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Painlevé’s first equation −q′′ = 6q2 + 2x arises in string theory; let q be the
monotone solution for x > 0 as constructed by Slemrod. For suitable 2× 2 real
matrices with zero trace, we introduce the differential equation
d

dλ
Ψ = (T2λ2 + T1λ + T0)Ψ, which generalises Airy’s equation, then form the Lax

pair of this with d
dx

Ψ =

»
0 1

1
2
λ− q 0

–
Ψ. By analogy with the Airy kernel, we

introduce a kernel K from the solutions of d
dλ

Ψ = (T2λ2 + T1λ + T0)Ψ; so K is an
integrable operator of Tracy–Widom type. We introduce an energy matrix E and
suppose that there exists a solution Ψ of bounded energy. We prove that K can be
factorised as K(ξ, η) =

R∞
0 〈Φ(ξ + w), σΦ(η + w)〉dw for some constant signature

matrix σ. We follow a similar procedure for a Lax pair associated with Painlevé’s
second transcendental equation.

Mathematics Subjects Classification: 33E17, 47B35

1



2 Newsham
1. Introduction

The string equation arises in Hermitian matrix models of 2D quantum gravity, as
considered by Douglas [6]. One can consider the Schrödinger equation

∂2

∂x2
f(ξ, x) + 2q(x)f(ξ, x) = λf(ξ, x) (1.1)

where ξ undergoes an evolution. With g(ξ, x) = ∂
∂xf(ξ, x), Tracy & Widom observed

[14] that the kernel

K(ξ, η) =
f(ξ, x)g(η, x)− f(η, x)g(ξ, x)

η − ξ
(1.2)

is analogous to kernels that arise in random matrix theory. For example, the differ-
ential equation

− ∂2

∂x2
f(s, x) + xf(s, x) = −sf(s, x) (1.3)

arises when one considers the soft edge of the eigenvalue distribution of Hermitian
matrices with Gaussian random entries.

The Airy function

Ai(t) =
∫ ∞

−∞
eitξ+ξ3/3 dξ√

2π
(1.4)

satisfies the equation Ai′′(t) = tAi(t) and Ai(t) ³ 1
2π−1/2t−1/4 exp(−2/3t3/2) as

t −→ ∞ [9]. McLeod and Hastings ([9], theorem 1 (iii)) proved that there exists a
unique solution y(t) to the Painlevé II equation

y′′(t) = 2y(t)3 + ty(t)− 1
2
− θ (1.5)

such that

y(t) ³ kAi(t) (1.6)

for some k > 0 as t −→∞.
Tracy & Widom considered the integral operator on L2(0,∞) that has solution

f(s, x) = Ai(s + x) and analysed the kernel

Ai(s + x)Ai′(t + x)−Ai(t + x)Ai′(s + x)
s− t

, (1.7)

making essential use of the fundamental identity

Ai(x + s, y + t) =
∫ ∞

0

Ai(x + s + u)Ai(y + t + u) du. (1.8)

In this paper we prove an analogous result.
Let L = ∂2

∂x2 +2q(x) and P = ∂3

∂x3 +3q ∂
∂x + 3

2q be the linear differential operators
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that are associated with the Schrödinger and Korteweg-de Vries equations. Then
the string equation

[L,P ] = 1 (1.9)

reduces to a form of the Painlevé I equation

−q′′ = 6q2 + 2x + c (1.10)

(as in [13], p50) with 2q the potential of the Schrödinger equation (1.1) and c a
constant. We assume without loss that c = 0.

Let

T = T2λ
2 + T1λ + T0, (1.11)

where

T0 =
[ −z 4q

q2 − 1
2x z

]
, (1.12)

T1 =
[

0 4
−q 0

]
, (1.13)

T2 =
[

0 0
1 0

]
(1.14)

and z(x) and q(x) are real differentiable functions; note that all the matrices have
trace zero.

Let S =
[

0 2
1
2λ− q 0

]
and Ψ =

[
f

g

]
. We begin by introducing the Lax

pair

∂

∂x
Ψ = SΨ (1.15)

and

∂

∂λ
Ψ = −TΨ. (1.16)

There are various linearizations of the Painlevé equations by Lax pairs [10, 11].
Here we use the Lax pair of Jimbo et al [10] which has the advantage of requiring
only 2× 2 matrices.

Lemma 1.1. If q satisfies PI , then

∂T

∂x
+

∂S

∂λ
= [S, T ] (1.17)

and the differential equations are compatible.
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Lemma 1.2. (Slemrod [13]) There exists a solution of (1.10) such that

1. s 7−→ q(−s) is monotone decreasing

2. q(−s) ³ − 1√
3

√
s as s −→∞

3. − 1√
3

√
s− 1

2s−3/4 < q(−s) < − 1√
3

√
s

4. λ + 2√
3

√
s < λ− 2q(s) < λ + 2√

3

√
s + s−3/4.

Proof. See Slemrod’s paper [13].
The choice of sign is due to scaling transformations carried out on the Painlevé I

equation, made to enable us to work with solutions defined on the positive rather
than the negative axis, as this is more natural.

We make further scaling transformations to allow us to use PI in the form of
(1.10); we introduce

Q(s) =
6

122/5
q
(
− s

121/5

)
, (1.18)

which satisfies PI in the form

−Q′′ = Q2 − s (1.19)

Setting λ2 = w gives

2
d

dw
Ψ =

(√
wT2 + T1 +

1√
w

T0

)
Ψ. (1.20)

Making the transformation of variables λ2 = w to get from (1.11) to (1.20)
preserves operator monotonicity. Whereas λ 7−→ λ2 is not operator monotone in-
creasing, w 7−→ √

w and w 7−→ − 1√
w

are both operator monotone increasing on
(0,∞); the relevance of this was observed in [2].

For a solution Ψ of (1.20) take the energy

E =

〈[
1 0
0 4√

w−q

]
Ψ(w), Ψ(w)

〉
(w > 0) (1.21)

and let

K(ξ, η) =

〈
JΨ(ξ), Ψ(η)

〉

η − ξ
, (ξ 6= η) (1.22)

for the matrix

J =
[

0 −1
1 0

]
, (1.23)

the kernel analogous to Tracy & Widom’s kernel.
In many significant examples of kernels in random matrix theory one has a fac-

torisation formula for K as in (1.8) and (1.24) below. This enables one to use
methods from the theory of linear systems to analyse K as in [1, 2].

The main result of this paper is the factorisation theorem, analogous to (1.8).
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Theorem 1.3. Suppose that Ψ is a solution of (1.24) such that E is bounded. Let σ
be a constant diagonal matrix with diagonal entries ± 1. Then there exists a Hilbert
space H and Φ : (0,∞) −→ H such that

K(ξ, η) =
∫ ∞

0

〈Φ(ξ + w), σΦ(η + w)〉dw. (1.24)

The remainder of the paper is arranged as follows. In §2 we recall basic identities
concerning Pick functions which we require in the proof of the factorisation theo-
rem. In §3 we state bounds on solutions of (1.20). In §4 we prove the main result.
Boutroux [3] identified a solution of PI which is asymptotic to the Weierstrass el-
liptic function. This requires a different kind of analysis to that contained within
this paper.

In §5 we prove an analogue to theorem 1.3 but for kernels associated with
Painlevé’s second equation. The PII equation can be expressed as the consistency
condition for the Lax pair

dW

dµ
=

(
µ

[
0 1
0 0

]
+

[ −y −(z + 2y2 + t)
1
2 y

]
+

1
2µ

[
θ 0
z −θ

])
W (1.25)

dW

dt
= −

(
µ

[
0 1
0 0

]
+

[ −y 0
1
2 y

])
W (1.26)

as considered by Harnad et al. [8] and stated in [11]. We obtain a similar factorisa-
tion to theorem 1.3.

Whereas Jimbo et al. [11] compute 2× 2 Lax pairs for all the Painlevé transcen-
dental equations PI − PV I , we have not yet obtained a factorisation theorem for
PIII since this involves both λ and λ−2.

2. Matrices in the differential equation

In this section we make some basic definitions. Let
√

w = exp
(

1
2 log w

)
where we

take the logarithm that has the principal branch of the argument. We consider

T (w) =
1
2

(√
wT2 + T1 +

1√
w

T0

)
. (2.1)

From the theory of Pick functions, we know

√
w =

∫ 0

−∞

√
|t|

π

( 1
t− w

− t

t2 + 1

)
dt (2.2)

for Re w > 0. See [5] for a general theory of such representations.
The following lemmas are elementary.
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Lemma 2.1. For any w such that Re w > 0,

1.

1√
w

=
1
π

∫ ∞

0

1
w + u

du√
u

, (2.3)

2.
∫ ∞

0

√
w

(w + ξ)(w + η)
dw =

π√
ξ +

√
η
. (2.4)

For the remainder of the paper we work with functions and vectors that have
real values.

Definition 1. The rank of a finite n×m matrix B is the dimension of the image
of B on Rm. The signature of an n × n real symmetric matrix is the number of
positive eigenvalues minus the number of negative eigenvalues.

Lemma 2.2. 1. The matrices JT0, JT1 and JT2 are all real symmetric.

2. For large positive s, and q(−s) as in lemma 1.2(2)
(i) JT0 has rank 2 and signature 0,
(ii) JT1 has rank 2 and signature 0,
(iii) JT2 has rank 1 and signature -1.

Proof. The proof of lemma 2.2 is by direct calculation from lemma 1.2(3).

Remark 2.3. If we introduce a new variable w and calculate det(wI−T ) we obtain
the equation

det(wI − T ) = w2 − z2 − 4λ3 − 4q3 + 2λx + 2qx. (2.5)

The characteristic equation det(wI − T ) = 0 reduces to

w2 = z2 + 4λ3 + 4q3 − 2λx− 2qx. (2.6)

The spectral curve given by (2.6) defines an elliptic curve in (w, λ).

3. Transforming The Differential Equation

First we observe that for suitable choices of the constants, (2.1) reduces to a form
of Bessel’s equation.

Definition 2. The Hankel functions H
(1)
ν (z) and H

(2)
ν (z) (see [7], 8.494 (10), p

922) are Bessel functions of the third kind defined by

H(1)
ν (z) =

J−ν(z)− e−νπiJν(z)
i sin(νπ)

(3.1)

and

H(2)
ν (z) =

J−ν(z)− e−νπiJν(z)
−i sin(νπ)

, (3.2)



Factorising integrable operators 7
where

Jν(z) =
∞∑

m=0

(−1)m

m!Γ(m + ν + 1)

(
z

2

)2m+ν

(3.3)

is the Bessel function of the first kind of order ν.

In the case given by q = 0 we can write down an explicit solution given by Bessel’s
equation, demonstrating that for certain choices of q there exist bounded solutions
to (2.1).

Remark 3.1. 1. The differential equation d
dwΨ =

[
0 2

− 1
2

√
w 0

]
Ψ has gen-

eral solution Ψ =
[

y

y′

]
where

y(w) = w1/2

(
a2H

(2)
ν

(
−
√

8
5

w5/4

)
+ a1H

(1)
ν

(
−
√

8
5

w5/4

))
(3.4)

for ν = 2
5 and constants a1 and a2.

2. For some particular values of the constants,

y(w) ³ w−1/8 cos
8
5
w5/4(1 + o(1)) as w −→∞. (3.5)

3. For any solution of y′′ = − 1
2

√
wy,

E =
(y′)2√

w
+

1
2
y2 (3.6)

is decreasing with increasing w, so y is bounded.

Now we return to the general case of (2.1).

Lemma 3.2. 1. Let Ψ be a solution of

d

dw
Ψ(w) =

1
2

(√
wT2 + T1 +

T0√
w

)
Ψ(w) (3.7)

for w > 1 and let

E =

〈[
1 0
0 4√

w−q

]
Ψ(w),Ψ(w)

〉
. (3.8)

Then for w > 1 there exists C(q, z, s) such that

log E(w) ≤ 2
3
C(q, z, s)w3/4 + C1(q, z, s) (3.9)

where C1(q, z, s) = − 2
3C(q, z, s)w3/4

0 + log E(w0).
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2. For suitable q, z and s, (3.9) holds with C(q, z, s) = 0, so E is bounded.

Proof. After some reduction of dE
dw we find, using (1.20), that

dE

dw
≤

〈
2

(
√

w − q)
√

w

[ −z(
√

w − q) 4q
√

w − 2s

4q
√

w − 2s 8z

]
Ψ(w),Ψ(w)

〉

≤ C(q, z, s)
w1/4

〈[
1 0
0 4√

w−q

]
Ψ(w), Ψ(w)

〉
(3.10)

for some constant C(q, z, s). We obtain a suitable C by simultaneously reducing
the quadratic forms to diagonal forms by Lagrange’s method.

4. Factorisation Theorem

Let Ψ be a solution as in lemma 3.2(2) and

K(ξ, η) =

〈
JΨ(ξ), Ψ(η)

〉

η − ξ
. (4.1)

As Ψ(ξ) and Ψ(η) both have real entries we use a real inner product. Moreover,
we have

〈
JΨ(ξ), Ψ(ξ)

〉
= 0, so K is an integrable operator in the style of [14].

Theorem 4.1. Suppose that Ψ is a solution of (1.20) such that E is bounded. Then
there exists a Hilbert space H and Φ : (0,∞) −→ H such that

K(ξ, η) = lim
ζ→∞

∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉 dw. (4.2)

Proof. By lemma 3.2 a solution

Ψ =
[

f

g

]
(4.3)

exists, where f is bounded and g is oscillating with amplitude that grows slowly.
Let

σ =
[ −In 0

0 Im

]
. (4.4)
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Consider

(
∂

∂ξ
+

∂

∂η

)〈
JΨ(ξ), Ψ(η)

〉

η − ξ
=

〈
JΨ′(ξ), Ψ(η)

〉
+

〈
JΨ(ξ), Ψ′(η)

〉

η − ξ

=

〈
JT (ξ)Ψ(ξ),Ψ(η)

〉
+

〈
JΨ(ξ), T (η)Ψ(η)

〉

η − ξ

=

〈
(JT (ξ) + T (η)tJ)Ψ(ξ),Ψ(η)

〉

η − ξ

=

〈√
ξJT2 −√ηJT2

η − ξ
Ψ(ξ), Ψ(η)

〉

+

〈
JT1 − JT1

η − ξ
Ψ(ξ),Ψ(η)

〉

+

〈 JT0√
ξ
− JT0√

η

η − ξ
Ψ(ξ), Ψ(η)

〉
, (4.5)

where we have used lemma 2.2(1).
The first term involves

JT2

√
ξ + T t

2J
√

η

2(η − ξ)
= JT2

(√
ξ −√η

2(η − ξ)

)

= −JT2

2π

∫ ∞

0

√
w

(ξ + w)(η + w)
dw, (4.6)

further the second term vanishes

JT1 + T t
1J = 0 (4.7)

and by lemma 2.1(2), the final term gives

JT0√
ξ

+ T t
0J√
η

2(η − ξ)
=

JT0

2

(
1√
ξ
− 1√

η

η − ξ

)

=
JT0

2π

∫ ∞

0

dw

(ξ + w)(η + w)
√

w
. (4.8)
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Thus

(
∂

∂ξ
+

∂

∂η

)
K(ξ, η)

=
〈JT0

2π

∫ ∞

0

dw

(ξ + w)(η + w)
√

w
Ψ(ξ), Ψ(η)

〉

+
〈
−JT2

2π

∫ ∞

0

√
w dw

(ξ + w)(η + w)
Ψ(ξ),Ψ(η)

〉

=
1
2π

∫ ∞

0

dw

(ξ + w)(η + w)
√

w

〈
JT0Ψ(ξ), Ψ(η)

〉

− 1
2π

∫ ∞

0

√
w dw

(ξ + w)(η + w)

〈
JT2Ψ(ξ), Ψ(η)

〉
(4.9)

where −JT0 ≥ 0 and JT2 ≥ 0.
Now

1
2π

∫ ∞

0

dw

(ξ + w)(η + w)
√

w

〈
JT0Ψ(ξ), Ψ(η)

〉
(4.10)

is bounded. Indeed, by lemma 3.2(2)
∣∣∣∣
〈
JT2Ψ(ξ),Ψ(η)

〉∣∣∣∣ ≤ (c + ξ1/8)(c + η1/8). (4.11)

As ∫ ∞

0

√
w dw

(ξ + w)(η + w)
=

π√
ξ +

√
η

(4.12)

by lemma 2.2, we therefore have
∣∣∣∣−

1
2π

∫ ∞

0

√
w dw

(ξ + w)(η + w)

〈
JT2Ψ(ξ),Ψ(η)

〉∣∣∣∣

≤ 1√
ξ +

√
η
(c + ξ1/8)(c + η1/8). (4.13)

Thus

|K(ξ, η)| ≤ |ξ|1/8|η|1/8 + C√
ξ +

√
η

(4.14)

and hence
K(ξ, η) −→ 0 as ξ, η −→∞. (4.15)

Define the Hilbert spaces

H0 = L2

(
(0,∞);

dw√
w

)
(4.16)

and
H2 = L2

(
(0,∞);

√
w dw

)
; (4.17)
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we consider w as the variable of integration and ξ and η as parameters. For each ξ
we introduce φ0,ξ(w) ∈ H0 and φ2,ξ(w) ∈ H2 by the common formulae

φ0,ξ(w) =
1

ξ + w
(4.18)

φ2,ξ(w) =
1

ξ + w
. (4.19)

Then φ0,ξ(w) ∈ H0 for each ξ and φ0,ξ : (0,∞) −→ H0. Similarly for φ2,ξ; we
have φ2,ξ(w) ∈ H2 for each ξ and φ2,ξ : (0,∞) −→ H2. Then

‖φ0,ξ(w)‖H0 =
( ∫ ∞

0

dw

(ξ + w)2
√

w

)1/2

≤ C

ξ3/4
(4.20)

and

‖φ2,ξ(w)‖H2 =
( ∫ ∞

0

√
w

(ξ + w)2
dw

)1/2

≤ C

ξ1/4
. (4.21)

As JT0 has rank 2 and signature 0, we can write

−JT0 = B†
0

[
1 0
0 −1

]
B0 (4.22)

for some 2 × 2 real symmetric matrix B0. Let H = (H0 ⊗ R2) ⊕ (H2 ⊗ R2) and
Φ : (0,∞) −→ H be

Φ(ξ) =




φ0,ξ(w)⊗B0Ψ(ξ)

φ2,ξ(w)⊗
[

0 0
0 1

]
Ψ(ξ)


 , (4.23)

all components of which have real entries. Thus
(

∂

∂ξ
+

∂

∂η

)
K(ξ, η)

= −〈φ0,ξ, φ0,η〉〈−σB0Ψ(ξ), B0Ψ(η)〉

− 〈φ2,ξ, φ2,η〉
〈[

0 0
0 1

]
Ψ(ξ),

[
0 0
0 1

]
Ψ(η)

〉

= −
〈

Φ(ξ),
[ −I 0

0 I

]
Φ(η)

〉
. (4.24)

For each ζ > 0, we have

K(ξ, η)−K(ξ + ζ, η + ζ) =
∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉dw. (4.25)
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Indeed

(
∂

∂ξ
+

∂

∂η

)(
K(ξ, η)−K(ξ + ζ, η + ζ)

)

= −〈Φ(ξ), σΦ(η)〉+ 〈Φ(ξ + ζ), σΦ(η + ζ)〉

=
(

∂

∂ξ
+

∂

∂η

) ∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉dw (4.26)

so

K(ξ, η)−K(ξ + ζ, η + ζ)

=
∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉 dw + Rζ(ξ − η) (4.27)

where K(ξ, η) −→ 0 as ξ, η −→ ∞ and
∫ ζ

0
〈Φ(ξ + w), σΦ(η + w)〉 dw −→ 0 as

ξ, η −→∞; hence Rζ(ξ − η) = 0 and

K(ξ, η)−K(ξ + ζ, η + ζ) =
∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉dw. (4.28)

Since K(ξ + ζ, η + ζ) −→ 0 as ζ −→∞, we deduce that

K(ξ, η) = lim
ζ→∞

∫ ζ

0

〈Φ(ξ + w), σΦ(η + w)〉 dw. (4.29)

Remark 4.2. Peller [12] has considered the singular numbers of Hankel operators
with kernel Φ(x + y).

5. Linearization of the Painlevé II equation

In this section we repeat the method of proof of §4 for the Painlevé II equation.
Here the analysis is simpler, as there are no square roots involved.

We introduce the matrices

A2 =
[

0 1
0 0

]
, (5.1)

A1 =
[ −y −(z + 2y2 + t)

1
2 y

]
, (5.2)

A0 =
[

θ 0
z −θ

]
, (5.3)

which have zero trace, and let

A(µ) = µA2 + A1 +
1
2µ

A0 (5.4)
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(analogous to (1.20). Suppose that y satisfies the PII equation

y′′ = 2y3 + ty − 1
2
− θ. (5.5)

Then we have a Lax pair

dW

dµ
=

(
µA2 + A1 +

1
2µ

A0

)
W (5.6)

dW

dt
= −

(
µ

[
0 1
0 0

]
+

[ −y 0
1
2 y

])
W. (5.7)

Direct calculation shows that the compatibility condition holds, as in lemma 1.1,
when we take

z = −y′ − y2 − 1
2
t. (5.8)

Observe that when z = θ = y = t = 0, the equation (5.5) reduces to Airy’s
equation

dW

dµ
=

[
0 µ
1
2 0

]
W. (5.9)

Remark 5.1. If y is the solution (1.6) of PII then z < 0.

Lemma 5.2. Let α ∈ N. Then there exists a unique rational solution y of PII and
z < 0 for all sufficiently large t.

Proof. By theorem 5.2 ([4], p348), there exist monic polynomials Qn of degree
1
2n(n + 1) such that yn gives a solution of (5.5):

yn =
d

dz

{
ln

[
Qn−1(z)
Qn(z)

]}

=
Q′n−1(z)
Qn−1(z)

− Q′n(z)
Qn(z)

. (5.10)

Let αn be the largest real root of Qn−1Qn. Then for t > αn,

yn = O
(

1
t

)
as t −→∞. (5.11)

Now

y′n =
Q′′n−1(z)
Qn−1(z)

− Q′′n(z)
Qn(z)

−
(

Q′n−1(z)
Qn−1

)2

+

(
Q′n(z)
Qn

)2

= O
(

1
t2

)
as t −→∞. (5.12)

It follows that

z = −y′ − y2 − 1
2
t

≤ 0 (5.13)

for suitably large t.



14 Newsham
We now prove an analogue of theorem 4.1. Let

K(ξ, η) =

〈
JW (ξ),W (η)

〉

ξ − η
. (5.14)

Theorem 5.3. Suppose that there exists an L2 solution W of (5.6) and let K be
the corresponding kernel. Let y be either

1. the solution (1.6) of PII such that y(t) ³ Ai(t) as t −→∞ or

2. a rational solution of PII .

Then

K(ξ, η) =
∫ ∞

0

〈
JA2W (ξ + s),W (η + s)

〉
ds

−
∫ ∞

0

〈
JA0

W (ξ + s)
ξ + s

,
W (η + s)

η + s

〉
ds. (5.15)

Proof. Consider

(
∂

∂ξ
+

∂

∂η

)〈
JW (ξ),W (η)

〉

ξ − η
=

〈
(JA(ξ) + A(η)tJ)W (ξ),W (η)

〉

ξ − η
. (5.16)

As in the proof of theorem 4.1, we can write

JA2ξ + At
2Jη

ξ − η
= JA2 (5.17)

JA1 + At
1J

ξ − η
= 0 (5.18)

1
2ξ JA0 + At

0J
1
2η

ξ − η
= −JA0

ξη
. (5.19)

So for large ξ and η

(
∂

∂ξ
+

∂

∂η

)
K(ξ, η) =

〈
JA2W (ξ), W (η)

〉
−

〈JA0

ξη
W (ξ),W (η)

〉
. (5.20)

We assume that W is square integrable; thus we can consider

L(ξ, η) =
∫ ∞

0

〈
JA2W (ξ + s),W (η + s)

〉
ds

−
∫ ∞

0

〈
JA0

W (ξ + s)
ξ + s

,
W (η + s)

η + s

〉
ds. (5.21)

Then (
∂

∂ξ
+

∂

∂η

)(
K(ξ, η)− L(ξ, η)

)
= 0. (5.22)
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Now

K(ξ, η)− L(ξ, η) = R(ξ − η) (5.23)

for some function R.
But K(ξ, η) −→ 0 and L(ξ, η) −→ 0 as ξ, η −→∞. Thus

R(ξ − η) = 0. (5.24)

The statement follows.
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