Lancaster EPrints

Non-minimal state space model-based continuous-time model predictive control with constraints

Wang, Liuping and Young, Peter C. and Gawthrop, Peter and Taylor, C. James (2009) Non-minimal state space model-based continuous-time model predictive control with constraints. International Journal of Control, 82 (6). pp. 1122-1137. ISSN 0020-7179

Full text not available from this repository.


This paper proposes a model predictive control scheme based on a non-minimal state-space (NMSS) structure. Such a combination yields a continuous-time state-space model predictive control system that permits hard constraints to be imposed on both plant input and output variables, whilst using NMSS output-feedback without the need for an observer. A comparison between the NMSS and observer-based approaches using Monte Carlo uncertainty analysis shows that the former design is considerably less sensitive to plant-model mismatch than the latter. Through simulation studies, the paper also investigates the role of the implementation filter in noise attenuation, disturbance rejection and robustness of the closed-loop predictive control system. The results show that the filter poles become a subset of the closed-loop poles and this provides a straightforward method of tuning the closed-loop performance to achieve a reasonable balance between speed of response, disturbance rejection, measurement noise attenuation and robustness.

Item Type: Journal Article
Journal or Publication Title: International Journal of Control
Uncontrolled Keywords: Predictive control ; continuous time systems ; non-minimal state space realization ; multivariable systems ; Laguerre functions
Subjects: ?? ta ??
Departments: Faculty of Science and Technology > Lancaster Environment Centre
Faculty of Science and Technology > Engineering
ID Code: 33441
Deposited By: Dr C. James Taylor (Engineering)
Deposited On: 18 May 2010 13:27
Refereed?: Yes
Published?: Published
Last Modified: 15 Oct 2018 14:35
Identification Number:

Actions (login required)

View Item