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Abstract—It is widely recognized that the human reasoning can 

be approximated by fuzzy rule-based (FRB) systems which can 

be seen as one of the basic frameworks for representation of 

intelligent systems. During the last quarter of a century two 

particular types of FRB systems, namely Zadeh-Mamdani (ZM) 

and Takagi-Sugeno (TS) dominated the field. In this paper we 

propose an alternative type which is simpler and more intuitive 

while preserving the advantages of its predecessors, such as 

flexibility, modularity, human-intelligibility. The newly proposed 

concept of vector membership (VM) and kernel-based 

granulation (KG) of complex systems (respectively their 

mathematical descriptions) we see as the next, more efficient 

form of system modelling that is widely applicable to a plethora 

of applications ranging from time-series prediction, clustering, 

classification, control, decision support systems to other problems 

where conventional fuzzy rule-based systems are used. The 

proposed simple FRB based on VM and KG are non-parametric 

and fully represent the real data. Contrast this to the mere 

approximation of the real data distributions that is provided by 

Gaussian (scalar), triangular, trapezoidal etc. parametric types of 

membership functions that are used in currently existing types of 

FRB (ZM and TS). Note that even probabilistic models that are 

usually based on Gaussian distributions or a mixture of 

Gaussians or other parametric representations provide only an 

approximation of the real data distribution (it should be noted 

that particle filters are perhaps the only form of non-parametric 

representation that is similar in this sense to the newly proposed 

simple FRB with VM and KG, but they are computationally 

cumbersome with exponentially growing complexity). The main 

contribution of the proposed simple FRB with VM and KG is 

that while preserving all the advantages of ‘traditional’ FRB 

systems they avoid the well known problems related to (multiple 

scalar) membership functions definition, identification and 

update. They fully take into account and exactly represent the 

spatial distribution and similarity of all the real data by 

proposing an innovative and much simplified form of the 

antecedent part. At the same time, transformations to the 

‘traditional’ (ZM and TS) fuzzy sets expressed by parametric 

membership functions per variable are also possible. In papers 

that will follow we will demonstrate on practical examples 

(including classification, prediction, decision support and other 

classes of problems) the benefits of this scheme. 

Keywords- fuzzy rule-based systems, Zadeh-Mamdani and 

Takagi-Sugeno fuzzy systems, memebership functions, granulation, 

kernel-based representation 

 

I.  INTRODUCTION 

During the last quarter of a century fuzzy rule-based (FRB) 

systems emerged and are now widely accepted as the 

dominant and main framework to represent the intelligent 

systems (systems that have elements of human reasoning and 

certain level of intelligence). Two particular types of FRB 

systems, namely Zadeh-Mamdani (ZM) [1,2] and Takagi-

Sugeno (TS) [3] dominated the field. In this paper we propose 

an alternative type which is simpler and more intuitive while 

preserving the advantages of its predecessors, such as 

flexibility, modularity, human-intelligibility.  

The proposed new simpler type of FRB systems is based on 

vector membership (whereas the traditional concept of fuzzy 

sets and systems [1-4] is based on a scalar membership type 

function (per variable) which usually takes the form of a 

Gaussian, triangular, trapezoidal, bell type function etc. [1-4]. 

The proposed concept is based on a kernel type representation 

of the input-output mapping and in this respect it has strong 

links to support vector machines, Parzen windows [5], neural 

networks (NN) as well as case-base reasoning [6]. Similarly to 

multi-model systems concept and, in particular, TS type FRB 

[1], radial-basis function type NN the proposed concept also 

starts with decomposing complex non-linear, non-stationary 

problems into a set of loosely connected local simpler (linear, 

singleton, exponential, etc.) models which are later aggregated 

(similarly to TS FRB, in a fuzzy way.  

The proposed simple FRB system with VM and KG can be 

seen as an extension of the well known concept of the case-

base reasoning [6] but with a much more sophisticated 

mathematical underpinning. From the point of view of the 

fuzzy set theory, the proposed concept provides an innovative 

representation of the very ‘roots’ on which fuzzy sets concept 

is based [1]. The intention of the authors is to simplify the 

FRB systems and this to remove the problems related to the 

scalar membership functions definition and parametric 

representation.  

The degree of membership to a parameterized scalar (per 

individual variable) fuzzy set is replaced with the degree of 

similarity between different data samples/ measurements in a 

vector form which makes it much easier to compare different 

objects in a qualitative form, rank ordered etc. Moreover, there 

is no need to specify the prototype/focal point/centre of a 
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fuzzy set. This will be determined based on the data 

distribution from the data in an objective manner.  

For example, it is easier to evaluate the degree of similarity 

between two objects (e.g. patients) rather than to specify the 

similarity per feature and moreover to properly parameterize 

and aggregate the scalar degrees of similarity.  

The similarity/dissimilarity is closely linked with the notion 

of distance. In the proposed concept there is no specific 

request to use (the most widely used) Euclidean distance; it 

works equally fine with Mahalonobis, cosine or any other 

suitable for the particular application distance measure. It 

should be noted that the choice of the distance measure may 

have an effect on the aggregation result in the vector 

representation, but this is also the case with the traditional 

FRB (ZM and TS) and other forms of system representation 

such as SVM, NN, etc.   

The proposed concept touches the very foundations of 

complex systems representation and thus its application 

domain ranges from simple clustering-based techniques for 

pattern recognition, image segmentation, vector quantization 

etc. to more general modeling, prognostics, classification and 

time-series prediction problems in various application areas, 

e.g. intelligent sensors, mobile robotics, advanced 

manufacturing processes, sensor networks, etc. The 

applications are deliberately left for the future publications to 

keep the core idea clear. 

II. THE CONCEPT OF THE PROPOSED METHOD 

Let us start with comparing the two widely used traditional 

FRB systems. We notice some striking similarities - both 

types share exactly the same antecedent part and only differ by 

their consequents part:  
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The consequent part of the TS type FRB has a crisp, 

functional form while the consequent part of ZM type FRB 

has a fuzzy sets – based linguistic form. The aggregation of 

the contributions of all fuzzy rules to the overall output is 

usually done in both types by a fuzzily weighted centre-of-

gravity type operator (sometimes, e.g. in classification 

problems they use ‘winner takes all’ or its variations such as 

‘few winners take all’ aggregations). 

The proposed simplified FRB is based on a very powerful 

and intrinsically generic multi-input-multi-output (MIMO) 

modelling framework that covers various types of systems, 

including but not limited to FRB and NN, see Figure 1. We 

assume a complex, generally non-linear, non-stationary, non-

deterministic system that can only be described and observed 

by its input and output vectors, T

nxxxx ],...,,[ 21= and 

],...,,[ 21
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m

iii
yyyy =  respectively, Figure 1. Note that this 

NN form of representation is significantly simpler than the NN 

form of representation of TS FRB. 

 

Figure 1.  A simple vector membership and grannulation based fuzzy rule-

based system in a form of a neural network 

The proposed simple FRB describes the input-output 

dependence based on a summarized history of observation of 

input-output pairs, TT

j

T

jj yxz ];[= , j=1,2,…k-1 and current, k 

inputs, T

kx only. The dimensions of the input-output data 

vector zj is (n+m): n dimensions of the inputs and m 

dimensions of the outputs. The proposed concept is of a 

kernel-based granulation of the overall data into granules, G 

which are then associated to respective fuzzy rules directly in 

a vector form (over vectors zj and x). The degree of similarity 

between a current data vector and all previous data samples is 

calculated thus decomposing the input-output data space, z∈R
k
 

into Granules, G. This can be done using a computationally 

efficient recursive procedure [7]. The granules are very similar 

to the clusters that can be used for design of TS fuzzy sets [5, 
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10]. The main difference is that the clusters are parameterized 

through their centre (usually, the mean) and parameters such 

as the spread of the Gaussian, left and right end of the 

respective triangular, trapezoidal etc. scalar membership 

functions and are, in fact, an approximate representation of 

the real data distribution while the granules are parameter-

free and use all the real data.  

A granule is described by the statement  

( )i
likeisz ℑ               (2) 
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The degree of membership to a granule is measured by the 

normalized (using, for example, the centre of gravity 

aggregation [4]) similarity between a particular data sample, zj 

and all the granules, G: 
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where γi
 is the granule’s local density of the i

th
 Granule for a 

particular data sample, zk (if a time series, this can be the data 

sample taken at the k
th

  time instant, but generally the index k 

denotes the k-th data sample and not necessarily time).  

 Note that the vector degree of membership to a granule is in 

respect to all points/data samples that are associated to that 

Granule and is not related to a particular point (focal point, 

centre, apex) nor it requires a radius, contour etc. In other 

words – it is non-parametric.   

The local density of the Granule can be represented by a 

suitable kernel, e.g. Gaussian, Cauchy, etc.: 
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where K(.) denotes the kernel function;  ikd is the distance 

between the current sample, kz  and all the other samples of 

that Granule 

The distance can be represented by any suitable form, e.g. 
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If use Cauchy type of kernel which is particularly suitable 

for recursive calculations  [7,8] we arrive at: 
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where z
i
 denotes all data samples that belong to the Granule, 

iℑ that is 
ii
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The n-dimensional projection of a Granule which concerns 

only the inputs can then be defined as: 

 ( )i
likeisx ℵ               (1a) 

where the degree of membership to a Granule is measured by 

the normalized similarity between a particular input data 

vector, xj and all the input vectors from all the Granules, 
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If a scalar membership function is preferred in some 

applications, we suggest using the following approach – 

breaking down the range of the scalar variable of interest, xi 

into a number (Int) of small equal intervals – the number of 

these intervals will determine the level of discretisation of the 

scalar membership function. Count (possibly recursively) the 

number of data samples for which the variable xi has value 

lying between the border values of the respective interval, e.g. 
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Figure 2.  An illustration of the scalar membership function of non-

parametric type which fully and exactly reflects the data distribution (on the 

vertical axis the degree of membership is denoted; on the horizontal axis the 

(scalar) variable intervals are positioned.  

This formula will provide a 2D visualization of the scalar 

data distribution of the variable xi. The value of 1 will be 

assigned to intervals with most data samples and respectively 

smaller values to other intervals. The size of the interval can 

be changed (which will provide a different resolution of 

representation of the membership function, but once chosen it 

should be the same for all intervals considered for this 

variable for a particular moment of time, k.  
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Note that this 2-D visualization is not necessary for the 

method but is simply provided as a possible illustration and a 

link to the traditional fuzzy sets which have scalar 2-D 

membership functions. It also demonstrates that the proposed 

approach is much closer to the real data distribution than 

(usually regular – Gaussian, triangular, trapezoidal etc.) 

traditional scalar parameterized membership functions and 

parametersied distributions.  

The proposed simple FRB system looks very similar to the 

ZM and TS FRB in that it also has its antecedent and 

consequents part and can be described by a set of simple 

linguistic fuzzy rules: 
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The overall output, y can be formed as a collection of fuzzily 

combined multiple Local Models (simpler sub-systems), yi: 
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where y
i 
represents the output of the i

th
 local model. 

The main innovation is in the much simplified antecedents 

part which is base don granules and a vector membership 

represented through the (Cauchy) kernels. 

III. DESIGN OF SIMPLIFIED FRB SYSTEMS 

In this section the design/identification of the newly 

proposed simplified FRB with VM and KG will be described. 

It should be stressed that the newly proposed simplified FRB 

systems are not necessarily linked or limited by the off-line or 

on-line or evolving type of system identification [7,8]. It can 

be realized in any of these types including based on expert 

knowledge, see Figure 3. 

The design of any system has two main aspects; i) system 

structure identification, and ii) parameter identification/tuning. 

The problem of system structure identification is often left to 

the choice of the system designer. This problem was paid 

much more attention since Mountain clustering [9] was 

proposed to be used to automatically solve the problem of 

FRB systems design. Later, the concept of system structure 

evolution [10] further developed this design technique. The 

problem of parameter tuning/optimization has been 

traditionally more widely developed [11].  

If we consider a classifier as an example (we have stressed 

that the proposed new concept has much wider implications to 

predictors, controllers etc.) it can be developed in the 

following simple way. During the training phase (which can 

be on-line) each data sample has a set of features (input 

vector) and labels (output vector). A simple FRB classifier can 

be designed assuming a number of Granules equal to the 

number of classes (it should be stressed that this is not 

necessarily required and the number of Granules in general 

can be larger than the number of classes, but not smaller). If 

assume the same number of Granules as the number of classes 

the design procedure reduces to assigning a data sample to the 

respective Granule of that class and updating the density, γi
 by 

a recursive version of (5) (the full derivation and proof that 

(10) is equivalent to (5) is provided in [7,8]): 
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Figure 3.  The newly propsoed simplified FRB system in the context of ZM 

and TS and modes of operation; sZM denotes simplified ZM model (when 

singletons are used in the consequents instead of fuzzy sets). 

In this way a classifier of the following vector form is 

designed autonomously from the data: 
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A. System Structure Identification 

Ideally, granulation should satisfy the following main 

principles [8, 11] 

a) good generalization and summarization of data by 

Granules with high density (low variance of the 

data inside the granule), and  

b) good coverage of the entire data space by 

expanding area of interpolation.  

To allow a continuous evolution of the structure, Granules 

(rules/neurons) are being removed if they stop to be used 

actively or get older (if a concept shift is detected in the data 

stream). The concept drift [12] is linked to a smooth sliding of 

the data distribution through the data/feature space from one 

granule to another. The drift is closely related to the time-

space representation of the data streams. While the concept of 

(data) density is represented in the data space domain, drift 

and shift are concepts in the joint data-time space domain.  

The proposed method includes self-monitoring and self-

regulation of the quality of the generated Granules. In an on-

line and evolving version of this approach [7,8] only Granule 

prototypes and the global mean value are necessary to be 

memorized (these are N+1 values of dimension (n+m)), while 

all the other data points are discarded. The question arises 

‘how well these centers represent the data that were discarded 

from the memory?’. One way to address this issue is by 

monitoring properties of the Granules that are formed. These 

include their ddf, local density, mean, standard deviation, 

support, age, utility. These are described in more details 

elsewhere [8,10]. 

B. Self-Learning Method 

The second phase involves learning the consequent part’s 

parameters which represents parameter identification.  Once 

the antecedent part of the fuzzy rule-based model is 

determined and fixed the identification of parameters of the 

consequent part, πi
 can be solved as a recursive least square 

(RLS) estimation problem [11].  The real-time algorithm must 

perform both tasks (data partitioning and parameter 

estimation) at the same time instant (per data point) for a time 

significantly shorter than the sampling period. In this way, the 

antecedent part of the rules can be determined in a fully 

unsupervised way, while the consequent part requires a 

supervised feedback. The supervision is in the form of error 

feedback which guarantees optimality (subject to fixed rule 

base/neural network structure) of the parameters of the 

consequent part. 

The overall output of the newly proposed simplified FRB 

system can be given in a vector form as follows: 
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where 01

^

=θ ;C is a Nn×Nn co-variance matrix; C1=ΩI; Ω is 

a large positive number; I is the identity matrix; k=2,3,… 

wRLS is fuzzily weighted through the activation levels and 

is not the conventional weighted RLS which is directly 

applicable under the assumption that the model (12) has a 

fixed structure. Under this assumption the optimization 

problem (13) is linear in parameters. The concept of evolving 

systems assumes a gradually evolving model structure. As a 

result, the activation level of the fuzzy rules, λi

 
will change. 

These changes (even infrequent and gradual in the sense that 

only one out of N rules is affected) have retrospective effect in 

the sense that they affect previously calculated activation 

levels, 
i

jλ (i=[1,N]; j=[1,k-1]). Local wRLS is significantly 

less affected by this disturbance to the theoretical optimality of 

the RLS condition. In addition it is significantly less 

computationally complex.  

IV. CONCLUSIONS 

In this paper we proposed an alternative type of FRB which 

goes further in the conceptual and computational 

simplification while preserving the best features (flexibility, 

richness combined with simplicity, modularity) of its 

predecessors (ZM and TS type FRB). The newly proposed 

concept is seen as the next, more efficient form of system 

modelling applicable to time-series prediction, clustering, 

classification, control, decision support systems and other 

problems where conventional fuzzy rule-based systems are 

used. The simplified FRB through VM and KG has a non-

parametric form that fully reflects the real data (instead of 

attempting to approximate them with parametric functions, 

e.g. Gaussian, triangular, trapezoidal etc. as the conventional 

systems do). The main contribution of the proposed simplified 

FRB systems are that they avoid the well known problems 

related to membership functions definition, identification and 

update while preserving all the advantages of the traditional 
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FRB systems. They fully and exactly take into account the 

spatial distribution and similarity of all the real data by 

proposing an innovative and much simplified form of the 

antecedent part. At the same time, transformations to the 

‘traditional’ fuzzy sets expressed by parametric membership 

functions per variable are still possible through projections per 

scalar variables. In papers that will follow we will demonstrate 

on practical examples (including classification, prediction, 

decision support and other classes of problems) the benefits of 

this scheme. 
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