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Abstract
The James–Schreier spaces Vp, where 1 6 p < ∞, were recently introduced by Bird and
Laustsen [5] as an amalgamation of James’ quasi-reflexive Banach space on the one hand
and Schreier’s Banach space giving a counterexample to the Banach–Saks property on
the other. The purpose of this note is to answer some questions left open in [5]. Specifi-
cally, we prove that (i) the standard Schauder basis for the first James–Schreier space V1

is shrinking, and (ii) any two Schreier or James–Schreier spaces with distinct indices
are non-isomorphic. The former of these results implies that V1 does not have Pełczyń-
ski’s property (u) and hence does not embed in any Banach space with an unconditional
Schauder basis.
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1 Introduction

Let 1 6 p < ∞. By the pth Schreier space, denoted Sp, we understand the Banach space
obtained by completing c00 (the vector space of finitely supported scalar sequences) with
respect to the norm

‖x‖Sp := sup

{( k∑
j=1

|αnj |p
) 1

p

: k, n1, . . . , nk ∈ N, k 6 n1 < n2 < · · · < nk

}
, (1.1)

where x = (αn)n∈N ∈ c00. The space S1 is the one which is usually known as the Schreier space
in the literature; it was formally introduced by Beauzamy and Lapresté [3], building on ideas
from Baernstein’s thesis [2], which in turn were inspired by Schreier’s seminal construction [9].

The Schreier spaces have recently been amalgamated with James’ quasi-reflexive Banach
spaces [6] by Bird and Laustsen [5]. More precisely, for 1 6 p < ∞, the pth James–Schreier
space, denoted Vp, is the completion of c00 with respect to the norm

‖x‖Vp := sup

{( k∑
j=1

|αnj − αnj+1 |p
) 1

p

:

k, n1, . . . , nk+1 ∈ N, k 6 n1 < n2 < · · · < nk+1

}
, (1.2)

where x = (αn)n∈N ∈ c00. We refer to [5] for the background and motivation behind these
spaces, as well as a thorough study of their fundamental properties. The purpose of this paper
is to resolve two problems left open in [5].
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First, it was shown in [5] that (en)n∈N, where en ∈ c00 is the sequence with 1 in position n
and 0 elsewhere, is a Schauder basis for Vp for each p > 1 and, moreover, that this basis
is shrinking (meaning that the associated sequence of biorthogonal functionals (e′n)n∈N is a
Schauder basis for the dual space V ′p) whenever p > 1. The question of whether or not the
basis (en)n∈N is shrinking for p = 1 was left open; in Section 2 we answer this question in the
positive. As a consequence, we deduce that V1 does not have Pełczyński’s property (u) and
hence does not embed in a Banach space with an unconditional Schauder basis.

Second, regarding embeddings and isomorphisms of Schreier and James–Schreier spaces,
it was proved in [5] that:
(i) for each p > 1, Sp is isomorphic to a complemented subspace of Vp;

(ii) for each p > 1, Vp does not embed in Sq for any q > 1; this result extends to the case
p = 1 by the conclusions of Section 2 of the present paper.

We complete this picture in Section 3 by proving that, for q > p > 1, no subspace of Vq is
isomorphic to Sp, and consequently no subspace of Sq is isomorphic to Sp, and no subspace
of Vq is isomorphic to Vp. In particular, Sp � Sq and Vp � Vq whenever p 6= q.

2 The standard basis for the first James–Schreier space is
shrinking

As the title indicates, the aim of this section is to prove the following result.

2.1 Theorem. The standard Schauder basis (en)n∈N for V1 is shrinking.

The proof of Theorem 2.1 relies on two lemmas. Before presenting these, we recall some
notation and terminology from [5]. Throughout, K denotes the scalar field; either K = R or
K = C. We write cardA for the cardinality of a (typically finite) set A. Suppose that A is a
subset of N. We then write A = {n1 < n2 < · · · < nk} to indicate that A is finite and non-
empty and that {n1, n2, . . . , nk} is the increasing ordering of A. We say that A is admissible
if 1 6 cardA 6 minA and permissible if 2 6 cardA 6 1 + minA. Thus a typical admissible
set has the form {n1 < n2 < · · · < nk}, where 1 6 k 6 n1, while a typical permissible set can
be written as {n1 < n2 < · · · < nk+1}, again with 1 6 k 6 n1.

Now let 1 6 p < ∞. For x = (αn)n∈N ∈ c00 and A ⊆ N, let µp(x,A) :=
(∑

n∈A |αn|p
) 1

p .
The pth Schreier norm of x ∈ c00 defined by (1.1) can then be expressed as

‖x‖Sp = sup
{
µp(x,A) : A ⊆ N is admissible

}
.

Similarly, for x = (αn)n∈N ∈ c00 and A = {n1 < n2 < · · · < nk+1} ⊆ N, where k ∈ N, let
νp(x,A) :=

(∑k
j=1 |αnj − αnj+1 |p

) 1
p . The pth James–Schreier norm of x ∈ c00 from (1.2) is

then given by
‖x‖Vp = sup

{
νp(x,A) : A ⊆ N is permissible

}
.

We are now ready to embark on the proof of Theorem 2.1. The Schreier counterpart of
this theorem — that the standard unit vector basis for S1 is shrinking — is well-known; a
proof can be found in [5, Proposition 3.10]. We shall follow a similar strategy here; more care
is, however, required to construct a suitable embedding of V1 into a space of the form C(Ω).
It should be noted that our proof (specifically, Lemma 2.3) relies on the fact that the standard
unit vector basis for S1 is shrinking.
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2.2 Lemma. (i) Let A = {n1 < n2 < · · · < n2k} be a permissible subset of N of even
cardinality. Then the functional

ηA : (αn)n∈N 7→
k∑
j=1

(αn2j−1 − αn2j ), c00 → K,

extends to a contractive functional on V1.

(ii) For each x ∈ c00, there is a permissible subset A of N of even cardinality such that∣∣〈x, ηA〉∣∣ > ε‖x‖V1 , where

ε :=

{
1
2 for K = R
1
4 for K = C.

(2.1)

Proof. (i). Linearity of ηA is clear, while contractivity follows from the fact that

∣∣〈x, ηA〉∣∣ 6 k∑
j=1

|αn2j−1 − αn2j | 6 ν1(x,A) 6 ‖x‖V1

(
x = (αn)n∈N ∈ c00

)
because the set A is permissible.

(ii). Suppose that x = (αn)n∈N ∈ c00 is non-zero. We shall first consider the case where
αn ∈ R for each n ∈ N. Choose a permissible set B = {n1 < n2 < · · · < nk+1} ⊆ N of minimal
cardinality such that ‖x‖V1 = ν1(x,B). The minimality of cardB ensures that:
(a) αnj 6= αnj+1 for each j ∈ {1, . . . , k}, because if αnj = αnj+1 for some j, then

ν1(x,B) = ν1

(
x,B \ {nj}

)
;

(b) if αnj > αnj+1 for some j ∈ {1, . . . , k − 1}, then αnj+1 < αnj+2 ; the reason is that the
assumption αnj > αnj+1 > αnj+2 would imply that

ν1(x,B) =
j−1∑
`=1

|αn`
− αn`+1

|+ (αnj − αnj+1) + (αnj+1 − αnj+2)

+
k∑

`=j+2

|αn`
− αn`+1

| = ν1

(
x,B \ {nj+1}

)
;

(c) similarly, if αnj < αnj+1 for some j ∈ {1, . . . , k − 1}, then αnj+1 > αnj+2 .
Since ν1(x,B) = ν1(−x,B), we may suppose that αn1 > αn2 ; observations (b)–(c) then imply
that αn1 > αn2 < αn3 > αn4 < · · · .

We now split in two cases, depending on the parity of k. For k even, we see that

‖x‖V1 = ν1(x,B) =
k/2∑
j=1

(
(αn2j−1 − αn2j ) + (αn2j+1 − αn2j )

)
=
∣∣〈x, ηC〉∣∣+

∣∣〈x, ηD〉∣∣, (2.2)

where we have introduced C := {n1 < n2 < · · · < nk} and D := {n2 < n3 < · · · < nk+1}.
Each of these two sets is permissible and has even cardinality, and (2.2) implies that either
A := C or A := D must satisfy

∣∣〈x, ηA〉∣∣ > ‖x‖V1/2.
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When k is odd, a similar calculation shows that ‖x‖V1 =
∣∣〈x, ηB〉∣∣ +

∣∣〈x, ηE〉∣∣, where
E := {n2 < n3 < · · · < nk}. Hence either A := B or A := E satisfies

∣∣〈x, ηA〉∣∣ > ‖x‖V1/2, and
in both cases A is permissible and has even cardinality. This completes the proof in the real
case.

Now suppose that K = C, and define y := (Reαn)n∈N and z := (Imαn)n∈N. Then
we have x = y + iz, so that ‖x‖V1 6 ‖y‖V1 + ‖z‖V1 and thus either ‖y‖V1 > ‖x‖V1/2 or
‖z‖V1 > ‖x‖V1/2. We consider the first case only; the second is similar. As y has real co-
ordinates, the first part of the argument applies, yielding a permissible set A of even cardinality
such that

∣∣〈y, ηA〉∣∣ > ‖y‖V1/2, and consequently we have∣∣〈x, ηA〉∣∣ =
∣∣〈y, ηA〉+ i〈z, ηA〉

∣∣ > ∣∣〈y, ηA〉∣∣ > ‖y‖V1

2
>
‖x‖V1

4
,

as required. 2

2.3 Lemma. For each bounded functional f on V1, the set E(f) :=
{
n ∈ N : 〈en, f〉 = 1

}
is

finite.

Proof. For clarity, we write (dn)n∈N for the standard unit vector basis for S1 in this proof,
while (en)n∈N denotes the standard basis for V1, as usual; thus dn = en as vectors, but we
regard the former as an element of S1, while the latter belongs to V1.

It suffices to prove that each of the sets E(f)∩ 2N and E(f)∩ (2N− 1) is finite. To verify
the first of these assertions, we note that, by [5, Proposition 4.10], we have a bounded operator
Φ: S1 → V1 given by Φdn := e2n for each n ∈ N. Denoting by Φ′ the adjoint of this operator,
we find

〈e2n, f〉 = 〈Φdn, f〉 = 〈dn,Φ′f〉 → 0 as n→∞

because the basis (dn)n∈N for S1 is shrinking, and consequently the set E(f) ∩ 2N is finite.
The second assertion is an easy consequence of this. Indeed, by [5, Proposition 4.18(i)],

the left shift given by Λe1 := 0 and Λen+1 := en for each n ∈ N defines a contractive
operator on V1. Since 〈e2n−1, f〉 = 〈Λe2n, f〉 = 〈e2n,Λ′f〉 for each n ∈ N, we see that
E(f) ∩ (2N − 1) =

(
E(Λ′f) ∩ 2N

)
− 1, and the latter set is finite by the first part of the

proof (applied to the functional Λ′f instead of f). 2

Proof of Theorem 2.1. By a standard characterization of shrinking bases (e.g., see [1, Proposi-
tion 3.2.7]), we must prove that every normalized block basic sequence (un)n∈N of the standard
basis (en)n∈N for V1 is weakly null.

The Banach–Alaoglu Theorem implies that the set

Ω :=
{
f ∈ V ′1 : ‖f‖V ′1 6 1 and 〈en, f〉 ∈ {0,±1} (n ∈ N)

}
is a compact Hausdorff space when equipped with the weak*-topology inherited from the
dual space V ′1 of V1. By the definition of this topology, the mapping Ux : Ω→ K given by
(Ux)f := 〈x, f〉 for each f ∈ Ω is continuous for each x ∈ V1, so it induces a mapping
U : V1 → C(Ω) which is easily seen to be linear and contractive. Moreover, the functional ηA
from Lemma 2.2(i) belongs to Ω whenever A is a permissible subset of N of even cardinality,
so Lemma 2.2(ii) implies that U is bounded below by the number ε given by (2.1). In other
words, U is an isomorphism of V1 onto its image inside C(Ω). Since the weak topology on
the image of U is just the restriction of the weak topology on C(Ω), we conclude that the
sequence (un)n∈N is weakly null in V1 if and only if (Uun)n∈N is weakly null in C(Ω).
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To prove the latter statement, by the Jordan Decomposition, it suffices to verify that
〈Uun, λ〉 → 0 as n→∞ for each state λ on C(Ω). The Riesz Representation Theorem implies
that λ is given by

〈g, λ〉 =
∫

Ω
g dρ

(
g ∈ C(Ω)

)
for some probability measure ρ on Ω. Now we observe that:
(a) for each f ∈ Ω, the sequence

(
(Uun)(f)

)
n∈N =

(
〈un, f〉

)
n∈N is 0 eventually; the reason is

that, on the one hand, Lemma 2.3 implies that the set N := E(f)∪E(−f) is finite, and
by the definition of Ω, 〈en, f〉 = 0 for each n ∈ N \N , while on the other the fact that
(un)n∈N is a block basic sequence of (en)n∈N implies that there is a natural number n0

such that un ∈ span{ej : j > maxN} whenever n > n0;

(b) the constant function 1 is ρ-integrable and dominates
(
|Uun|

)
n∈N.

In particular, (a) implies that the sequence (Uun)n∈N converges pointwise to 0 on Ω, and so,
by Lebesgue’s Dominated Convergence Theorem, we have

〈Uun, λ〉 =
∫

Ω
Uun dρ→

∫
Ω

0 dρ = 0 as n→∞,

as required. 2

2.4 Remark. The fact that the basis for V1 is shrinking is in sharp contrast to the situation
for the first James space J1. Indeed, J1 is isomorphic to `1, so no basis for it can be shrinking.
Lohman and Casazza [7] have generalized James’ construction to produce quasi-reflexive spaces
from Banach spaces with a symmetric basis other than `p for p > 1; however, as in James’
classical case, they only establish that the basis for their new spaces is shrinking when p > 1
(see [7, Theorem 9]).

Finally in this section we observe that V1 does not have the property (u) introduced by
Pełczyński [8], thus answering another question left open in [5]. Indeed, since we now know
that the standard basis for V1 is shrinking, we can copy the proof of [5, Theorem 6.3] verbatim
to reach the desired conclusion.

2.5 Theorem. The first James–Schreier space V1 does not have Pełczyński’s property (u)
and hence does not embed in any Banach space with an unconditional basis. In particular,
V1 does not embed in Sp for any p > 1.

3 Any two Schreier or James–Schreier spaces with distinct
indices are non-isomorphic

Rather than establishing the results stated in the title of this section directly, we take a unified
approach based on the following, slightly more general, lemma. As in the proof of Lemma 2.3,
we write (dn)n∈N for the unit vector basis for Sp, while (en)n∈N denotes the standard basis
for Vq.

3.1 Lemma. Let q > p > 1, and let N be an infinite subset of N. Then no subspace of Vq is
isomorphic to the subspace span {dn : n ∈ N} of Sp.
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Proof. Assume towards a contradiction that R : span {dn : n ∈ N} → Vq is a bounded operator
which is bounded below by some δ > 0. Then, on the one hand, we have ‖Rdn‖Vq > δ for each
n ∈ N , while on the other the sequence (dn)n∈N is weakly null because (dn)n∈N is a shrinking
basis for Sp, and therefore (Rdn)n∈N is also weakly null. Hence the Bessaga–Pełczyński
Selection Principle [4] implies that a subsequence of (Rdn)n∈N is a basic sequence equivalent to
a block basic sequence of (en)n∈N; that is, there exist a strictly increasing mapping σ : N→ N
and a bounded operator T : span {Rdσ(n) : n ∈ N} → Vq such that T is bounded below by some
ε > 0 and (TRdσ(n))n∈N is a block basic sequence of (en)n∈N. By [5, Lemma 4.13], this means in
particular that we have a bounded operator U : `q → Vq given by Ufn = TRdσ(n)/‖TRdσ(n)‖Vq

for each n ∈ N, where (fn)n∈N denotes the standard unit vector basis for `q. Thus, we conclude
that

‖U‖ ‖T‖ ‖R‖n
1
q >

∥∥∥∥∥U
( 2n−1∑

j=n

‖TRdσ(j)‖Vqfj

)∥∥∥∥∥
Vq

> εδ

∥∥∥∥2n−1∑
j=n

dσ(j)

∥∥∥∥
Sp

= εδn
1
p , (3.1)

where the final equality follows from the admissibility of the set σ
(
[n, 2n − 1] ∩ N

)
on which

the vector
∑2n−1

j=n dσ(j) is supported. Rearranging (3.1), we obtain

‖U‖ ‖T‖ ‖R‖
εδ

> n
1
p
− 1

q ,

which is a contradiction because the left-hand side is independent of n, while the right-hand
side tends to infinity as n→∞. 2

3.2 Theorem. Let q > p > 1. Then:
(i) no subspace of Vq is isomorphic to Vp or Sp;

(ii) no subspace of Sq is isomorphic to Sp or Vp.

Proof. (i). Taking N = N in Lemma 3.1, we see that no subspace of Vq is isomorphic to Sp.
Since Vp contains a subspace isomorphic to Sp by [5, Proposition 4.10], this in turn implies
that no subspace of Vq can be isomorphic to Vp.

(ii). If Sq contained a subspace isomorphic to Sp, then by the above-mentioned result
from [5], Vq would also contain a subspace isomorphic to Sp, contradicting (i). Finally, for
similar reasons Sq cannot contain a subspace isomorphic to Vp. 2

3.3 Corollary. Let p, q > 1 be distinct. Then Vp � Vq and Sp � Sq.

3.4 Remark. (i) The fact stated in Theorem 3.2(ii) that no subspace of Sq is isomorphic
to Vp when q > p > 1 is actually true without any restrictions on p, q > 1. The reason is
that the James–Schreier spaces all fail to have Pełczyński’s property (u) by Theorem 2.5
and [5, Theorem 6.3], while each Schreier space has an unconditional basis.

(ii) The conclusion of Lemma 3.1 (and thus that of Theorem 3.2) actually holds whenever
p, q > 1 are distinct. As this was not needed to prove our main result, Corollary 3.3,
we just give a brief sketch of the argument, which is by contradiction. As in the proof
of Lemma 3.1, we obtain a normalized basic sequence (un) in Vq which is equivalent to
a subsequence of the unit vector basis for Sp. It follows that (un) is Schreier `p which
means that there is a constant C > 0 such that (ui)i∈A is C-equivalent to the unit vector
basis of `kp for every admissible subset A of N, where k := cardA.
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There are now two cases. If, after passing to a subsequence, we have ||un||c0 → 0 as
n → ∞, then a further subsequence of (un) is equivalent to the unit vector basis of c0;
the proof of this is similar to that of Vq being c0-saturated given in [5, Theorem 5.2].
Otherwise there exists δ > 0 such that ||un||c0 > δ for each n ∈ N. An easy computation
then shows that (u2i)i∈A is 3

δ -equivalent to the unit vector basis of `kq for every admissible
subset A of N, where k := cardA. Both cases contradict the fact that (un) is a Schreier
`p sequence.
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