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Abstract

This paper illustrates the flexibility of the ESTAR model to encompass a number ofdiffer-

ent characteristics found in economic and financial series, such as multipleequilibria, complex

dynamics, chaotic-like behavior, and spurious trends. We then re-assess the power of the

Kapetanios et al. (2003), Enders and Granger (1998), and Augmented Dickey Fuller unit root

tests in the presence of nuisance parameters for parameter values typicallyencountered in the

empirical literature. Our results show the lack of dominance of any particulartest and that the

power is not independent to priors about the nuisance parameters. Finally, we examine several

asset price deviations from fundamentals and one hyper-inflation seriesand find contradictory

results between the nonlinear fitted models and unit root tests. The findings highlight that new

testing procedures with higher power are desirable.
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1 Introduction

Traditional models in economics and finance establish a linear framework for analyzing prices,

fundamentals as well as the relationship between them. Regarding stock markets, the cost of

carry model predicts that stock futures prices should comove with spot prices (Taylor et al., 2000).

Further, loglinear present value models imply a linear relationship between log dividends and

prices (Campbell and Shiller, 1988). Similarly in the housing market, as long as that the real value

of residential property is a constant proportion of the expected value of future real disposable

income, the house price to income ratio should be stable (Black et al., 2006).

However, in most cases the results of empirical research based on linear unit root tests are

discouraging. Deviations from fundamental values appear to wonder with no apparent tendency

to revert to a single equilibrium point. This is in sharp contrast to the theory. During the last

two decades numerous theoretical and empirical contributions have attempted to provide possible

explanations for this empirical regularity. An important finding of these studies is that the failure

to find economically meaningful results may be attributed tothe assumption of linearity. Linear

unit root tests may result in misleading inference in the presence of nonlinear dynamics regarding

the mechanism characterizing the macroeconomy and asset markets.

A family of nonlinear models which is gaining popularity in finance and macroeconomics is the

smooth transition autoregressive (STAR). The STAR functional form has three particularly appeal-

ing features. First, it is in line with the presence of limitsto arbitrage in financial and commodity

markets due to market frictions, uncertainty regarding equilibrium asset prices and heterogeneous

agents which make deviations from equilibrium and arbitrage conditions inherently nonlinear and

persistent. To this end, applications of the STAR process include modeling deviations from the

covered interest parity (Peel and Taylor, 2002), spot-futures relationship (Sarno and Monoyios,

2002), dividend-price ratios (Gallagher and Taylor, 2001), deviations of nominal exchange rates

from the equilibrium value suggested by the Purchasing Power Parity (PPP) (Michael et al., 1997;
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Taylor et al., 2001; Kilian and Taylor, 2003), as well as optimal money holdings (Sarno et al.,

2003).

Second, this particular type of nonlinear models can display multiple equilibria. This property

might turn out to be crucial for capturing the salient aspects of series such as real interest rates

and inflation. Models of monetary policy rules suggest that once you take into account the zero

bound on nominal interest rates, real interest rates might follow a number of equilibria (see, e.g.,

Benhabib et al., 2001). Moreover, in their seminal paper Sargent and Wallace (1973) show that

when authorities print money so as to finance a real budget deficit inflation is a nonlinear process

with two equilibria, one stable and the other unstable.1 Moreover, a stylized fact regarding inflation

is the high persistence of the series. In numerous empiricaland theoretical contributions inflation is

assumed to be a linear integrated of order one, I(1), process. This assumption has severe economic

and statistical implications. The nominal exchange rate, via PPP, should be an I(2) process, and

nominal asset returns would exhibit unit root behavior, which is in sharp contrast with the empirical

findings.

Third, STAR models can exhibit complex, possibly chaotic, dynamics. There are a number of

theoretical models that suggest this behavior in economicsand finance. Day (1982) modifies the

neoclassical growth model and shows that growth cycles can exhibit an asymmetric saw-toothed

pattern. Grandmont (1985) employs overlapping-generations models so as to illustrate how a de-

terministic equilibrium model can produce regular asymmetric cycles as well as chaotic dynamics.

Brock (1988) and De Grauwe et al. (1993) construct heterogeneous agents models which can gen-

erate similar complex behavior, or even chaos, in asset prices. Moreover, De Grauwe and Grimaldi

(2006) and Kaizoji (2004) show that the presence of heterogeneous agents can lead to the genera-

tion of speculative bubbles in asset prices and financial crises. Chapell (1997) shows how a discrete

version of the Sargent and Wallace (1973) model of hyper-inflation can exhibit both complex and

1In the case that agents form adaptive expectations the lowerequilibrium is stable but not the higher, ruling out
steady states of high inflation. However, Evans et al. (1996)illustrate that two stable solutions can occur and, therefore,
a stable high inflation state may arise with adaptive learning.
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chaotic dynamics. All these arguments motivate a nonlinearadjustment mechanism with possi-

ble multiple equilibria and complex dynamics such as the oneprovided by the smooth transition

regression model. Some of the properties of STAR models are illustrated below, in Section 2.

Given the widespread application of ESTAR models to time series which are highly persistent it

is useful to examine the properties of a unit root test which derives from this family, and compare it

with more general unit root tests. Kapetanios et al. (2003) (KSS hereafter) propose a testing proce-

dure so as to formally distinguish between nonlinear singleequilibria globally stationary processes

and unit root processes. On the basis of Monte Carlo simulation experiments the authors conclude

that their procedure improves substantially upon existingtests. In particular, their nonlinear unit

root test appears to have better power properties that the standard Augmented Dickey-Fuller test,

ADF hereafter, and the statistic proposed by Enders and Granger (1998), EG hereafter.

In Section 3 of this paper we attempt to extend the analysis ofKSS in three directions. First, we

employ a different range of parameter values than the ones considered initially by Kapetanios et al..

The new range approximates the range of values typically reported in the empirical literature and

corresponds to ESTAR processes which exhibit more closely unit root like behavior. Second, we

examine the impact of uncertainty regarding the presence ofdeterministic components in the Data

Generating Process (DGP) on the performance of the test. Clearly, researchers are often ignorant

and in many cases have no priors about the true DGP so that theyhave to rely on hypothesis testing

to determine the significance of deterministic components.2 Finally, we investigate further the

impact of multiple equilibria on the performance of the nonlinear test. This exercise is interesting

given that the test is based on the assumption of a single equilibrium point.

Section 4 examines the performance of the unit root tests on financial and macroeconomic time

series that have been suggested to follow nonlinear processes as mentioned above.

2Given that ESTAR models can exhibit spurious constants and trends (see Paya and Peel, 2003), the examination
of the impact of the specification procedure on the performance of nonlinear tests appears important.
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2 Modeling Nonlinear Economic & Financial Dynamics with

the STAR model

A typical Exponential STAR (ESTAR) model for a univariate time seriesyt is given by

yt = βyt−1 + γyt−1

[

1 − exp(−θy2

t−d)
]

+ ǫt,

or, equivalently,

∆yt = φyt−1 + γyt−1

[

1 − exp(−θy2

t−d)
]

+ ǫt, (1)

whereβ, γ andθ are constants,φ = β − 1 andǫt ∼ iid(0, σ2) is the disturbance term.3 When

γ < 0 andφ + γ < 0 the process is globally mean reverting although close to theequilibrium it

may exhibit unit root or even explosive behavior. As aforementioned, the fact that STAR models

allow the speed of mean reversion of the process towards the equilibrium to be a function of the

distance from the equilibrium is particularly appealing inmodeling several macroeconomic and

financial variables. It has been proved that the presence of transactions costs and other market

frictions in arbitrage models imply this type of nonlinear adjustment mechanism.

However, for different parameter values the ESTAR model candisplay multiple equilibria,

complex dynamics and chaotic-like behavior that can lead tomisleading conclusion when unit root

tests are employed. For instance, consider the following model

yt = 1.1yt−1 exp
(

−8.059(yt−1 − 0.175)2
)

+ ǫt (2)

which is globally stationary. Figure 1, which depicts∆yt againstyt−1, shows that the process

has three equilibria which correspond to the cases where thecurve intersects with the horizontal

axis. The stable equilibria are given by 0 and 0.283. To shed more light on the properties of

3The assumption can be relaxed to allowǫ to be a martingale difference sequence.
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the process, we simulate (2) without noise and a starting value of 0.1. The first 100 realizations

of the series are presented in Figure 2. The process moves from the starting value to the high

equilibrium with oscillations. This behavior could be mistakenly interpreted as either explosive or

suggestive of a time trend in small samples. Figure 3 shows 100 observations of the same process

with the noise switched on. It can be observed that the seriesexhibits high persistence which

makes it difficult to distinguish from a process with an intercept and trend, a unit root or even

an explosive process.4 Lundbergh and Teräsvirta (2002) conduct a similar simulation experiment

using a stationary Logistic STAR model with realizations that fluctuate between two local means.

Their overall conclusion is that standard unit root tests when applied to these series do not reject

the unit root hypothesis.

Figures 1, 2 and 3

Macroeconomic and financial series may in fact exhibit this type of behavior. Byers and Peel

(2000) motivated by the theoretical literature on inflationdynamics fit ESTAR models to the infla-

tion series of high-inflation countries. They examine Braziland Argentina in the second half of the

twentieth century and Germany in interwar period.5 Their results support the presence of multiple

equilibria. In particular, Brazil has a stable high inflationequilibrium, while for the remaining two

countries the high inflation state is characterized by inflation cycles. This finding has potential con-

sequences for asset markets, such as the FX and bond markets,through spillover effects. Exchange

rates, interests rates and asset returns are linked with prices through e.g. the PPP hypothesis and

the Fisher equation.

The ESTAR model is also capable of mimicking chaotic type behavior which can arise in

asset prices through the interaction of chartists and fundamentalists in the market. Heterogeneous

agents models have been derived for the FX market (De Grauwe et al., 1993), the stock market

4Note that the ADF test statistic for this particular cannot rejected the null of a unit root at the 5 per cent level.
5Model 2 corresponds to the estimates for the case of Brazil. Please note that the speed of adjustment coefficient

in Equation (2) has be scaled by the variance of the series.
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(Huang and Day, 1993) and the housing market (Kouwenberg andZwinkles, 2010). To illustrate

this point, we slightly modify Equation (2) by changing the autoregressive parameter from 1.1 to

1.5. Figure 4 illustrates the path of the series in the case ofno noise for 200 observations. In this

case, the series exhibit cycles of 34 periods. Close inspection of the figure would show that the

values of the series do not ever repeat. Figure 5 shows a scatter diagram ofyt onyt−34 for the whole

10,000 replications, which corroborates this fact. Clearly, the above could be falsely considered

as evidence in favor of chaotic behavior. This example highlights the importance of accurate

econometric estimation and inference when dealing with highly complex dynamics. Coefficients

values within the 95 per cent confidence interval could in fact have radically different economic

implications for the series under consideration.

Figures 4 and 5

We have so far demonstrated the flexibility of a simple ESTAR model to nest a number of

alternative processes with high persistence, spurious trends, multiple equilibria and chaotic-like

behavior suggested by different theoretical models in the financial and economic literature. Given

the popularity of the ESTAR model, KSS focus on the issue of persistence and propose a test to

discriminate between a linear unit root process and a globally stationary ESTAR. The next section

extends the work of KSS in examining its performance in casesof extreme persistence, multiple

equilibria and no priors regarding the Data Generating Process (DGP) deterministic components.

3 Kapetanios et al. (2003) Test

Consider Equation (1) and letφ = 0 andd = 1, it follows that

∆yt = γyt−1

[

1 − exp(−θy2

t−1)
]

+ ǫt, (3)
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and by following Luukkonen et al. (1988) and taking a first-order Taylor series approximation

∆yt = δy3

t−1 + ut. (4)

Under the null hypothesis of a linear unit root model,H0 : δ = 0. Whilst, under the alternative

H1 : δ < 0. The KSS test statistic is given by

tNL =
δ̂

s.e.(δ̂)
, (5)

and converges weakly to a functional of Brownian motions.

In the presence of serial correlation in the residuals Equation (4) is augmented with lags of

the dependent variable. Moreover, if the data exhibit an intercept/trend,y must be replaced by the

demean/detrended series. KSS employs a two step procedure.In the first stage, the researcher,

who has a prior regarding the deterministic component characterizing the DGP, runs an Ordinary

Least Squares regression of the raw data on an intercept or anintercept and a trend and obtains

the residuals (demeaned or detrended series). In turn, the nonlinear unit root test is applied on the

estimated residuals. However, when there is uncertainty about the presence of the deterministic

components the econometrician typically regresses the rawdata on an intercept or an intercept and

a trend, and the ones that are not significant are omitted. We examine the effect of using hypothesis

testing to specify the deterministic components of the DGP on the KSS and the EG test in the next

section. It is also noted, that the ADF test is not based on this procedure. The test is always run

with the raw data and then specific critical values for different restrictions are tabulated to select

the DGP. Next, we follow KSS and compare the power of thetNL statistic with that of the ADF

and EG test.
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3.1 Monte Carlo Simulation, New Parameter Values

KSS evaluate the power of their test by employing a DGP with speed of adjustment parameterθ ∈

{0.01, 0.05, 0.1, 1}. The findings of recent empirical research (Taylor et al., 2001; Kilian and Taylor,

2003; Paya et al., 2003) suggest that even lower values ofθ are warranted, in particular, values

aroundθ = 0.001 are also reported in empirical work.6 We employ this value as well as the more

extreme case ofθ = 0.0001 which is closer to the linear unit root case. Regardingγ andφ, we set

them equal to -1 and 0, which are the values reported or imposed in most empirical research on

PPP or other arbitrage conditions. The nominal significancelevel is set equal to 5 per cent for all

the experiments implemented in this study and the number of replications equal to 10,000.

Table 1 reports rejection rates of the unit root hypothesis corresponding to the KSS, EG and

ADF statistics. Case 1, Case 2 and Case 3 correspond to DGPs with no constant, constant and con-

stant and trend, respectively. The results for the KSS and EGtests presented in Panel A are based

on the procedure advocated by KSS where there are priors regarding the nuisance parameters. Not

surprisingly, for relative high values ofθ, 0.01, the power of thetNL statistic is always higher or

similar to the power of the ADF and the EG. As the value ofθ decreases the power of all three

statistics falls and whenθ reaches0.001 the power is reduced up to five times. It is important that

the reduction in power is generally more severe for the KSS than the ADF so that in some cases

(and always forθ = 0.0001) the latter becomes superior to the former.

Table 1

We now turn to Panel B where there is no prior regarding the deterministic components. Before

we discuss the results we note that a constant and a trend is often found significant when the DGP

has none, which alters the rejection probabilities of the KSS and EG tests.7 Starting with the no

6In order to make comparisons across models and studies the speed of adjustment parameter must be standardized.
That is, it must be divided by the variance ofyt−d.

7For instance, in sample sizes of 100 and 200 around seventy and sixty five per cent of the times, respectively, an
intercept or a trend are found significant.
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constant DGP, Case 1, and the KSS test, the broad conclusion that emerges is that specifying the

deterministic components on the basis of hypothesis testing results in lower power compared to

Panel A. This is not always true for the remaining cases and, in particular, for small samples and

low values ofθ. On the contrary, the EG test exhibits now greater power, especially, in small

samples. It is also worth mentioning that now the ADF test outperforms thetNL statistic except in

Case 3 forθ = 0.01 andT equal to 100 and 200.8

3.2 Monte Carlo Simulation, Multiple Equilibria

In the previous exercise the ESTAR Model (1) has only one realequilibrium value,̄y = 0. How-

ever, withφ = 0.1 andγ ∈ {−1.5,−1,−0.5}, which are values employed by KSS, there are three

equilibria. Specifically, the values of the equilibria are given by

ȳ = 0, and ȳ = ±

√

− ln(φ+γ

γ
)

θ
.

The smaller theθ the further apart are the inner and outer equilibrium values. Figure 1 depicts

four processes of ten thousand random realizations from Model (1) with φ = 0.1, γ = −1 and

θ ∈ {0.1, 0.01, 0.001, 0.0001}. We emphasize that the relationship between the parameterθ and

the degree of persistence appears to be non monotonic in the samples considered. Asθ decreases

the equilibria move further apart and the degree of persistence increases since shocks make the

process bounce between equilibria. However, when the equilibria aresufficientlyfar apart the

process remains in the neighborhood of only one of the equilibria for very long periods until a

shock of sufficient magnitude bounces it to the other stable equilibria. Hence, the process may

appear to be less persistent. Therefore, the relationship between the degree of persistence and the

value ofθ is not monotonic which motivates the examination the impactof different values ofθ on

8The results for the ADF test are the same in Panel A and B due to the fact that the deterministic components are
always obtain within the test.
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the power properties of the tests.

Figure 6

The two Panels of Table 2, report the power of the unit root tests for φ = 0.1, γ = −1,

andθ ∈ {0.01, 0.001, 0.0001}. Starting with Panel A, which is based on the KSS methodology

outlined above, and in the case of a constant and a constant and a trend (Cases 2 and 3), it is

interesting that the power of all tests increases asθ decreases. This finding may be attributed to the

fact that, in small samples, the series with lowerθ hardly ever change their equilibrium value and

the persistence in the neighborhood of an equilibrium pointis lower for lower values ofθ.9 This

is also the reason that the power corresponding to 1,000 observations is lower than the power for

350. Note also that for low values ofθ the KSS test performs worst than the competing unit root

tests. Turning to Case 1, we observe that while the power of theADF increases asθ decreases, the

power oftNL and EG become virtually zero.10

Table 2

Panel B of Table 2 reports results for the same parameter values as above but with the speci-

fication of the deterministic components in the KSS and EG test being determined by hypothesis

testing. Two results for the KSS test are worth mentioning. First, the test never displays the high-

est power except for Case 3 andθ = 0.01. Second, its power drops with respect to Panel A for

θ = 0.01 but improves in the remaining cases.

9Please note that in Figure 1 the series withθ = 0.001 is more persistent (the autocorrelation coefficient isρ1 =
0.993) than the series withθ = 0.01 (ρ1 = 0.945) for a sample of 10,000 observations. However, the persistence
displayed by the series withθ = 0.001 is actually lower for small sample sizes similar to the ones used in our Monte
Carlo (T = 100, 200, 350, 1000). This is due to the fact that, in small samples, the series with lower θ hardly ever
changes its equilibrium value and the persistence ‘within’a regime (withρ1 around 0.84) is lower than in the case of
θ = 0.01 (ρ1 = 0.945).

10The power of the EG test is not reported forθ equal to 0.001 and 0.0001 due to the fact that the generated series
take only positive (values) values making the computation of the statistic unfeasible.
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The overall conclusion of the above results is that the performance of the KSS test is not uni-

versally better than the EG and the ADF test but depends crucially on the DGP under examination

and the methodology adopted for specifying the deterministic components of the data. The next

section deals with the applications of the three unit root tests on real-world series.

4 Empirical Applications

In the introduction we highlighted the fact that numerous theoretical and empirical contributions

suggest that factors such as agent heterogeneity, transactions costs, uncertainty regarding equi-

librium values, or the sunk costs of international arbitrage can induce smooth transition non-

linearity in the deviation process of asset prices from their fundamental value in different as-

set markets (Dumas, 1992; Berka, 2005; Kilian and Taylor, 2001; Gallagher and Taylor, 2001;

Kim and Bhattacharya, 2009). Many studies have further shownthat these processes can be par-

simoniously modelled by the ESTAR (Michael et al., 1997; Taylor et al., 2001; Kilian and Taylor,

2003; Sarno and Monoyios, 2002).

However, smooth transition nonlinearity is not constrained to deviations of asset prices from

fundamentals. Sargent and Wallace (1973) show that when authorities print money so as to finance

a real budget deficit inflation becomes a nonlinear process with multiple equilibria. Evans et al.

(1996) illustrate further that under adaptive learning a stable high inflation state may arise. To this

end, Byers and Peel (2000) advocate the use of ESTAR models which allow high persistence of

the series as well as multiple equilibria.

Given all this evidence it seems interesting to test the properties of a number of series repre-

sentative of those markets. Our data set consists of five realexchange rates, a house price-income

ratio, a dividend-price ratio, a stock index basis, and an inflation series. The first real exchange

rate series is the annual dollar-sterling (quk,a) analyzed in Lothian and Taylor (1996). The series

is extended by using data for the U.S. and U.K. consumer priceindices and the dollar-sterling
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nominal exchange rate obtained from the International Financial Statistics (IFS) database. The ex-

tended data set covers the period from 1791 to 2005. The remaining four are monthly rates for the

U.S.-U.K. (quk), U.S.-Japan (qjp), U.S.-Canada (qcan) and U.S.-France (qfr) country pairs, that cover

the period January 1973 to December 2005. The series were constructed by using consumer price

indices and nominal exchange rates from the IFS database. Weemploy the daily spot and futures

prices of the FTSE 100 for the period January1st 1988 to December31st 1998 to construct the

log FTSE 100 basis (bftse) as analysed in Sarno and Monoyios (2002). The next two series are the

quarterly U.K. log house price-income ratio (hp − y) and the monthly Nasdaq log dividend-price

ratio (d − p). Data for the former variable span the period 1983 to 2008 and are obtained from

Nationwide and the IFS. Price and dividend data cover the period 1973 to 2008 and were down-

loaded from Datastream. The final series is the monthly inflation rate for Brazil (π), which covers

the period January 1957 to December 1990. The series is analyzed in Byers and Peel (2000) and

Baillie et al. (1996) and can be downloaded fromhttp://qed.econ.queensu.ca/jae/.

In order to assess the significance of nonlinearities in all series but inflation we first fit nonlinear

ESTAR models of the form proposed by Kilian and Taylor (2003):

yt = ξ0 +

p
∑

i=1

ξi(yt−i − ξ0) exp

(

−
θ

var(yt−1)
(yt−1 − ξ0)

2

)

+ ηt, (6)

whereξi with i = 1, . . . , p are parameters,p denotes the lag order, and
∑p

i=1
ξ = 1.11 The above

parameterization is very appealing for modeling deviations from parity and equilibrium conditions.

Unlike in a linear model, the process moves between a white noise and a unit root depending on

the size of the deviation,|yt−1 − ξ0| and the speed of adjustmentθ. Intuitively, small deviations

that do not cover transactions costs or the sunk costs of international arbitrage are left uncorrected

and the process exhibits unit root behavior. On the other hand, large deviations are much less

persistent. Given the size of the deviation, the speed of mean reversion increases withθ. As far as

11The lag orderp is determined on the basis of the Akaike Information Criterion.
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the inflation for Brazil is concerned, we employ the estimatesprovided by Byers and Peel (2000).12

These estimates indicate that the process moves between multiple equilibria, one of which is high

and one low inflation.

Table 3

The second column of Table 3 shows the estimatedθ coefficients. The estimates vary con-

siderably across applications. Moreover, all coefficientsare statistically significant at least at the

10 per cent significance level implying that the series are nonlinear and globally stationary. The

maximumθ estimate is about 0.058 and corresponds to the annual dollar-sterling real exchange

rate data. While, the minimum is about 0.004, which lies outside the range examined by KSS but

included in the previous section, for the real exchange rateof Canada.

These results have the following economic implications. Regarding real exchange rates, they

suggest that prices and exchange rates are related with the adjustment mechanism being nonlin-

ear. Moreover, they are in line with other studies which utilize nonlinear models and explain the

documented difficulty of unit root tests typically employedin the 1980s to reject the null hypoth-

esis (Michael et al., 1997). Turning to the dividend-price ratio, the fact thatθ is significant for the

Nasdaq index complements the analysis of Gallagher and Taylor (2001) and rules out the presence

of bubbles (the dot-com bubble) suggested by other studies.A similar conclusion can be drawn

from the estimate of the speed of adjustment for the house price-income ratio of the U.K. housing

market. The fact that the FTSE futures basis is nonlinearly mean reverting is in accordance with

Sarno and Monoyios (2002) and stresses the importance of modeling stock market frictions.

Turning to the results displayed in the remaining columns ofTable 3, we observe that the

unit root hypothesis cannot be rejected for all the monthly real exchange rates, the house price-

income ratio and the dividend-price ratio.13 On the other hand, the null is rejected for the annual

12Note that the authors adopt a slightly different ESTAR parameterization that the one of Kilian and Taylor (2003)
allowing for the sum of the autoregressive coefficients to bedifferent from unity.

13There are two exceptions,quk in the KSS constant case andd − p in the KSS constant and trend case.
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dollar-sterling real exchange rate and the FTSE 100 basis for the constant and constant and trend

cases. These two series have the highest estimatedθ values. The fact that the number of rejections

is substantially lower than the number of statistically significant θ coefficients raises concerns

regarding the power of the tests which is consistent with theresults of the previous section.

A particularly interesting case is the inflation rate seriespresented in the last row of the table.

As mentioned above, Byers and Peel (2000) show that this process exhibits multiple equilibria, one

with low inflation rate and one with high. The country appearsto be in its low steady state until

the mid-1980s (mean monthly inflation before 1986 was 3.6 percent) and then to move slowly

into the high state (the mean inflation for the period 1986 to 1990 was 17.3). The change from

one equilibrium to the other has clearly severe consequences for unit root tests. The ADF which

cannot account for multiple equilibria suggests that the series is explosive for the no constant and

constant cases.14 This has important economic implications since, via PPP, the Brazilian nominal

exchange rate should also be explosive. Moreover, asset returns should exhibit a similar behavior.

The results for thetNL and EG statistics, although do not imply an explosive behavior, still indicate

that non stationarity cannot be rejected.

Overall, rejections of the null hypothesis for all tests appear to be related with the magnitude

of theθ coefficient, the sample size and the existence of multiple equilibria. These results seem to

be in line with the simulation experiments.

5 Conclusions

Over the last decades there has been a steadily increasing interest in the development and applica-

tion of nonlinear time series models. In this study we focus on the widely used family of smooth

transition autoregressive models, which appear to parsimoniously capture the nonlinear depen-

dence of many economic and financial time series. Specifically, we illustrate the flexibility of the

14The critical values for the explosive alternative can be found in Fuller (1996).
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ESTAR model to encompass a number of different characteristics found in empirical work and

suggested by the theoretical literature using market frictions and heterogeneous agents. These are

multiple equilibria, complex dynamics, chaotic-like behavior, and spurious trends.

In turn, we examine the properties of a recently proposed unit root test against smooth transition

stationary processes when there are no priors regarding thedeterministic components and possible

multiple equilibria. We also make comparison with two alternative unit root tests widely employed

in the literature. Our results stress that the power of the tests is highly dependent on the properties

of the series. Moreover, no test dominates the others.

Finally, we run several applications on the foreign exchange, stock and housing markets as well

as a hyper-inflation series. Despite the fact that we can successfully fit nonlinear models implying

a stable nonlinear adjustment mechanism which supports arbitrage conditions as well as globally

stationary multiple equilibria inflation series, unit roottests fail, in general, to detect the mean

reversion.

Overall, our findings suggest that the difficulty to reject the unit root property in many financial

and macroeconomic data on the basis of unit root testing should not be regarded as conclusive

evidence. In particular, the factors examined here can severely contaminate the power of both

linear and nonlinear unit root tests.
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Lundbergh, S and Timo Teräsvirta, “Forecasting with Smooth Transition Autoregressive Mod-

els,” in Michael P Clements and David F. Hendry, eds.,A Companion to Economic Forecasting,

Oxford: Blackwell, 2002.

Luukkonen, Ritva, Pentti Saikkonen, and Timo Tërasvirta, “Testing Linearity Against Smooth
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Table 1: Power of Alternative Unit Root Tests

Panel A

θ = 0.01 θ = 0.001 θ = 0.0001
Case 1 tNL EG ADF tNL EG ADF tNL EG ADF

T = 100 0.917 0.259 0.866 0.178 NA 0.228 0.063 NA 0.135
T = 200 0.997 0.958 0.998 0.612 0.147 0.478 0.094 0.059 0.169
T = 350 1.000 0.998 1.000 0.972 0.351 0.861 0.203 0.071 0.232
T = 1000 1.000 1.000 1.000 1.000 0.999 1.000 0.951 0.245 0.829

Case 2
T = 100 0.477 0.245 0.481 0.100 0.100 0.252 0.052 0.061 0.141
T = 200 0.954 0.908 0.960 0.195 0.146 0.412 0.074 0.070 0.168
T = 350 1.000 0.996 1.000 0.498 0.303 0.726 0.106 0.081 0.228
T = 1000 1.000 1.000 1.000 0.997 0.997 1.000 0.393 0.261 0.769

Case 3
T = 100 0.267 0.164 0.252 0.089 0.081 0.113 0.055 0.052 0.078
T = 200 0.814 0.686 0.761 0.115 0.115 0.161 0.060 0.058 0.091
T = 350 0.988 0.967 0.991 0.280 0.216 0.251 0.083 0.079 0.117
T = 1000 1.000 1.000 1.000 0.970 0.994 0.993 0.202 0.183 0.181

Panel B
θ = 0.01 θ = 0.001 θ = 0.0001

Case 1 tNL EG ADF tNL EG ADF tNL EG ADF
T = 100 0.534 0.383 0.866 0.122 0.129 0.228 0.071 0.082 0.135
T = 200 0.859 0.885 0.998 0.242 0.174 0.478 0.094 0.087 0.169
T = 350 0.993 0.995 1.000 0.440 0.341 0.861 0.127 0.107 0.232
T = 1000 1.000 1.000 1.000 0.982 0.997 1.000 0.298 0.228 0.829

Case 2
T = 100 0.415 0.368 0.481 0.130 0.135 0.252 0.086 0.093 0.141
T = 200 0.864 0.895 0.960 0.199 0.189 0.412 0.093 0.096 0.168
T = 350 0.996 0.997 1.000 0.411 0.322 0.726 0.124 0.101 0.228
T = 1000 1.000 1.000 1.000 0.982 0.995 1.000 0.297 0.240 0.769

Case 3
T = 100 0.352 0.332 0.252 0.114 0.105 0.113 0.070 0.072 0.078
T = 200 0.780 0.745 0.761 0.151 0.145 0.161 0.075 0.078 0.091
T = 350 0.982 0.987 0.991 0.296 0.231 0.251 0.095 0.097 0.117
T = 1000 1.000 1.000 1.000 0.970 0.994 0.993 0.202 0.183 0.181
Notes: The table reports rejections rates of the null hypothesis of a unit root. The nominal sig-
nificance level is 5 per cent. NA indicates that the value is not available due to the fact that the
computation of the statistic is not feasible.
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Table 2: Power of Alternative Unit Root Tests

Panel A

θ = 0.01 θ = 0.001 θ = 0.0001
Case 1 tNL EG ADF tNL EG ADF tNL EG ADF

T = 100 0.888 0.038 0.357 0.004 NA 0.628 0.000 NA 0.751
T = 200 0.986 0.201 0.904 0.035 NA 0.915 0.000 NA 0.987
T = 350 1.000 0.841 0.989 0.438 NA 0.948 0.000 NA 1.000
T = 1000 1.000 1.000 1.000 0.784 NA 0.900 0.000 NA 1.000

Case 2
T = 100 0.306 0.201 0.360 0.422 0.621 0.619 0.510 0.759 0.764
T = 200 0.734 0.353 0.580 0.662 0.928 0.907 0.818 0.986 0.991
T = 350 0.925 0.833 0.952 0.743 0.968 0.962 0.910 0.999 0.999
T = 1000 0.999 1.000 1.000 0.650 0.926 0.904 0.962 1.000 1.000

Case 3
T = 100 0.211 0.144 0.260 0.271 0.463 0.510 0.325 0.623 0.752
T = 200 0.489 0.299 0.326 0.549 0.886 0.835 0.705 0.970 0.964
T = 350 0.821 0.641 0.489 0.663 0.952 0.940 0.847 0.994 0.995
T = 1000 1.000 0.991 0.994 0.629 0.907 0.909 0.934 1.000 1.000

Panel B
θ = 0.01 θ = 0.001 θ = 0.0001

Case 1 tNL EG ADF tNL EG ADF tNL EG ADF
T = 100 0.326 0.261 0.357 0.389 0.628 0.628 0.465 0.750 0.751
T = 200 0.593 0.443 0.904 0.665 0.919 0.915 0.797 0.979 0.987
T = 350 0.871 0.833 0.989 0.715 0.949 0.948 0.908 0.998 1.000
T = 1000 1.000 0.996 1.000 0.673 0.906 0.900 0.964 1.000 1.000

Case 2
T = 100 0.312 0.301 0.360 0.405 0.618 0.619 0.491 0.755 0.764
T = 200 0.570 0.412 0.580 0.650 0.910 0.907 0.793 0.987 0.991
T = 350 0.895 0.770 0.952 0.742 0.964 0.962 0.899 0.999 0.999
T = 1000 1.000 0.993 1.000 0.65 0.903 0.904 0.957 1.000 1.000

Case 3
T = 100 0.229 0.220 0.260 0.317 0.536 0.510 0.387 0.657 0.752
T = 200 0.508 0.368 0.326 0.554 0.887 0.835 0.706 0.970 0.964
T = 350 0.821 0.641 0.489 0.663 0.952 0.940 0.847 0.994 0.995
T = 1000 1.000 0.991 0.994 0.631 0.908 0.909 0.934 1.000 1.000
Notes: The table reports rejections rates of the null hypothesis of a unit root. The nominal sig-
nificance level is 5 per cent. NA indicates that the value is not available due to the fact that the
computation of the statistic is not feasable.

22



Table 3: Empirical Applications

tNL EG ADF
Series θ̂ NC C CT NC C CT NC C CT
quk,a 0.058a -0.871 -3.778a -3.658a NA 7.234a 9.854a -0.255 -3.794a -4.327a

quk 0.009a -1.434 -2.671b -2.576 1.543 3.227 3.933 -0.385 -2.488 - 2.753
qjp 0.007a -0.630 -2.530 -2.807 NA 2.157 1.6806 -0.457 -2.076 -1.810
qcan 0.004b -0.990 -1.513 -1.264 0.413 1.235 1.065 -0.448 -1.556 -1.005
qfr 0.010a -0.446 -1.831 -1.675 NA 2.444 2.540 -0.088 -2.014 -2.090
bftse 0.0145a -4.162a -4.216a -4.351a 29.393a 29.393a 33.288a -7.661a -7.660a -8.154a

hp − y 0.011b -0.171 -1.770 -1.914 NA 1.553 1.751 -0.129 -1.645 -1.679
d − p 0.009b -0.424 -2.597 -3.186b NA 1.234 3.191 -0.044 -1.533 -1.340

π 0.047a -0.761 -1.136 -1.799 0.389 1.429 1.334 0.837 -0.031 -1.178
Notes: NA indicates that the value is not available due to thefact that the computation of the statistic is not feasable. NC, C
and CT correspond to the case of no constant, constant and constant and trend, respectively.a and b denote significance at 5
and 10 per cent significance level, respectively.
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Figure 1: Equilibria of the skeleton of Model (2)
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Figure 2: Realization of Model (2) with no noise and starting value of 0.1
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Figure 3: Realization from Model (2) with noise and starting value of 0.1
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Figure 4: Realization from Model (2) with autoregressive coefficient 1.5, no noise and starting
value of 0.1
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Figure 5: Scatter plot ofyt on yt−34 of 10,000 realizations from Model (2) with autoregressive
coefficient 1.5, no noise
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Figure 6: Four simulated ESTAR processes. The parameter values for the DGPs areγ = −1,
φ = 0.1 and θ is set equal to 0.1 (top-left), 0.01 (top-right), 0.001 (bottom-left), and 0.0001
(bottom-right).
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