibria. In particular, Brazil has a stable high inflatequilibrium, while for the remaining two
countries the high inflation state is characterized by iftetycles. This finding has potential con-
sequences for asset markets, such as the FX and bond mérkatgh spillover effects. Exchange
rates, interests rates and asset returns are linked witksptirough e.g. the PPP hypothesis and
the Fisher equation.

The ESTAR model is also capable of mimicking chaotic typeavadr which can arise in
asset prices through the interaction of chartists and foneddalists in the market. Heterogeneous

agents models have been derived for the FX market (De Grauale 993), the stock market

“Note that the ADF test statistic for this particular canreécted the null of a unit root at the 5 per cent level.
SModel(2 corresponds to the estimates for the case of Bralgihse note that the speed of adjustment coefficient
in Equation/(2) has be scaled by the variance of the series.
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(Huang and Day, 1993) and the housing market (Kouwenber@amukles, 2010). To illustrate
this point, we slightly modify Equation (2) by changing the@egressive parameter from 1.1 to
1.5. Figure 4 illustrates the path of the series in the cas®afoise for 200 observations. In this
case, the series exhibit cycles of 34 periods. Close ingpeofi the figure would show that the
values of the series do not ever repeat. Figure 5 shows asdatgram ofy; ony,_s4 for the whole
10,000 replications, which corroborates this fact. CledaHg above could be falsely considered
as evidence in favor of chaotic behavior. This example hyhité the importance of accurate
econometric estimation and inference when dealing withlizigomplex dynamics. Coefficients
values within the 95 per cent confidence interval could irt Feve radically different economic

implications for the series under consideration.

Figures 4 and 5

We have so far demonstrated the flexibility of a simple ESTA&det to nest a number of
alternative processes with high persistence, spuriomsistemultiple equilibria and chaotic-like
behavior suggested by different theoretical models in thenitial and economic literature. Given
the popularity of the ESTAR model, KSS focus on the issue odiptence and propose a test to
discriminate between a linear unit root process and a dipbtdtionary ESTAR. The next section
extends the work of KSS in examining its performance in ca$extreme persistence, multiple

equilibria and no priors regarding the Data Generating €&e¢DGP) deterministic components.

3 Kapetanios et al. (2003) Test

Consider Equation (1) and lét= 0 andd = 1, it follows that

Ay = YY1 [1 — exp(—0y71)] + e, (3)



and by following Luukkonen et al. (1988) and taking a firstler Taylor series approximation

Ay = 5?/?_1 + Uy 4)

Under the null hypothesis of a linear unit root modg}, : 6 = 0. Whilst, under the alternative

H; : § < 0. The KSS test statistic is given by

: (5)

tnr = =
M s.e(0)

and converges weakly to a functional of Brownian motions.

In the presence of serial correlation in the residuals Bond#) is augmented with lags of
the dependent variable. Moreover, if the data exhibit agra@pt/trendy must be replaced by the
demean/detrended series. KSS employs a two step proceldutiee first stage, the researcher,
who has a prior regarding the deterministic component ctarnaing the DGP, runs an Ordinary
Least Squares regression of the raw data on an interceptioteanept and a trend and obtains
the residuals (demeaned or detrended series). In turnptilenear unit root test is applied on the
estimated residuals. However, when there is uncertaintytaihe presence of the deterministic
components the econometrician typically regresses thelaaaon an intercept or an intercept and
atrend, and the ones that are not significant are omitted Xéraiae the effect of using hypothesis
testing to specify the deterministic components of the D@khe KSS and the EG test in the next
section. It is also noted, that the ADF test is not based anpgiocedure. The test is always run
with the raw data and then specific critical values for défarrestrictions are tabulated to select
the DGP. Next, we follow KSS and compare the power oftthge statistic with that of the ADF
and EG test.



3.1 Monte Carlo Simulation, New Parameter Values

KSS evaluate the power of their test by employing a DGP witkegjof adjustment parametee
{0.01,0.05,0.1, 1}. The findings of recent empirical research (Taylor et alb22&ilian and Taylor,
2003; Paya et al., 2003) suggest that even lower valuésané warranted, in particular, values
aroundd = 0.001 are also reported in empirical wofkWe employ this value as well as the more
extreme case df = 0.0001 which is closer to the linear unit root case. Regardjrand¢, we set
them equal to -1 and 0, which are the values reported or ingpimsmost empirical research on
PPP or other arbitrage conditions. The nominal significded is set equal to 5 per cent for all
the experiments implemented in this study and the numbepdications equal to 10,000.

Table 1 reports rejection rates of the unit root hypothesisesponding to the KSS, EG and
ADF statistics. Case 1, Case 2 and Case 3 correspond to DGPsomtingtant, constant and con-
stant and trend, respectively. The results for the KSS anteSts presented in Panel A are based
on the procedure advocated by KSS where there are priongdiegdhe nuisance parameters. Not
surprisingly, for relative high values @f 0.01, the power of they;, statistic is always higher or
similar to the power of the ADF and the EG. As the valu¢)afecreases the power of all three
statistics falls and whefireache$).001 the power is reduced up to five times. It is important that
the reduction in power is generally more severe for the K$& the ADF so that in some cases

(and always fof) = 0.0001) the latter becomes superior to the former.
Table 1

We now turn to Panel B where there is no prior regarding therdehistic components. Before
we discuss the results we note that a constant and a trenigsfotind si(fiificant when the DGP

has none, which alters the rejection probabilities of th&Sk®d EG tests. Starting with the no

%In order to make comparisons across models and studies¢be s adjustment parameter must be standardized.
That is, it must be divided by the variancegf .

’For instance, in sample sizes of 100 and 200 around sevedtyigly five per cent of the times, respectively, an
intercept or a trend are found significant.



constant DGP, Case 1, and the KSS test, the broad conclusibartterges is that specifying the
deterministic components on the basis of hypothesis tgsésults in lower power compared to
Panel A. This is not always true for the remaining cases anpaiticular, for small samples and
low values off. On the contrary, the EG test exhibits now greater powere@afby, in small
samples. It is also worth mentioning that now the ADF tespetforms the y;, statistic except in

Case 3 fo = 0.01 and7 equal to 100 and 209.

3.2 Monte Carlo Simulation, Multiple Equilibria

In the previous exercise the ESTAR Model (1) has only oneegallibrium value; = 0. How-
ever, with¢ = 0.1 andy € {—1.5, -1, —0.5}, which are values employed by KSS, there are three

equilibria. Specifically, the values of the equilibria areem by

The smaller the the further apart are the inner and outer equilibrium valkégure 1 depicts
four processes of ten thousand random realizations fromeM@dgd with ¢ = 0.1, v = —1 and
6 € {0.1,0.01,0.001,0.0001}. We emphasize that the relationship between the parareted
the degree of persistence appears to be non monotonic iathgles considered. Asdecreases
the equilibria move further apart and the degree of persisténcreases since shocks make the
process bounce between equilibria. However, when the ibgailare sufficientlyfar apart the
process remains in the neighborhood of only one of the dxiailifor very long periods until a
shock of sufficient magnitude bounces it to the other stafielieria. Hence, the process may
appear to be less persistent. Therefore, the relationgtvpeen the degree of persistence and the

value off is not monotonic which motivates the examination the impédifferent values of) on

8The results for the ADF test are the same in Panel A and B dueetéatt that the deterministic components are
always obtain within the test.
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the power properties of the tests.
Figure 6

The two Panels of Table 2, report the power of the unit rodistés ¢ = 0.1, v = —1,
andf € {0.01,0.001,0.0001}. Starting with Panel A, which is based on the KSS methodology
outlined above, and in the case of a constant and a constdrd &iend (Cases 2 and 3), it is
interesting that the power of all tests increase® dscreases. This finding may be attributed to the
fact that, in small samples, the series with lowdrardly ever change their equilibrium value and
the persistence in the neighborhood of an equilibrium pisildwer for lower values oﬁE This
is also the reason that the power corresponding to 1,000\ai&ms is lower than the power for
350. Note also that for low values 6fthe KSS test performs worst than the competing unit root
tests. Turning to Case 1, we observe that while the power dhfeincreases aé decreases, the

power ofty; and EG become virtually zerg.
Table 2

Panel B of Table 2 reports results for the same parameteevas above but with the speci-
fication of the deterministic components in the KSS and EGltesg determined by hypothesis
testing. Two results for the KSS test are worth mentionirigstRthe test never displays the high-
est power except for Case 3 afid= 0.01. Second, its power drops with respect to Panel A for

6 = 0.01 but improves in the remaining cases.

9Please note that in Figure 1 the series Wit 0.001 is more persistent (the autocorrelation coefficien;is=
0.993) than the series with = 0.01 (p; = 0.945) for a sample of 10,000 observations. However, the pergisten
displayed by the series with= 0.001 is actually lower for small sample sizes similar to the onssdin our Monte
Carlo (' = 100,200, 350, 1000). This is due to the fact that, in small samples, the seri¢ls loiver & hardly ever
changes its equilibrium value and the persistence ‘withiregime (withp; around 0.84) is lower than in the case of
6 = 0.01 (p1 = 0.945).

10The power of the EG test is not reported fbequal to 0.001 and 0.0001 due to the fact that the generaties se
take only positive (values) values making the computatidhe statistic unfeasible.
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The overall conclusion of the above results is that the perémce of the KSS test is not uni-
versally better than the EG and the ADF test but dependsatlyion the DGP under examination
and the methodology adopted for specifying the determingstmponents of the data. The next

section deals with the applications of the three unit rostisten real-world series.

4  Empirical Applications

In the introduction we highlighted the fact that numerousottetical and empirical contributions
suggest that factors such as agent heterogeneity, traorsacbsts, uncertainty regarding equi-
librium values, or the sunk costs of international arbiéragan induce smooth transition non-
linearity in the deviation process of asset prices fromrtifisndamental value in different as-
set markets (Dumas, 1992; Berka, 2005; Kilian and Taylor,12@allagher and Taylor, 2001;
Kim and Bhattacharya, 2009). Many studies have further shibvanthese processes can be par-
simoniously modelled by the ESTAR (Michael et al., 1997;ldagt al., 2001; Kilian and Taylor,
2003; Sarno and Monoyios, 2002).

However, smooth transition nonlinearity is not constrdit@ deviations of asset prices from
fundamentals. Sargent and Wallace (1973) show that whéoaties print money so as to finance
a real budget deficit inflation becomes a nonlinear procetts multiple equilibria. Evans et al.
(1996) illustrate further that under adaptive learningadk& high inflation state may arise. To this
end, Byers and Peel (2000) advocate the use of ESTAR modethwahow high persistence of
the series as well as multiple equilibria.

Given all this evidence it seems interesting to test the gmogs of a number of series repre-
sentative of those markets. Our data set consists of fiveerealange rates, a house price-income
ratio, a dividend-price ratio, a stock index basis, and dlation series. The first real exchange
rate series is the annual dollar-sterlingg() analyzed in Lothian and Taylor (1996). The series

is extended by using data for the U.S. and U.K. consumer [midiees and the dollar-sterling
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nominal exchange rate obtained from the Internationalriarzd Statistics (IFS) database. The ex-
tended data set covers the period from 1791 to 2005. The namgeour are monthly rates for the
U.S.-U.K. @u), U.S.-Japand,), U.S.-Canadag(.y) and U.S.-Franceg) country pairs, that cover
the period January 1973 to December 2005. The series westrgoted by using consumer price
indices and nominal exchange rates from the IFS databasemptoy the daily spot and futures
prices of the FTSE 100 for the period Januafy1988 to Decembe31t 1998 to construct the
log FTSE 100 basigyse) as analysed in Sarno and Monoyios (2002). The next twossargthe
quarterly U.K. log house price-income ratip(— y) and the monthly Nasdaq log dividend-price
ratio (d — p). Data for the former variable span the period 1983 to 20@Bae obtained from
Nationwide and the IFS. Price and dividend data cover thiogpelr973 to 2008 and were down-
loaded from Datastream. The final series is the monthly iofiatate for Brazil ), which covers
the period January 1957 to December 1990. The series iszauhily Byers and Peel (2000) and
Baillie et al. (1996) and can be downloaded fromt p: / / ged. econ. queensu. ca/ j ae/.

In order to assess the significance of nonlinearities ineales but inflation we first fit nonlinear

ESTAR models of the form proposed by Kilian and Taylor (2003)

B 0
var(y, 1)

=G+ > &y — o) exp ( (Ye-1— 50)2> + e, (6)
=1

where¢; with i = 1,...,p are parameterg, denotes the lag order, afd’_, ¢ = 1[1 The above
parameterization is very appealing for modeling deviaitvam parity and equilibrium conditions.
Unlike in a linear model, the process moves between a whiterand a unit root depending on
the size of the deviationy, 1 — &| and the speed of adjustment Intuitively, small deviations
that do not cover transactions costs or the sunk costs ohatienal arbitrage are left uncorrected
and the process exhibits unit root behavior. On the othed hkmge deviations are much less

persistent. Given the size of the deviation, the speed ohrmmaersion increases with As far as

1The lag ordep is determined on the basis of the Akaike Information Criteri
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the inflation for Brazil is concerned, we employ the estimatesided by Byers and Peel (20@).
These estimates indicate that the process moves betweéplenaquilibria, one of which is high

and one low inflation.
Table 3

The second column of Table 3 shows the estim@tedefficients. The estimates vary con-
siderably across applications. Moreover, all coefficiants statistically significant at least at the
10 per cent significance level implying that the series amdinear and globally stationary. The
maximum¢ estimate is about 0.058 and corresponds to the annual -dtdding real exchange
rate data. While, the minimum is about 0.004, which lies algt$he range examined by KSS but
included in the previous section, for the real exchangeab@anada.

These results have the following economic implications. d&Reigg real exchange rates, they
suggest that prices and exchange rates are related withljinrgtraent mechanism being nonlin-
ear. Moreover, they are in line with other studies whichizgilnonlinear models and explain the
documented difficulty of unit root tests typically employedhe 1980s to reject the null hypoth-
esis (Michael et al., 1997). Turning to the dividend-priaga, the fact tha# is significant for the
Nasdaq index complements the analysis of Gallagher an@Tg001) and rules out the presence
of bubbles (the dot-com bubble) suggested by other studiesmilar conclusion can be drawn
from the estimate of the speed of adjustment for the house+jmcome ratio of the U.K. housing
market. The fact that the FTSE futures basis is nonlineadgmreverting is in accordance with
Sarno and Monoyios (2002) and stresses the importance aglimgdtock market frictions.

Turning to the results displayed in the remaining columndalfle 3, we observe that the
unit root hypothesis cannot be rejected for all the monteBl exchange rates, the house price-

income ratio and the dividend-price rarﬂfb()n the other hand, the null is rejected for the annual

?Note that the authors adopt a slightly different ESTAR pastarization that the one of Kilian and Taylor (2003)
allowing for the sum of the autoregressive coefficients tdiferent from unity.
B3There are two exceptiong, in the KSS constant case atid- p in the KSS constant and trend case.
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dollar-sterling real exchange rate and the FTSE 100 basthéoconstant and constant and trend
cases. These two series have the highest estimataidies. The fact that the number of rejections
is substantially lower than the number of statisticallyngigant ¢ coefficients raises concerns
regarding the power of the tests which is consistent wittréiselts of the previous section.

A particularly interesting case is the inflation rate sepessented in the last row of the table.
As mentioned above, Byers and Peel (2000) show that this s@éibits multiple equilibria, one
with low inflation rate and one with high. The country appearbe in its low steady state until
the mid-1980s (mean monthly inflation before 1986 was 3.6cpet) and then to move slowly
into the high state (the mean inflation for the period 198696Qlwas 17.3). The change from
one equilibrium to the other has clearly severe conseqsdioceainit root tests. The ADF which
cannot account for multiple equilibria suggests that thieeses explosive for the no constant and
constant cas@.This has important economic implications since, via PP&Rtazilian nominal
exchange rate should also be explosive. Moreover, assehsethould exhibit a similar behavior.
The results for they;, and EG statistics, although do not imply an explosive beajrastill indicate
that non stationarity cannot be rejected.

Overall, rejections of the null hypothesis for all tests @gpto be related with the magnitude
of thed coefficient, the sample size and the existence of multiplgliega. These results seem to

be in line with the simulation experiments.

5 Conclusions

Over the last decades there has been a steadily increasangshin the development and applica-
tion of nonlinear time series models. In this study we focash® widely used family of smooth
transition autoregressive models, which appear to parsonsly capture the nonlinear depen-

dence of many economic and financial time series. Specificad illustrate the flexibility of the

14The critical values for the explosive alternative can benfbin Fuller (1996).
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ESTAR model to encompass a number of different charadt=rigtund in empirical work and
suggested by the theoretical literature using marketidnstand heterogeneous agents. These are
multiple equilibria, complex dynamics, chaotic-like belwa, and spurious trends.

Inturn, we examine the properties of a recently proposettaot test against smooth transition
stationary processes when there are no priors regardirdeteeministic components and possible
multiple equilibria. We also make comparison with two aliive unit root tests widely employed
in the literature. Our results stress that the power of thstie highly dependent on the properties
of the series. Moreover, no test dominates the others.

Finally, we run several applications on the foreign excleaistpck and housing markets as well
as a hyper-inflation series. Despite the fact that we caresstully fit nonlinear models implying
a stable nonlinear adjustment mechanism which supporisagé conditions as well as globally
stationary multiple equilibria inflation series, unit raessts fail, in general, to detect the mean
reversion.

Overall, our findings suggest that the difficulty to reje thit root property in many financial
and macroeconomic data on the basis of unit root testingldhmat be regarded as conclusive
evidence. In particular, the factors examined here canregveontaminate the power of both

linear and nonlinear unit root tests.
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Table 1: Power of Alternative Unit Root Tests

Panel A

6 =0.01

6 = 0.001

6 = 0.0001

Case 1

tNL EG

ADF

tnr

EG ADF

tn

EG

ADF

T =100
T =200
T = 350
T = 1000

0.917 0.259
0.997 0.958
1.000 0.998
1.000 1.000

0.866
0.998
1.000
1.000

0.178
0.612
0.972
1.000

NA
0.147
0.351
0.999

0.228 0.063

0.478
0.861
1.000

0.094
0.203
0.951

NA

0.059
0.071
0.245

0.135

0.169
0.232
0.829

Case 2

T =100
T =200
T = 350
T = 1000

0.477 0.245
0.954 0.908
1.000 0.996
1.000 1.000

0.481
0.960
1.000
1.000

0.100
0.195
0.498
0.997

0.100
0.146
0.303
0.997

0.252
0.412
0.726
1.000

0.052
0.074
0.106
0.393

0.061
0.070
0.081
0.261

0.141
0.168
0.228
0.769

Case 3

T =100
T =200
T = 350
T = 1000

0.267 0.164
0.814 0.686
0.988 0.967
1.000 1.000

0.252
0.761
0.991
1.000

0.089
0.115
0.280
0.970

0.081
0.115
0.216
0.994

0.113
0.161
0.251
0.993

0.055
0.060
0.083
0.202

0.052
0.058
0.079
0.183

0.078
0.091
0.117
0.181

Panel B

0 =0.01

6 = 0.001

6 = 0.0001

Case 1l

InL EG

ADF

13597

EG ADF

13597

EG ADF

T =100
T =200
T = 350
T = 1000

0.534 0.383
0.859 0.885
0.993 0.995
1.000 1.000

0.866
0.998
1.000
1.000

0.122
0.242
0.440
0.982

0.129
0.174
0.341
0.997

0.228
0.478
0.861
1.000

0.071
0.094
0.127
0.298

0.082
0.087
0.107
0.228

0.135
0.169
0.232
0.829

Case 2

T =100
T =200
T = 350
T = 1000

0.415 0.368
0.864 0.895
0.996 0.997
1.000 1.000

0.481
0.960
1.000
1.000

0.130
0.199
0.411
0.982

0.135
0.189
0.322
0.995

0.252
0.412
0.726
1.000

0.086
0.093
0.124
0.297

0.093
0.096
0.101
0.240

0.141
0.168
0.228
0.769

Case 3

T =100
T =200
T = 350
T = 1000

0.352 0.332
0.780 0.745
0.982 0.987
1.000 1.000

0.252
0.761
0.991
1.000

0.114
0.151
0.296
0.970

0.105
0.145
0.231
0.994

0.113
0.161
0.251
0.993

0.070
0.075
0.095
0.202

0.072
0.078
0.097
0.183

0.078
0.091
0.117
0.181

Notes: The table reports rejections rates of the null hygsithof a unit root. The nominal sig-
nificance level is 5 per cent. NA indicates that the value isawailable due to the fact that the
computation of the statistic is not feasible.

21



Table 2: Power of Alternative Unit Root Tests

Panel A

6 =0.01

6 = 0.001

6 = 0.0001

Case 1

tNT EG

ADF

tnr,

EG ADF

tnr

EG

ADF

T =100
T =200
T = 350
T = 1000

0.888 0.038
0.986 0.201
1.000 0.841
1.000 1.000

0.357
0.904
0.989
1.000

0.004
0.035
0.438
0.784

NA
NA
NA
NA

0.628 0.000
0.915 0.000
0.948 0.000
0.900 0.000

NA
NA
NA
NA

0.751
0.987
1.000
1.000

Case 2

T =100
T =200
T = 350
T = 1000

0.306 0.201
0.734 0.353
0.925 0.833
0.999 1.000

0.360
0.580
0.952
1.000

0.422
0.662
0.743
0.650

0.621
0.928
0.968
0.926

0.619
0.907
0.962
0.904

0.510
0.818
0.910
0.962

0.759
0.986
0.999
1.000

0.764
0.991
0.999
1.000

Case 3

T =100
T =200
T = 350
T = 1000

0.211 0.144
0.489 0.299
0.821 0.641
1.000 0.991

0.260
0.326
0.489
0.994

0.271
0.549
0.663
0.629

0.463
0.886
0.952
0.907

0.510
0.835
0.940
0.909

0.325
0.705
0.847
0.934

0.623
0.970
0.994
1.000

0.752
0.964
0.995
1.000

Panel B

0 =0.01

6 = 0.001

6 = 0.0001

Case 1

InL EG

ADF

tnr

EG ADF

tnr

EG ADF

T =100
T =200
T = 350
T = 1000

0.326 0.261
0.593 0.443
0.871 0.833
1.000 0.996

0.357
0.904
0.989
1.000

0.389
0.665
0.715
0.673

0.628
0.919
0.949
0.906

0.628
0.915
0.948
0.900

0.465
0.797
0.908
0.964

0.750
0.979
0.998
1.000

0.751
0.987
1.000
1.000

Case 2

T =100
T =200
T = 350
T = 1000

Case 3

0.312 0.301
0.570 0.412
0.895 0.770
1.000 0.993

0.360
0.580
0.952
1.000

0.405

0.650

0.742
0.65

0.618
0.910
0.964
0.903

0.619
0.907
0.962
0.904

0.491
0.793
0.899
0.957

0.755
0.987
0.999
1.000

0.764
0.991
0.999
1.000

T =100
T =200
T = 350
T = 1000

0.229 0.220
0.508 0.368
0.821 0.641
1.000 0.991

0.260
0.326
0.489
0.994

0.317
0.554
0.663
0.631

0.536
0.887
0.952
0.908

0.510
0.835
0.940
0.909

0.387
0.706
0.847
0.934

0.657
0.970
0.994
1.000

0.752
0.964
0.995
1.000

Notes: The table reports rejections rates of the null hyggithof a unit root. The nominal sig-
nificance level is 5 per cent. NA indicates that the value isavailable due to the fact that the
computation of the statistic is not feasable.
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Table 3: Empirical Applications

INT EG ADF
Series 0 NC C CT NC C CT NC C CT
qua 0.058 -0.871 -3.778 -3.658 NA 7.234 9854 -0.255 -3.794 -4.327
quk 0.009¢ -1.434 -2.671 -2576 1.543 3.227 3.933 -0.385 -2.488 -2.753
dip 0.007# -0.630 -2.530 -2.807 NA 2.157 1.6806 -0.457 -2.076 -1.810
gecan  0.004 -0.990 -1.513 -1.264 0.413 1.235 1.065 -0.448 -1.556 -1.005
qfr 0.010¢ -0.446 -1.831 -1.675 NA 2.444 2540 -0.088 -2.014 -2.090
bise  0.01483 -4.162* -4.216 -4.35F 29.393 29.393% 33.288 -7.66F -7.6600 -8.154
hp—y 0.01Y -0.171 -1.770 -1.914 NA 1.553 1.751 -0.129 -1.645 -1.679
d—p 0.009 -0.424 -2597 -3.186 NA 1.234 3.191 -0.044 -1.533 -1.340
T 0.047¢ -0.761 -1.136 -1.799  0.389 1.429 1.334 0.837 -0.031 -1.178

Notes: NA indicates that the value is not available due tdabkethat the computation of the statistic is not feasable,

and CT correspond to the case of no constant, constant asthoband trend, respectivel§.and ® denote significance at 5
and 10 per cent significance level, respectively.
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Figure 1: Equilibria of the skeleton of Model (2)
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Figure 2: Realization of Model (2) with no noise and startiafue of 0.1
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Figure 3: Realization from Model (2) with noise and startirdue of 0.1
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Figure 4: Realization from Model (2) with autoregressiveffioent 1.5, no noise and starting
value of 0.1
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Figure 5: Scatter plot of; on y; 3, of 10,000 realizations from Model (2) with autoregressive
coefficient 1.5, no noise
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Figure 6: Four simulated ESTAR processes. The parameteevdbr the DGPs are = —1,
¢ = 0.1 and@ is set equal to 0.1 (top-left), 0.01 (top-right), 0.001 (bot-left), and 0.0001
(bottom-right).
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