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An uniformly stable backpropagation algorithm to
train a feedforward neural network

José de Jesus Rubio, Angelov Plamen, Enrique Garcia

Abstract— The neural networks are applied to many online
fields, but the stability of the neural networks is not always
assured and it could damage the instruments causing accidents.
There is some research related with the stability of the continuous
time neural networks, but there are some systems that are better
described in discrete time, for example the population systems,
the annual expenses in an industry, the interest earned by the
loan of a bank, or the prediction of the distribution of loads
received each hour in a warehouse, that is way it is important to
consider the stability of the discrete time neural networks. The
major contributions of this paper are as follows: 1) a theorem to
assure the uniform stability of the general discrete time systems
is proposed, 2) it is proven that the backpropagation algorithm
with a new time varying rate is uniformly stable for online
identification, the identification error converges to a small zone
bounded by a uncertainty, 3) it is proven that the weights error
is bounded by the initial weights error, i.e. the overfitting is not
presented in the proposed algorithm, 4) the backpropagation is
applied to predict the distribution of loads that a transelevator
receive from a trailer and place in the deposits each hour in
a warehouse, the deposits in the warehouse can be reserved
in advance using the prediction results, 5) the backpropagation
algorithm is compared with the recursive least square algorithm
and with the Sugeno fuzzy inference system in the problem of the
prediction of the distribution of loads in a warehouse, giving that
the first and the second are stable and the third is unstable, and
6) the backpropagation algorithm is compared with the recursive
least square algorithm and with the Kalman filter algorithm in
an academic example.

Neural networks, stability, prediction, identification, ware-
house.

I. INTRODUCTION

The online neural networks can be used in many fields, in-
cluding nonlinear adaptive control, fault detection, diagnostics,
performance analysis of dynamic systems, pattern and image
recognition, time-series, identification of nonlinear systems,
intelligent agents, modeling, robotic, and mechatronic systems.
The stability problem of the neural networks is important for
the aforementioned online fields and the stability of the neural
networks is not always assured.

There are some researchers who have worked with the
stability of continuous time neural networks as are [19], [25],
[28], [31], [32], [33], [36], [40], [41].

In [19], they study the approximation and the learning
properties of one class of recurrent networks, known as high-
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order neural networks, and they apply these architectures to
the identification of dynamic systems. In [25], the stability
conditions of online identification are derived by Lyapunov—
Krasovskii approach, which are described by linear matrix
inequality. In [28], they present the sufficient conditions for
the global asymptotic stability for a kind of recurrent neural
network. In [31], they consider the robust stability of neural
networks with multiple delays. The paper of [32] is concerned
with the global robust exponential stability of a class of inter-
val Cohen—Grossberg neural networks with both multiple time-
varying delays and continuously distributed delays. In [33], the
static neural network model and a local field neural network
model are theoretically compared in terms of their trajectory
transformation property, equilibrium correspondence property,
nontrivial attractive manifold property, global convergence as
well as stability in many different senses. In [36], dynamic
multilayer neural networks are used for nonlinear system on-
line identification and the passivity approach is applied to
access several stability properties of the neuro-identifier. In
[40], the passivity-based approach is used to derive stability
conditions for dynamic neural networks with different time
scales. In [41], the Lyapunov function approach is used to
rigorously analyze the convergence of weights, with the use
of the backpropagation algorithm, toward minima of the error
function. All the works are interesting, but all consider the
continuous time neural networks and there are some systems
that are better described in discrete time, for example the
population systems of some kind of animals [27], or the annual
expenses in an industry [5], or the interest earned by the loan
of a bank [5], or the prediction of the distribution of loads
received each hour in a warehouse, that is way it is important
to consider the stability of the discrete time neural networks.

There are some researchers who have worked with the
stability of discrete time neural networks as are [24], [29],
[35], [37], [38], [39].

In [24], a double dead-zone is used to assure the stability
of the identification error in the gradient descent algorithm.
In [29], they derive a condition for robust local stability of
the multilayer recurrent neural networks. In [35], an input
to state stability approach is used to create robust training
algorithms for discrete time neural networks. The paper of
[37] suggests new learning laws for Mamdani and Takagi—
Sugeno—Kang type fuzzy neural networks based on input-to-
state stability approach. In [38], the input-to-state stability
approach is applied to access robust training algorithms of
discrete-time recurrent neural networks. In [39], they modify
the backpropagation approach and they employ a time varying
rate that is determined from the input output data and the
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model structure and stable learning algorithms for the premise
and the consequence parts of the fuzzy rules are proposed.
All the works propose new neural network algorithms as
[29] or they modify the general backpropagation employing
a time varying rate to prove the input-to-state stability as
[24], [35], [37], [38], [39], in this paper it is proven that the
backpropagation algorithm with a new time varying rate is
uniformly stable.

On the other hand, there is some research related with the
warehouses as is: [6], [8], [2], [22], [34].

The authors in [6] propose a method for selecting and
materializing views, which selects and horizontally fragments
a view, recomputes the size of the stored partitioned view
while deciding further views to select. In [8], they consider a
matrix-based discrete event control approach for a warehouse,
the control system is organized in two modules: a dynamic
model and a controller. In [2], they focus on the technical
challenges of designing and implementing an effective data
warehouse for health care information. In [22], they propose,
as an extension to the data warehouse model, a knowledge
warehouse architecture that will not only facilitate the captur-
ing and coding of knowledge but also enhance the retrieval
and sharing of knowledge across the organization. In [34]
they propose a new constrained evolutionary algorithm for
the maintenance-cost view-selection problem. All the works
are interesting, but none uses the neural networks for the
prediction of the distribution of loads in a warehouse, in [22],
they only mention that it could be made.

In this paper, it is proposed a theorem to assure the uniform
stability of the discrete time systems, it is proven that the
backpropagation algorithm with a new time varying rate is
uniformly stable for online identification, the identification
error converges to a small zone bounded by the uncertainty,
and the weights error is bounded by the initial weights error;
the backpropagation is applied to predict the distribution of
loads that a transelevator receive from a trailer and place in
the deposits each hour in a warehouse, the deposits in the
warehouse can be reserved in advance using the prediction
results, the backpropagation algorithm is compared with the
recursive least square algorithm and with the Sugeno fuzzy
inference system in the problem of the prediction of the dis-
tribution of loads inside a warehouse, and the backpropagation
algorithm is compared with the recursive least square and with
the Kalman filter in an academic example.

This paper is organized as follows. In section I, the theorem
that proves the uniformly stability of the discrete time systems
is presented. In section III, the general backpropagation to train
a feedforward neural network with a hidden layer is presented.
In section IV, the uniformly stability of the backpropagation
algorithm is proven. In section V, the application of the pro-
posed algorithm is described. In section VI, a brief description
of the warehouse is presented. In section VII, the backpropa-
gation algorithm is compared with the recursive least square
algorithm, with the Sugeno fuzzy inference system, and with
the Kalman filter algorithm in the problem of the prediction
of the distribution of loads in a warehouse and in an academic
example. Finally, in section VIII, the results and the possible
future research are explained.

II. PRELIMINARIES

Let us consider the following discrete-time nonlinear sys-
tem:
Tpy1 = f[Tx, u] (1)

Where u;, € R™ is the input vector, x;, € R” is the state
vector, u, and zp are known. f is an unknown nonlinear
smooth function f € C°.

Definition 1: The system(1) is said to be uniformly stable
if Ve > 0, 3 0 = 0(e) such that:

lzrill <6 = [zl <€, VEk> kK @

If the system has § = d(e, k), then the system (1) only is
stable.

Now, a basic stability theorem for discrete-time nonlinear
systems is given, it is an analogous version of the continuous-
time version given by [3] and of the delayed-continuous-time
version given by [24].

Theorem 1: Let Li(x(k)) be a Lyapunov function of the
discrete-time nonlinear system (1), if it satisfies:

M (lzxl]) < Li(zrk) < vz (k)
ALy(zr) < =3 ([lzx]]) + 73 (9)

Where 0 is a positive constant, ; (-) and 2 (1) are K
functions, and s () is a K function, then the system (1) is
uniformly stable.

Proof:  First, let us define v; : [0,00) — [0,00),
Jo)l — y = % (lal), @ = 1,2 So ¥y € [0,00),
J||z(k)|| € [0,00) such that y = ~; (||zx]), 3y, such
that 7, * (v; (|zx]])) = ||lzx||. Two cases are discussed: 1) if
|lzk]| > 0, then using the second equation of (3) ALy (zx) <0
and the system is uniformly stable, 2) if ||zy|| < J, the defin-
ition of uniform stability (2) is used to prove that the system
is uniformly stable. Let us define 0 as 6 = (72_1 o 71) (e) =
Y5 [v1(€)] . For contradiction, let us suppose that 3 k3 > ki
such that:

3)

lzrsll > € 4)
Then, 3 ko€ [kq, k3) such that:
[zgall = 6 )

And ||zk|| > 9§, Vk € [ko, k3], then 3 (||lzk||) > 3 (9), VK €
[ka, k3], it gives:

=73 (lzxll) < =73 (9) 5

Because 3 is non-decreasing, using ks = k in the first
inequality of (3) m (@ksll) < Li(wrs) = Li(wkz) +
AZZLk(xk). Using the first and the second inequality of (3),
gives 1 ([ersl) < v (lzaall) + =5 (lzxll) + 75 (][5
Using (5) and (6) gives 71 ([|lzxs|l) < 72(6), or [zrs| <
(v; " o 2) (6). From the definition of § gives:

VE € [ka, k3] 6)

lzrs|| <€ @)

Where (7) contradicts (4), thus (2) is satisfied and the system
is uniformly stable. If § > ¢, then 3 k3 > k; such that (4) is
satisfied, and from this inequality it gives a contradiction, that
is:

§<e Vk>k (8
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Fig. 1.

Architecture of the neural network

Finally, from (2) and the definition of 0 < ||zx|| < € gives:
e>0 )

(8) and (9) proves that € is well defined. ]

III. THE BACKPROPAGATION ALGORITHM TO TRAIN A
NEURAL NETWORK

Let us consider the following unknown discrete-time non-
linear system:

y(k) = f[Xi] (10)
Where X, = [xl(k)...,a:i(k),...,a:N(lgﬂT =
[y(k—1),...,y(k—n),u(k—1),...,u(k—m)] € RNV*1

(N = n+ m) is the input vector, u(k — 1) € R is the input
of the plant, y(k) € R is the output of the plant, and f is
an unknown nonlinear function, f € C'°°. The output of the

neural network with one hidden layer can be expressed as
(10], [11], [14]:

M

y(k) = V@) = Zij%‘k

j=1

(I)k = [¢1k’7'~'a¢jka"'a¢Mk’]T
N

Pjk = tanh(ZWijkxi(k))

i=1

(11)

Where i =1,...,N, j=1,...,M, X}, € RV*! is the input
vector given by (10), y(k) € R is the output of the neural
network, Vj, € R1*M and W}, € RM*N are the weights of the
output and the hidden layer of the neural network, respectively,
Wik € R, JUL(]C) cR, O, € %MXl, ¢jk e R, Vik € R, the
Figure 1 shows the feedforward neural network.

IV. STABILITY OF THE BACKPROPAGATION ALGORITHM

The stability of the parameter learning is needed, because
this algorithm works online. First, the model is linearized, and
later, the stability of the proposed algorithm is analyzed.

According to the Stone Weierstrass theorem [4], the un-
known nonlinear function f of (10) is approximated as:

M
y(k) = Vilup+ €5= D Vistujit €5
j=1
(I)*k = [¢*1k7'--a¢*jk7-~-a¢*1\1k]T (12)
N
Gujic = tanh (> Wij.zi(k))

=1

Where ®,;, € RM*1, €r=y(k)—Vi®,, € R is the modeling
error, Qb*jk S §R, ‘/;* c R, Wij* e R, ‘/3* € R and Wij* cR
are the optimal parameters that can minimize the modeling
error €5 [19].

First, the network model is linearized, it is used to define the
parameters-updating and to prove the stability of the proposed
algorithm.

In the case of two independent variables, a function has a
Taylor series as follows:

O f (wy,w2)

flwi,wa) = flwio,wae) + (w1 — wio) =5

+ (wy — wyo) Hers) 4 Ry

Owo

(13)

Where Ry € R is the remainder of the Taylor series. If we
let w1, and wo correspond to Wi, € R, and Vj, € R, wyo
and wqo correspond to Wij. EA{R and V. € R, let us define
Wijk = Wijk — Wij* € R and ij = ij — VJ* € R, then the
Taylor series is applied to linearize (11) as follows [24], [25],
[26]:

M N M
—~ OV Py ~ OV Py
Vi®p = Vo D,p Wiik——— Vieee———+R
kLK k+;; JkaWijk+j; ik aVin + Ly
(14)
Where g‘;ﬁi: € R and % € R, please note that V. &y =

M M
Zijquk and V., @, = ZVj*qb*jk. As all the parameters
j=1 j=1

are scalars, the Taylor series is well applied. Considering (11)
and using the chain rule [15], [24], [25], [26], [30] gives:

N
Btanh(ZWi_,-ka:i(k))
Vids _ 8%, i=1
av’f/j,f - ijawfk - Yk OWijn (15)
N
= ijsechQ(ZWijkmi(k))xi(k) = Oijk
i=1
N
Where o, = ijsechz(ZWijkxi(k))xi(k) € R because
N i=1
Vik €R, Sech2(ZWijkxi(k)) € R and z;(k) € R.
i=1
M
82‘/jk¢jk
8kapk =1 7¢. (16)
Wik Wik "

N
Where ¢, = tanh(ZWijkxi(k‘)) € R. Substituting %
i=1
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of (15), and aav&% of (16) into (14) gives:
M N
Vi®p = Vidur + ZZszkO’ijk
; j=li=1 (17)
+Z‘~/jk¢jk + Ry

j=1
Let us define the identification error e(k) € R as follows:
e(k) = y(k) —y(k) (18)

Where y(k) and 7(k) are defined in (10) and (11), respectively.
Substituting (11), (12), and (18) into (17) gives:

Z‘/jkquk + Zzwuko'z]k + w k) (19)
Jj=1li=1
Where p(k) = Ry— €.
From (19), it is obtained that:
Zvjkm + ZZWzaleak =e(k)—pk)  (0)

j=1li=1

The proposed backpropagation algorithm uses a new time
varying rate as follows:

ij+1 = ij - ak¢jke(k) 1)
Wijk1 = Wijr — agoijre(k)
Where the new time varying rate ay; is:
Qo
ap =
M M N
25200+ 2.2 ol
j=1 j=1li=1
Where ¢ = 1,...,N, j = 1,....M, oy =
N
Virsech?(Y Wijka;(k))zi(k) € R is defined in (15), ¢;5 =
i=1

N
tanh( Wijrzi(k)) € R is defined in (11) and used in (16),

i=1
e(k) is defined in (18), 0 < ap <1 € R, 500 < o, € N, it is
assumed that the uncertainty is bounded [13], [18], [19], [20],
[21], [24], [25], [26], [37] where T is the upper bound of the

uncertainty p(k), |u(k)| < 1.
Remarkl Please note that e(k) =

ZVngk

(bjk, and y(k) are known.

The following theorem gives the stability of the proposed
backpropagation algorithm.

Theorem 2: The backpropagation algorithm (11), (18), and
(21) applied for the identification of the nonlinear system
(10) is uniformly stable and the upper bound of the average
identification error e? (k) satisfies:

lim sup— Ze

T— o0

y(k) — y(k) =

) used in (21) is well defined because Vi,

) < agi? (22)

Where e (k) = %e?(k—1),0<ap <1eRand0 < o, € R
are defined in (21), e(k) is defined in (18), & is the upper
bound of the uncertainty p(k), |u(k)| < &.

Proof: Let us define the following Lyapunov function:

M
1
Lk’: §O[k62(k—1)+z k+zz ijk (23)
Jj=1 j=1li=1
Where \Zk and Wijk are defined in (13). Then ALy is:
M N
ALy = pone’ (k) + Z ot 220 Wi
li=1
N (24)
1
TR 3 5 5y 1 A
j=1 Jj=1li=1
Now, the weights error can be rewritten as follows:
M
Z o = DV
j=1
B M
—Zake(k)Z‘/jk¢jk + a%ez(kz)Z(b?k
N (25)
ZZ igk+1 ZZ ijk
j=1li=1 Jj=1li=1
N M N
—2ak6(k})ZZWijkO’ijk + a%62(k)ZZUz2jk
j=1li=1 j=1li=1

It will be proven that (25) is true. Let us consider the 17Jk
M

case, substituting ‘7jk+1 of (21) into ZV?,C 41 gives:

j=1
M 2
Z i Z[ ik — O‘k(bjke(k)}
M = = M
=3 VA~ 20ne(k) Y Vikdjn + ade2 (k)Y 6%,
Jj=1 j=1 j=1

Then for XN/Jk of (25) is true. Let us consider the Wijk case,

substituting W”;Hl of (21) into ZZ ijk1 gives:

j=li=1
E E Wz]kJrl*ZZ[ ik akaijke } ZZ ik
j=li=1 j=li=1 j=li=1
M N M N
77 2.2 2
—2aye(k) E E Wijkoije + aze (k)§ E :Uz’jk
j=li=1 j=li=1

Then for Wijk of (25) is true. Thus (25) is true. Substituting
(25) into (24) gives:

M M
ALy = —2ake(k)Zij¢jk + aieg(k)qu?k
— —
M N Aj M N (26)
—2ape(k)) Y Wiroij + aie* (k)Y > of
j=1li=1 J=li=1

+3oe? (k) — fope®(k — 1)



JOURNAL OF KTgX CLASS FILES, VOL. XX, NO. X, XX

(26) can be rewritten as:

z:‘/ﬂf(bﬂc + ZZWUkUZJk

1i=1
ZWJN
Z¢ +2.D ol
1i=1
20[1:62(]{371)

AL, = —2aye(k)

(27)
+aie?(k)

+%o¢kez_(k)
Substituting (20) in the first term of the equation (27) gives:

ALy = —2aye(k) [e (k) — u(k)]
M N

M

>+ DD ok
L= j=li=1 |
+iake? (k) — tare?(k — 1)

ALy = —20_4k62(k) + 2age(k)p(k)

+aze?(k)

M M N
+aRe?(B) | Yo+ D Y ol (28)
= j=li=1 |
+iake? (k) — 2are?(k — 1)
Substituting ag of 21) into the term

M M N
> 6% +> > 0%, | and considering ag < 1

j=li=1

M N
Z¢ +2_D i

jlil

i

jl’Ll

_ (2+Z¢ B9 ) "

lel
<ak6k

gives:

ake

(29)

< £ = ake
Considering that 2aie(k)u(k) < ape?(k) + app?(k), and
considering (29) in (28) gives:

ALp < —2ape2(k) + are®(k) + app? (k)
+iake? (k) + 2ake? (k) — take?(k — 1)

ALy < —%akeQ(k — 1) + o p® (k) (30)
From (21), ap = a"M ~ < g, and
(2+Z¢ +ZZ ?jk)
considering that |u(k)| < @ in (30) élvlezs 1
AL, < —%akeQ(k‘ —1) 4 apfi? (31)

It is known that there exits K, functions 7 (-) and 2 ()
such that:

gl (akez(k 1), ka, ijk> < Ly
Li <72 (ane?(k = 1), VA, W2,

Using the fact that (32) satisfies the first condition of (3),
(31) satisfies the second condition of (3), thus using the

(32)

theorem of the preliminaries, it is known that the identification
error of the neural network applied for the identification of a
nonlinear system is uniformly stable. So L is bounded, i.e.
the identification error is bounded. Using (31) and using €2 (k)
defined in (22) gives:

AL, < —e3(k) + aopi” (33)
Summarizing (33) from 2 to 7', gives:
T
> (el(k) — awp®) < Ly — Ly (34)
k=2
Since L > 0 is bounded:
T
%Zeg(k) < aoi? + 714
k=2 (35
h;“f;pTZe ) < o
(22) is established. [ ]

Remark 2: There are two conditions to apply this algorithm
for nonlinear systems, the first one is that the nonlinear system
may have the form described by equation (10), the second one
is that the uncertainty p(k) may be bounded.

Remark 3: The value of the parameter fz is unimportant,
because this parameter is not used in the algorithm. The bound
of u(k) is needed to guarantee the stability of the algorithm,
but it is not used in the backpropagation algorithm (11), (18),
(21).

Remark 4. The fact that p(k) is bounded has been used for
other authors in some earlier studies as are [18], [19], [20] and
[21] in continuous time systems and [13], [24], [25], [26], and
[37] in discrete time systems.

The following theorem proves that the weights of the
proposed backpropagation algorithm are bounded.

Theorem 3: When the average error e (k) is bigger than the
uncertainty agiZ, the weights error is bounded by the initial
weights error as follows:

e2(k) > aop?

M N Vi M N
Z e 2D Wk <D VA D Wi
j=li=1 Jj=1 j=1li=1
B . (36)
Where 7 = 1,...,/]K,j: 1,..., M, Vj;, and W;j;, is defined

in (13), V;; and W,;; is the initial weights error, es(k) =
%ez(k), Vik+1, Wijk+1, 0 <apg <1 € R,and 0 < a, € RN
are defined in (21), e(k) is defined in (18), & is the upper
bound of the uncertainty p(k), |u(k)| < .



JOURNAL OF KTgX CLASS FILES, VOL. XX, NO. X, XX

Proof: From (25), the weights are written as follows:

M

172

Z Jjk+1 7 Zvjk
j=1

>me+ww>

j 1

S Wi = Y3

j=1li=1 j=1li=1

k‘)ZZWZ‘jkO‘Z‘jk =+ Oé£€2(k)

j=1i=1

—2ae(k

M
Z%Q'k

(37)

M N

ZZU%I«

j=1i=1

—2ape(

Adding Z k41 With ZZ k1 of (37) gives:

j=1li=1

M N

ZVﬁﬁZZ ik

317,1

>
j=1

M N
DIYIA

j=li=1

Z k+1+ZZ ijk+1 —

j=1li=1

)Y Vikgik + aie?(k)

j=1

M N
72ak€(k)ZZWijk0'ijk + aieQ(k

j=1li=1

—2ae(k

(38)
(38) can be rewritten as:

Z sh+1 T ZZ ikl = Zka + ZZ ijk

]111 j=1li=1
JV[N

Z‘/jkd)]k + Zzwukauk

jl'Ll

S+ 3o
j=1

j=li=1

—2ae(k

+aze?(k)

39)
Substituting (20) in the second term of the equation (39) gives:

Z mﬁZZ k41 —ZVJQIHLZZ ik

’ —éake(k) [e (/f) - M(k)] T
M N

M
D0+ DD
j=1

j=li=1

+aze?(k)

M N

+ ZZ ijk

j=1li=1

Z k+1+zz ka+1_Z

j=1li=1
—2ape?(k) + 2ake(k)u(k)

M M N
D Bt DD ol
j=1

j=1i=1

+aze?(k)

(40)
Substituting a, of (21) into the last term of (40) and consid-

ering oy < 1 gives:

M N

M
aﬁez(k) Zqﬁ?k + ZZUfjk

jlil

i

3121

= ozke
2(;@ By )
j=1 ] 11 1
) < *Oék62 k)

(41)

< Qage?(k
Considering that 2aie(k)u(k) < ape?(k) + app?(k), and
considering (41) in (40) gives:

M N

Jjk+1 + ijk+1 jk + ijk
Z DD Wi < ZW DG

j=li=1 g 1i=1
72ake2(k) + age? (k) + aku (k:) + fae? (k)

Z 2I<:+1+ZZ ijk+1

j=1li=1
< ZV2 P -
j=1li=1
From (21), ap = ARV
(13033
j= j=li=1
considering that |/,L(k:)| < @i in (42) gives:

(42)
soe® (k) + app® (k)

g and

IN

M N

Z 2k+1+zz ijk+1

j=1li=1
M

<2V Ry

j=1 j=1li=1

(43)

sae? (k) + aop®

OL}VQ

Considering e2 (k) = %=e*(k) gives:

e2(k) > aop®
M N

M
Z Jk+1 + ZZ 1jk+1 = ZVJ + ZZ ijk
j=1

j=li=1 j=1li=1
Considering that e (k) > agp” for k € [1, k] is true, so:

M N

jk+1 + ijk+1 jk + ijk
Z DD Wik < ZW ZZ

j=li=1 j=1li=1

Mo M N s

<Y VA+DD Wi

j=1 j=li=1

Thus (36) is true. [ ]
Remark 5: From the Theorem 2 the average identification

error ei(k) of the backpropagation algorithm is bounded and
from the Theorem 3 the weights error XN/Jzk 41 and W2 k41
is bounded, i.e. the proposed backpropagation algorithm to
train a feedforward neural network is uniformly stable in
the presence of unknown and bounded uncertainties and the
overfitting mentioned in [14] and [35] is not presented. In
addition, the identification error converges to a small zone
bounded by the uncertainty 1.
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Fig. 2. The authomatic warehouse

V. THE PROPOSED ALGORITHM

The proposed algorithm is as follows:

1) Obtain the output of the nonlinear system y (k) with equa-
tion (10), note that nonlinear system may have the structure
with equation (10), the parameter N is selected according to
this nonlinear system.

2) Select the following parameters: V; and W; are selected
as random number between 0 and 1. M is selected as an
entire number and «y is selected with positive values smaller
or equal to 1; obtain the output of the neural network (1)
with equation (11).

3) For each iteration k, obtain the output of the neural
network 7(k) with equation (11), obtain the identification error
e(k) with equation (18), and update the parameters V1 and
Wijk+1 with equation (21).

4) Note that the behavior of the algorithm could be improved
by changing the values of M or «y.

Remark 6: The proposed neural network has one hidden
layer. Some earlier results as [4], [19], and [30] mention that
there is a result where the feedforward neural network with one
hidden layer is enough to approximate any nonlinear system.

VI. THE WAREHOUSE

An automatic warehouse has elements used to make easy
the work of moving loads from one place to another one in an
automatic way. The loads are some objects inside of boxes that
are saved in the warehouse until they are sent to the costumers.
The deposits are the place where the loads are placed. The
Figure 2 shows the automatic warchouse in gray color, the
deposits in black color and the loads in brown color.

A transelevator moves inside of the warehouse. This transe-
levator can be used to move some load from one place to
another one in the warehouse, for example, from the floor to
the deposit, from the deposit to the floor, from one deposit to
another one, or from a trailer to the deposits. The Figure 3
shows a transelevator inside of the warehouse in yellow color
and the Figure 4 shows the same transelevator moving a load.

The Figure 5 shows the trailer with the loads that are saved
in the warehouse. The transelevator takes the loads from the
trailer and place them in the deposits.

Fig. 3. The transelevator inside of the warehouse

Fig. 4. The transelevator with a load

Fig. 5. The trailer with loads for the warechouse
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In this paper, the main prediction problem in the warehouse
is the distribution of the loads that the transelevator receive
from the trailer and place in the deposits each hour inside the
warehouse, the deposits in the warehouse can be reserved in
advance using the prediction results.

VII. SIMULATIONS

In this section, two examples are considered. In the first
example, the backpropagation algorithm is applied for the
prediction of the distribution of loads inside a warechouse, the
proposed algorithm is compared with the recursive least square
algorithm given by [9] and used by [1] and [17] and with the
Sugeno fuzzy inference system given by [14] and [30]. In
the second example, the backpropagation algorithm is applied
in an academic problem, the proposed algorithm is compared
with the recursive least square algorithm given by [9] and used
by [1] and [17] and with the Kalman filter algorithm given by
[9] and [10] and used by [25].

The root mean square error (RMSE) [16] is used and it is
given as follows:

RMSE = <1§:e2(k))
Nk:l

Example 1: In this example, the backpropagation is applied
for the prediction of the distribution of loads that the transel-
evator receive from the trailer and place in the deposits each
hour in the warehouse, there are 3 kind of loads received by
the transelevator inside the warehouse, the 3 kind of loads are
denoted as A, B and C, the 3 kind of loads are received in
the warehouse each hour, the number of loads of the kind A
received each hour in the warehouse can vary from 4 to 5,
the number of loads of the kind B received each hour in the
warehouse can vary from 3 to 4 and the number of loads of the
kind C received each hour in the warehouse can vary from 1 to
3. The data of 1800 hours are used for the training and the data
of the least 200 hours are used for the testing, the prediction
is obtained with 200 hours in advance. 3 neural networks are
used for the training and the same neural networks are used
for the testing, B(k) and C(k) are the inputs and A(k + 200)
is the output for the training of the first neural network, A(k)
and C(k) are the inputs and B(k + 200) is the output for the
training of the second neural network, A(k) and B(k) are the
inputs and C(k + 200) is the output for the training of the
third neural network. Similar inputs are used for the testing
of the three neural networks, and the outputs are not used for
the testing. In this prediction example, the backpropagation
algorithm is given as (11), (18), and (21) changing y(k)
by y(k + 200) and changing e(k) by e(k + 200) [9]. The
parameters of the backpropagation algorithm are N = 2,
M =5, Vj1 and W;;; are random number between 0 and 1,
and op = 1. The backpropagation algorithm is compared with
the recursive least square algorithm given by [9] and used by
[1] and [17] with parameters P, = cI € #2%2, where ¢ = 1,
V3 are random number between 0 and 1 and is compared with
the Sugeno fuzzy inference system given by [14] and [30]
with parameters M = 2, mj, o1 and v; are random number
between 0 and 1. The training results are shown in the Figure

[N
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Fig. 7.  Testing results for example 1

6 and the testing results are shown in the Figure 7, the Table
1 shows the training and the testing RMSE results using (44).
The Figure 8 shows that in this example not all the algorithms
are stable because the Sugeno fuzzy inference system is not
stable and it is reported in the Table 1.

Table 1: Results for Example 1

Methods Training RMSE  Testing RMSE
Recursive Least Square 0.0717 0.0121
Backpropagation 0.0321 3.2561 x 10~°
Sugeno Fuzzy Inference NAN -

From the Table 1, it can be seen that the backpropagation
algorithm achieves better accuracy when compared with the re-
cursive least square because the training RMSE and the testing
RMSE are smaller for the backpropagation algorithm. From
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Fig. 9. Average identification error for example 1

the Figures 6 and 7, it can be seen that the backpropagation
improves the recursive least square because the signal of the
first one follows better the signal of the plant than the signal of
the second one. From the Figure 8, the Sugeno fuzzy inference
system is unstable for this prediction example, that is way it
is important to guarantee the stability of the algorithms. Thus
the backpropagation is good for the prediction problems.

The Figure 9 shows the average of the identification error
for the modified backpropagation algorithm. From this Figure,
it can be observed that the average of the identification error

lim sup 7 Ze

T—o00

) decrease and it will converge to a value

smaller than the upper bound of the uncertainty agfi2, as stated
in the Theorem 2.

The simulation of the weights error for the Theorem 3
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Fig. 10. Training results for example 2

cannot be obtained because the optimal weights which can
minimize the modeling error are unknown [19].

Example 2: Let us consider the nonlinear system given in
an earlier study [30]:

y(k) =0.3y(k — 1) +0.6y(k —2) + f(u(k —

With f(u(k — 1)) = 0.6sin(ru(k — 1)) + 0.3sin(3ru(k —
1)) +0.1sin(57u(k — 1)), the input is u(k — 1) = sin(8n(k —
1)/200). In this example, the backpropagation algorithm given
as (11), (18), and (21) is used for the identification of the
nonlinear plant (45). The parameters of the backpropagation
algorithm are N = 2, M = 3, V;; and W;;; are random
number between 0 and 1, and atg = 0.25. The backpropagation
algorithm is compared with the recursive least square algo-
rithm given by [9] and used by [1] and [17] with parameters
P, cl € R?*2, where ¢ = 1, V; are random number
between 0 and 1, and is compared with the Kalman filter
algorithm given by [9] and [10] and used by [25] with
parameters P, = cI € ®2*2 wherec=1, Ry = 0.1, Ry = 1,
V3 are random number between 0 and 1. The training results
are shown in the Figure 10 and the testing results are shown
in the Figure 11, using (44) the Table 2 shows the training
and the testing RMSE results.

1)) (49

Table 2: Results for Example 2

Methods Training RMSE  Testing RMSE
Recursive Least Square 0.0714 0.0183
Kalman Filter 0.0520 0.0283
Backpropagation 0.0413 0.0132

From the Table 2, it can be seen that the backpropagation
algorithm achieves better accuracy when compared with the
recursive least square and the Kalman filter because the
training RMSE and the testing RMSE are smaller for the
backpropagation algorithm. From the Figures 10 and 11, it
can be seen that the backpropagation improves the recursive
least square and the Kalman filter because the signal of the
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first follows better the signal of the plant than the signal of
the second and the third. Thus, the backpropagation is good
for the identification problems.

The Figure 12 shows the average of the identification error
for the modified backpropagation algorithm. From this Figure,
it can be observed that the average of the identification error

T
lim sup%Zef)(k) decrease and it will converge to a value
T—o0

k=2

smaller than the upper bound of the uncertainty a7, as stated
in the Theorem 2.

The simulation of the weights error for the Theorem 3
cannot be obtained because the optimal weights which can
minimize the modeling error are unknown [19].

VIII. CONCLUSION

In this paper, it was proposed a theorem to assure the
uniform stability of discrete time systems, it was proven that
the backpropagation algorithm with a new time varying rate
is uniformly stable for online identification, the identification
error converges to a small zone bounded by the uncertainty,
and the weights error are bounded by their initial weights
error. The backpropagation algorithm was compared with the
recursive least square algorithm and with the Sugeno fuzzy
inference system in the problem of the prediction of the
distribution of loads each hour inside a warehouse and the
backpropagation algorithm was compared with the recursive
least square and with the Kalman filter in an academic
example. From the Tables 1 and 2, it can be seen that
the backpropagation algorithm achieved better accuracy when
compared with the recursive least square algorithm and with
the Kalman filter algorithm, in addition, the Sugeno fuzzy
inference system was unstable. From the Figures 6, 7, 10,
and 11, it can be seen that the backpropagation algorithm
improves the recursive least square algorithm and with the
Kalman filter algorithm, from the Figure 8, it can be seen the
Sugeno fuzzy inference system is unstable in this example.
From the simulation results, the backpropagation is good for
the prediction and the identification problems. As a future
work, an stable algorithm for the radial basis function will be
proposed, a new algorithm for the feedforward neural network
that guarantees asymptotic stability will be proposed, a method
to find the number of neurons in the hidden layer online will
be proposed, and the proposed algorithms will be applied for
other real problems.
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