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Abstract—Wireless sensor networks are an inherent part of decision making, object tracking, and location awareness systems. This

work is focused on simultaneous localization of mobile nodes based on received signal strength indicators (RSSIs) with correlated in

time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary

particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of

the two proposed multimodel auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localization

accuracy is demonstrated.
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1 INTRODUCTION

THE movement patterns of mobile users play an
important role in wireless networks in which nodes

can move freely within an area. It is essential when nodes
perform jointly certain tasks, such as decision making,
sensor data fusion, object tracking [1], [2], [3], [4], [5] to
localize the node positions, and movement [6], [7], [8], as
the transmitter range is generally fairly small with respect
to the size of the area. Other motivating applications
include monitoring of large geographical areas, such as
for wildlife tracking [9], monitoring of buildings, produc-
tion processes, and warehouses [7]. Apart from the change-
able network topology, the need of communications
between the nodes under limited resources (energy and
bandwidth) and the need of processing noisy data and
overcoming losses pose additional challenges.

There is a great deal of methods for localization (see, e.g.,
the surveys [6], [7], [10], [11]) between which the range-based
[7], [12], [13] methods are widely used. They rely on the
distances between nodes and are usually evaluated using
received signal strengths, signal time-of-arrivals, time
difference of arrivals, or angle-of-arrivals, and they vary in
their complexity and accuracy. The range-based techniques
can be divided into radio frequency (RF) ranging and acoustic

ranging. The radio frequency ranging relies on the premise
that by measuring the received signal strength, a receiver can
determine its distance to a transmitter. Another class of
ranging schemes measures the time difference of arrival of
acoustic and ultrasonic signals [12], [14].

While range-based algorithms need point-to-point dis-
tance estimation or angle estimation for positioning, range-
free [15] algorithms do not require this information. Another
classification subdivides the approaches to mobile nodes
localization in wireless networks to indoor and outdoor
environment [11].

From the point of view of the methods employed, a
number of localization techniques rely on Extended Kalman
filters [16], [17], Monte Carlo methods [18], [19], including
nonparametric belief propagation [20], and on the knowl-
edge of the connectivity between the nodes. Communica-
tions between nodes during the localization process are
reduced to minimum due to energy and bandwidth
constraints. In [21] and [22], multiple model particle
filtering techniques for mobility tracking of users in cellular
networks are developed. A particle filter and a Rao-
Blackwellized particle filter are presented and their perfor-
mance is compared with an Extended Kalman filter over
simulated and real data from base stations. In [23], [24], an
auxiliary multiple model particle filter (PF) is proposed for
bearings-only tracking problems. In [23], a deterministic
splitting of each particle into several offsprings is per-
formed for maneuvering target tracking, each offspring
representing a different target maneuver. In [25], an
auxiliary PF is designed for target tracking in binary sensor
networks. When the measurements are collinear, a simu-
lated annealing approach, such as the proposed in [26], can
cope with these ambiguities.

Most of the aforementioned works, however, do not take
into account the correlation of the measurement noise which
can deteriorate significantly the localization accuracy. One of
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the most common correlation models for the slow shadow
fading component is proposed by Gudmunsson [27]. The
model of Gudmunsson consists of a decreasing autocorrela-
tion function. The same first order autoregressive correlation
model is used in [28], jointly with a Kalman filter aimed to
estimate the correlation coefficient of the shadowing compo-
nent of the measurements. The shadow fading correlation
properties are studied also in [29].

In our work, we propose a solution to the self-
localization problem of mobile nodes by taking into account
the temporal correlation in the measurement noise. The
added values and the innovative aspects of this paper as
compared with previous investigations consist in the
approach for localization of a single or several mobile
nodes in wireless sensor networks by means of a multiple
model auxiliary particle filter. Its performance is validated
on simulated and real received signal strength indicators,
over scenarios with several nodes and a single mobile node,
respectively. Similarly to [27], the correlated noise is
modeled by a first order autoregressive model. Two
approaches, to deal with the correlated measurement
noises, are proposed based on ideas inspired from the
tracking literature. The first one augments the state vector
with the measurement noise, and the second approach
implements a noise decorrelation by introducing the so-
called “differenced measurement” [30]. Two algorithms are
designed and implemented in the MM AUX-PF framework.
The aim is to explore and compare the localization
performance of the proposed MM AUX-PF with and
without taking into account the noise correlation.

In the considered formulation of the problem, node
mobility is modeled as a linear system driven by a
discrete-time command Markov process, whereas the
measurement models are nonlinear and necessitate a
reliable nonlinear estimation method. Due to the fact that
the control process of the mobile nodes is unknown, node
mobility is modeled with multiple acceleration modes
(regimes). The proposed nonlinear estimation techniques
can incorporate physical constraints and possibly commu-
nications among frequently maneuvering mobile nodes in
the form of additional measurements.

The remaining part of the paper is organized as follows:
Section 2 formulates the considered problem for localization
of mobile nodes and describes the mobility and observation
models. A multiple model auxiliary particle filter (MM
AUX-PF) for mobile nodes self-localization is designed in
Section 3. Performance evaluation of the proposed filter is
presented in Section 4 over simulated and real data. Finally,
Section 5 discusses the results and outlines open issues for
future research.

2 LOCALIZATION OF MOBILE NODES

Consider the two-dimensional problem of simultaneous
localization of n mobile nodes [7]. The vector fðx1; y1Þ,
ðx2; y2Þ; . . . ; ðxn; ynÞg of positions of the mobile nodes is
estimated given nr reference (anchor) nodes with known
coordinates fðxnþ1; ynþ1Þ, ðxnþ2; ynþ2Þ; . . . ; ðxnþnr ; ynþnrÞg
and pairwise measurements fzijg, where zij is a measure-
ment between devices i and j. The reference nodes can
obtain their coordinates in the network (through some
external means such as a Global Positioning System (GPS)).

Apart from their positions, the mobile nodes estimate their
speeds and accelerations. This includes applications in
which each sensor is equipped with a wireless transceiver
and the distance between sensor locations is estimated by
received signal strength indicator (RSSI) measurements or
time delay of arrivals between sensor locations.

2.1 Motion Model of the Mobile Nodes

Different state mobility models are previously developed
for cellular wireless networks such as random walk and
pursue mobility models [31] and Singer-type models [6],
[32], [33], [34]. Most of the models suggested in the target
tracking literature [6], [35], [36] are also applicable for
mobile nodes localization. In this paper, we choose a
discrete-time Singer-type model [37] because it charac-
terizes the correlated accelerations of the mobile as a time
correlated process and allows for accurate prediction of the
position, speed, and acceleration of mobile nodes. This
higher order model affords decreasing the estimation error
[6], although mobility models that do not comprise the
acceleration can be used too.

The state of each moving node at time instant k is defined
by the vector xxk ¼ ðxk; _xk; €xk; yk; _yk; €ykÞ0, where xk and yk
specify the position, _xk and _yk specify the speed, €xk and €yk
are, respectively, the acceleration in x and y directions in the
two-dimensional plane, and 0 denotes the transpose opera-
tion. The motion of each mobile node can be described by
the following Singer model [37], [38]:

xxk ¼ AAðT; �Þxxk�1 þBBuðT Þuuk þBBwðT Þwwk; ð1Þ

where uuk ¼ ðux;k; uy;kÞ0 is a discrete-time command process,
and the respective matrices from (1) are in the form

AAðT; �Þ ¼
~A~A 003�3

003�3
~A~A

� �
; BBiðT Þ ¼

~B~Bi 003�1

003�1
~B~Bi

� �
; ð2Þ

~A~A ¼
1 T T 2=2
0 1 T
0 0 �

0
@

1
A; ~B~Bu ¼

T 2=2
T
0

0
@

1
A; ~B~Bw ¼

T 2=2
T
1

0
@

1
A: ð3Þ

The subscript i in the matrix BBðT Þ in (2) stands for u or w,
respectively. The random process wwk is a 2� 1 vector and T
is the discretization period. The parameter � is the
reciprocal of the maneuver time constant, and thus,
depends on how long the maneuver lasts. The process
noise wwk is a white sequence, with covariance matrix
E½wwww0� ¼ QQ ¼ �2

wII, where E½:� is the mathematical expecta-
tion operation, II denotes the unit matrix, and �w is the
standard deviation.

The unknown command processesux;k anduy;k take values
from a set of acceleration levelsMx andMy. The process uuk
takes values from the set IM ¼Mx �My ¼4 fuu1; . . . ; uurg. Let
SS ¼4 f1; 2; . . . ; rg denote the set of models and let mk 2 SS be
the regime variable, modeled as a first order Markov chain
with transition probabilities �ij ¼ P ðmk ¼ jjmk�1 ¼ iÞ, i; j ¼
1; . . . ; r, and initial probability distribution ~�i;0 ¼ P0fm ¼
mig for mi 2 SS such that ~�i;0 � 0 and

Pr
i¼1 ~�i;0 ¼ 1.

2.2 Observation Model

In wireless networks, the distance between mobile and
reference (anchor) nodes can be inferred from RSSIs or pilot
signals of nodes. The RSSI z‘j;k received at the mobile node
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N‘ with coordinates ðx‘;k; y‘;kÞ at time k, after being

transmitted from the node Nj with coordinates ðxj;k; yj;kÞ,
propagates as follows [6], [27], [39]:

z‘j;k ¼ �j � 10�log10ðd‘j;kÞ þ v‘j;k; ð4Þ

where �j is a constant depending on the transmission

power, wavelength, and gain of node Nj, � is the slope

index (according to [27] � ¼ 3:3 for suburban environment

and � ¼ 5 for microcells in urban environment), v‘j;k is the

logarithm of the shadowing component, which is usually

correlated in time, and d‘j;k is the distance between nodes

N‘ and Nj

d‘j;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx‘;k � xj;kÞ2 þ ðy‘;k � yj;kÞ2

q
: ð5Þ

All mobile nodes in the group send their pilot signals to the

reference nodes. In order to locate a single mobile node in

the two-dimensional plane, the three largest RSSIs to

reference neighboring nodes are necessary to enable

triangulation. The measurement equation can be written

in the form

zzk ¼4 ðz‘1;k; z‘2;k; z‘3;kÞ0 ¼ hhðxxkÞ þ vvk; ð6Þ

where hhðxxkÞ ¼ ðh‘1;k; h‘2;k; h‘3;kÞ0 is a nonlinear function,

with components h‘j;k ¼ �j � 10�log10ðd‘j;kÞ; j ¼ 1; 2; 3,

zzk 2 IRnz , and nz ¼ 3. The noise vvk ¼ ðv1;k; v2;k; v3;kÞ0,
vvk 2 IRnz , with covariance E½vvkvv0k� ¼ RRk, characterizes the

shadowing components.
In the general case with ‘ ¼ 1; . . .n mobile nodes and

j ¼ 1; . . .nr reference nodes, the overall observation vector

will contain L ¼ n � nr number of measurements.

2.3 Correlated in Time Measurement Noise

In urban and suburban environment, the autocorrelation

function of the measurement noise (shadowing component)

v‘j;k from (4) can be modeled with the relation [27], [28]

cvð�Þ ¼ �2
v expf�vj� j=Dcg; ð7Þ

where � is the time lag, �v denotes the standard deviation of

the shadowing process, Dc is the effective correlation

distance, which is of key importance in a wireless

environment, and v is the velocity of the mobile node. In

[27], it is shown that

Dc ¼ �
d‘j;k

lnð	DÞ
� 0; ð8Þ

where 	D is the correlation coefficient of the shadow

process between two mobile nodes separated by the

distance d‘j;k. Usually, Dc is in the range between 10 meters

in urban environment and 500 meters in suburban

environment. The value of the shadow standard deviation

�v varies dependent on the environment and in suburban

areas is typically 8 dB [27], [28], whereas in urban

environments, it is roughly 4 dB.
The shadow process can be modeled by a first order

autoregressive model (AR) [27], [28]

v‘j;k ¼ av‘j;k�1 þ 
k; ð9Þ

where 
k is a zero mean white Gaussian process with
variance �2


 ¼ ð1� a2Þ�2
v. The coefficient a is given by

a ¼ expð�vT=DcÞ; ð10Þ

where T is the measurement sampling period.
It is assumed that the AR model parameters (correlation

coefficient and variance) are known and have typical values
for urban and suburban environments. These parameters
are experimentally obtained by different authors for urban
and suburban environment, e.g., in [27], [28], [40].

2.4 General Motion and Observation Models
for Simultaneous Localization of Several
Mobile Nodes

A combined state vector XXk ¼ fxx01;k; . . . ; xx0n;k; g is composed
and all states of the mobile nodes are simultaneously
estimated. The motion models (1)-(3) can be generalized to
the form

XXk ¼ ffðXXk�1;Mk; UUk;WWkÞ; ð11Þ

where XXk 2 IRn�nx is the combined system base state vector,
UUk 2 IRn�nu specifies the command processes for all mobile
nodes, and the modal (discrete) state Mk 2 SS of the different
system modes (regimes). The dimension of the combined
system noise vector is WWk 2 IRn�nw .

The measurement equation (6) can be generalized to

ZZk ¼ hhðXXkÞ þ VV k; ð12Þ
VV k ¼ aVV k�1 þ ��k; ð13Þ

where ZZk 2 IRn�nz is a generalized measurement vector, and
the generalized noise vector VV k 2 IRn�nz characterizes the
correlated in time shadowing components; ��k is a ðn�nzÞ-
dimensional white noise with covariance matrix E½��k��

0

k� ¼
�2

II and II denotes the identity matrix.

Equations (11)-(13) constitute the whole model for the
motion of the mobile nodes and observations with a
correlated in time noise.

3 A MULTIPLE MODEL AUXILIARY PARTICLE

FILTERING FOR LOCALIZATION

3.1 The Particle Filtering Framework

Within particle filtering, the localization of mobile nodes
reduces to approximation of the state probability density
function (PDF) given a sequence of measurements. Accord-
ing to the Bayes’ rule, the filtering PDF pðXXkjZZ1:kÞ of the
state vector XXk 2 IRn�nx given a sequence of sensor
measurements ZZ1:k up to time k may be written as

pðXXkjZZ1:kÞ ¼
pðZZkjXXkÞpðXXkjZZ1:k�1Þ

pðZZkjZZ1:k�1; Þ
; ð14Þ

where ðZZkjZZ1:k�1Þ is the normalizing constant. The state
predictive distribution is given by the Chapman-Kolmogorov
equation

pðXXkjZZ1:k�1Þ¼
Z

RRn�nx
pðXXkjXXk�1ÞpðXXk�1jZZ1:k�1ÞdXXk: ð15Þ

The evaluation of the right-hand side of (14) involves
integration which can be avoided in the particle filtering
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approach [41] by approximating the posterior PDF
pðXXkjZZ1:kÞ with a set of particles XX

ðiÞ
0:k; i ¼ 1; . . . ; N , and

their corresponding weights w
ðiÞ
k . Then, the posterior

density can be written as follows:

pðXX0:kjZZ1:kÞ ¼
XN
i¼1

w
ðiÞ
k �
�
XX0:k �XXðiÞ0:k

�
; ð16Þ

where �ð:Þ is the Dirac delta function, and the weights are
normalized such that

P
i w
ðiÞ ¼ 1.

Each pair fXXðiÞ0:k; w
ðiÞ
k g characterizes the belief that the object

is in state XX
ðiÞ
0:k. An estimate of the variable of interest is

obtained by the weighted sum of particles. Two major stages

can be distinguished: prediction and update. During predic-

tion, each particle is modified according to the state model,

including the addition of random noise in order to simulate

the effect of the noise on the state. In the update stage, each

particle’s weight is reevaluated based on the new data. A

resampling procedure introduces variety in the particles by

eliminating those with small weights and replicating the

particles with larger weights such that the approximation in

(16) still holds. The residual resampling algorithm [42], [43] is

applied here. This is a two-step process making use of

sampling-importance-resampling scheme.
Since the command process of the mobile nodes is

unknown, an MM AUX-PF is designed for localization of
the mobile nodes. Given the set IM covering well the
possible command values, the unknown commands are
supposed to evolve as a first order Markov chain with
transition probability matrix ��. The particles for the base
state are generated from the transition prior, according to
(11)-(12) (where the motion model for each mobile is given
by (1)-(3)).

3.2 Auxiliary Multiple Model Particle Filtering for
Localization

The auxiliary Sampling Importance Resampling (SIR) PF was

introduced by Pitt and Shephard [44]. The auxiliary PF draws

particles from an importance function which is close as

possible to the optimal one. The auxiliary PF introduces an

importance function qðXXk; i
ðjÞÞNi¼1, where iðjÞ refers to the

index of the particle at k� 1. The filter obtains samples from

the joint density pðXXk; ijZZ1:kÞ, and then, omits the index i in

the pair ðXXk; iÞ to produce a sample fXXðiÞk g
N
i¼1 from the

marginalized densitypðXXkjZZ1:kÞ. The importance density that

generates the sample fXXðiÞk g
N
i¼1 is defined to satisfy the

relation [41]

qðXXk; ijZZ1:kÞ / p
�
ZZkj��ðiÞk

�
p
�
XXkjXXðiÞk�1

�
w
ðiÞ
k�1; ð17Þ

where ��
ðiÞ
k is some characteristic of XXk given XX

ðiÞ
k�1.

The selection of the most promising particles is carried
out by sampling from a multinomial distribution where the
number of possible outcomes is Nout. The auxiliary PF [44]
resamples the predicted particles to select which particles to
use in the prediction and measurement update.

For the purposes of mobile node localization, we propose
an auxiliary MM PF. The MM AUX-PF represents the PDF
pðXXk; i;MkjZZ1:kÞ, where i refers to the ith particle at k� 1.

After marginalization, the representation of pðXXkjZZ1:kÞ can

be obtained.
Similarly to [24], the joint probability density pðXXk; i;

MkjZZ1:kÞ can be written using the Bayesian rule as:

pðXXk; i;MkjZZ1:kÞ / pðZZkjXXkÞpðXXk; i;MkjZZ1:k�1Þ
¼ pðZZkjXXkÞp

�
XXkjXXðiÞk�1;Mk

�
p
�
MkjMðiÞk�1

�
w
ðiÞ
k�1;

ð18Þ

where pðMkjMk�1Þ is an element of the transition probability

matrix ��. Since sampling directly from pðXXk; i;MkjZZ1:kÞ is

difficult, the following importance function qðXXk; i;MkjZZ1:kÞ
is introduced:

qðXXk; i;MkjZZ1:kÞ / p
�
ZZkj��ðiÞk ðMkÞ

�
p
�
XXkjXXðiÞk�1;Mk

�
�p
�
MkjMðiÞk�1

�
w
ðiÞ
k�1;

ð19Þ

where

��
ðiÞ
k ðMkÞ ¼ E

�
XXkjXXðiÞk�1;Mk

�
: ð20Þ

The importance density qðXXk; i;MkjZZ1:kÞ differs from (18)

only in the first factor. Marginalization over XXk yields

qði;MkjZZkÞ / p
�
ZZkj��ðiÞk ðMkÞ

�
p
�
MkjMðiÞk�1

�
:w
ðiÞ
k�1: ð21Þ

By using (21), a random sample from the density

qðXXk; i;MkjZZ1:kÞ can be obtained as follows: First, a sample

fiðjÞ;MðjÞk g
N
j¼1 is drawn from the multinomial distribution

qði;MkjZZ1:kÞ, (21), by splitting each of the N particles at k� 1

into r groups. Each of the N�r particles is assigned a weight

proportional to the right-hand side of (21). Next, a sample

fXXðjÞk g
N
j¼1 from the joint density qðXXk; i;MkjZZ1:kÞ is generated

frompðXXkjXXði
jÞ

k�1;M
ðjÞ
k Þ. To use the samplesfXXðjÞk ; ij;M

ðjÞ
k g

N
j¼1 to

characterize the density pðXXk; i; MkjZZ1:kÞ, we attach to each

particle the weight

w
ðjÞ
k ¼

p
�
ZZkjXXðjÞk

�
p
�
ZZkj�ði

jÞ
k ðMkÞ

� ; ð22Þ

which represents the ratio of (19) and (18). By omitting the

fiðjÞ;MðjÞk g components from the triplet sample fXXðjÞk ; iðjÞ;
M
ðjÞ
k g

N
j¼1, we have representation of the marginalized

density pðXXkjZZ1:kÞ, i.e.,

pðXXkjZZ1:kÞ �
XN
j¼1

w
ðjÞ
k �
�
XXk �XXðjÞk

�
: ð23Þ

The conditional mean ��
ðiÞ
k ðM

ðiÞ
k Þ for each particle in the

MM AUX-PF comprises the mean vectors of all mobile

nodes. The following deterministic mobility equation is

used to calculate the mean for each mobile node:

xxk ¼ AAðT; �Þxxk�1 þBBuðT Þuuk: ð24Þ

The whole MM AUX-PF for mobile nodes localization is

presented as Algorithm 1. The MM AUX-PF takes into

account speed constraints, i.e., the speed of each mobile

node cannot exceed the maximum value Vmax. Finally,

resampling is performed only when the efficient number of

particles Neff is smaller than a given threshold Nthresh.
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Algorithm 1. A multiple model auxiliary PF for mobile

nodes localization.

3.3 Two Approaches to Deal with the Time
Correlated Measurement Noise

A natural solution to overcome the problem with correlated

measurement noise is to augment the mobile state xxk with

the noise vvk. Then, the localization algorithm (MM AUX-PF)

described in Section 3.2 can be applied to the whole

augmented state vector of size n � ðnx þ nzÞ (comprising the

state vectors of the mobile nodes and measurement noise).

This algorithm with the state vector augmented with the

correlated noise is referred to as an MM-AUX PF with

augmented state (AS).
Another decorrelation technique introduces the follow-

ing “artificial measurement”: �zzk ¼ zzk � azzk�1. The measure-

ment equation can then be written in the form

�zzk ¼ zzk � azzk�1 ð25Þ
¼ hhðxxkÞ þ vvk � a hhðxxk�1Þ þ vvk�1½ � ð26Þ
¼ hhðxxkÞ � ahhðxxk�1Þ þ �vvk: ð27Þ

The noise �vvk ¼ vvk � avvk�1 in the new measurement equation

is white but correlated with the process noise. The cross

correlation between two noise sequences can be eliminated

by a procedure, given in [35]. In most practical algorithms,

this cross correlation is omitted due to the little performance

degradation. Thus, the measurement equation in the case of

one mobile node can be modified to

�zzk ¼ �hhðxxkÞ þ �vvk; ð28Þ

where �hhðxxkÞ ¼ hhðxxkÞ � ahhðxxk�1Þ.
The MM-AUX PF algorithm with decorrelation is

referred to as with an artificial measurement (AM).

4 PERFORMANCE EVALUATION

Two cases have been investigated: for urban and suburban
environment. In suburban environment, the correlation
coefficient of the shadow process can be regarded as a
constant for a wide range of velocities of the mobile [28].
Typical values of the correlation coefficient and shadow
process are assumed, as suggested in the literature [27].

4.1 Results with Simulated Data

4.1.1 Testing Scenario 1

A sensor deployment architecture is considered, similar to
the presented in [25]. Three mobile nodes are moving in an
urban area well covered with a wireless sensor network
(Fig. 1). Each mobile node can measure the RSSI to each of
the reference nodes, but only the three RSSIs with the
highest strength are used for localization.

The MM AUX-PF AS is run for estimating the augmen-
ted state vector, consisting of three individual mobile state
vectors. Fig. 1 presents the actual and estimated trajectories
of the three mobile nodes. The actual speed of the mobiles is
shown in Fig. 2.

The parameters of the individual state vector initial
distribution xxi;0�Nðmmi;0; PP i;0Þ are selected as follows:

PPi;0 ¼ diagfPP x;0; PP y;0g; PPx;0 ¼ PPy;0

¼ diagf30 ½m�2; 1 ½m=s�2; 0:5 ½m=s2�2g; i ¼ 1; 2; 3;

and mmi;0 contains the exact initial node states. Initial mode
probabilities are ~�1;0 ¼ 0:8 and ~�i;0 ¼ 0:05 for i ¼ 2; . . . ; 5.
The transition probability matrix � has the following
diagonal elements: �11 ¼ 0:9;�ii ¼ 0:7; i ¼ 2; . . . ; 5 and the
off-diagonal elements (e.g., �i;1 ¼ 0:025; i ¼ 2; . . . ; 5,
�i;2 ¼ 0:07; i ¼ 3; . . . ; 5) are chosen equal in each row to
guarantee that the sum in each row is equal to one. The
noise correlation coefficient was assumed to be equal to a
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Fig. 1. Testing scenario 1: three mobile nodes (mn1, mn2, and mn3)

moving in an area covered with a wireless sensor network. The sensors

are uniformly deployed and form a rectangular grid.



typical value for urban environment, 0.25. The correlated

measurement noises are generated by means of Cholesky

factorization.
The other parameters of the algorithm are given in Table 1.
It is assumed that the accelerations of the mobile nodes ux

and uy can change within the range ½�5; 5� ½m=s2� and the

command process uu takes values among the following

acceleration levels IM¼fð0; 0Þ0, ð3:5; 0Þ0; ð0; 3:5Þ0; ð0;�3:5Þ0;
ð�3:5; 0Þ0g. Thus, the number of motion modes is r ¼ 5.

Nonrandom mobile node trajectories were generated with

the dynamic state equations (1)-(3) without process noise.

The initial state vectors are as follows: x̂x1;0 ¼ ð�120; 7; 0; 210;

�15; 0Þ0; x̂x2;0 ¼ ð550; 7; 0; 150;�15; 0Þ0, and x̂x3;0 ¼ ð�630; 7; 0;
350;�20; 0Þ0. The first mobile node performs three short-term
maneuvers with accelerations from the mode set and a
longer maneuver with a control input uu ¼ ð�3:0; 0:0Þ,
different from the acceleration set. The second mobile node
maneuvers are described by the set of accelerations. The
third mobile node performs two consecutive maneuvers
with opposing accelerations. The root-mean-square errors
(RMSE) [30] combined on both position coordinates yield the
estimated state parameters to the actual dynamic parameters
of each mobile node over Nmc ¼ 50 Monte Carlo runs. The
position and speed RMSEs of the MM AUX-PF with
augmented state are shown in Figs. 3 and 4. High position
and speed estimates are achieved, with accuracy less than
45 m with respect to the mobile nodes position.

4.1.2 Testing Scenario 2

In this example, we perform a comparison between the
developed MM AUX-PF with an augmented state vector
and MM AUX-PF AM for dealing with the measurement
time correlation and an MM AUX-PF without accounting
for the measurement correlation. The estimated and actual
trajectories are given in Fig. 5. The position and speed
RMSEs are presented in Figs. 6 and 7, respectively, and
show that the MM AUX-PF with the AS outperforms the
MM AUX-PF neglecting the measurement noise correlation.
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Fig. 2. Actual speeds of the three maneuvering mobile nodes.

TABLE 1
Simulation Parameters for Urban Environment

Fig. 3. Results for the position RMSE obtained with the MM AUX-PF with

an augmented state vector.

Fig. 4. Results for the speed RMSE obtained with the MM AUX-PF with

an augmented state.

Fig. 5. Actual and estimated trajectories of the mobile node, obtained

from: 1) the MM AUX-PF neglecting the temporal noise correlation, 2) an

MM AUX-PF with augmented state vector, and 3) an MM AUX-PF with

artificial measurement.



The accuracy with respect to position is below 40 meters
and the difference in the accuracy of the two filters is
especially noticeable in the maneuvering stages.

4.1.3 Testing Scenario 3

This experiment shows a comparison between the perfor-
mance of the MM AUX-PF AS and MM AUX-PF AM with
the MM AUX-PF, neglecting the measurement correlation

over a network of randomly deployed sensors. The results

are presented in Figs. 8, 9, and 10.
Experiments were also performed with a higher value of

the correlation coefficient 0.8, higher shadowing noise 62 dB,

and, respectively, 0.82 and 7:52 dB. The RMSE position error

is shown in Fig. 11. From all the experiments, we can

conclude that with a small correlation coefficient, the two

MM AUX-PFs (both with AS and AM) outperform the MM

AUX-PF neglecting the temporal correlation and the benefit

is the biggest in the maneuvering periods. With high values
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Fig. 6. Position RMSE (from 50 Monte Carlo runs): comparison between

the MM AUX-PF (without taking into account the noise correlation), the

MM AUX-PF with an augmented state vector, and the MM AUX-PF with

artificial measurement.

Fig. 7. Speed RMSE of the mobile node (from 50 Monte Carlo runs):
between the MM AUX-PF (without taking into account the noise
correlation)), the MM AUX-PF with an augmented state vector, and
the MM AUX-PF with artificial measurement.

Fig. 8. Actual and estimated trajectory. Comparison between the MM
AUX-PF, MM AUX-PF with an augmented state vector, and MM AUX-
PF with artificial measurement when sensors are randomly deployed.

Fig. 9. Position RMSE of the mobile node: comparison between the MM

AUX-PF, MM AUX-PF with an augmented state vector, and MM AUX-

PF with artificial measurement when sensors are randomly deployed.

Fig. 10. Speed RMSE of the mobile node: comparison between the MM

AUX-PF, MM AUX-PF with an augmented state vector, and MM AUX-

PF with artificial measurement when sensors are randomly deployed.

Fig. 11. Experiment with high values of the correlation coefficient

(suburban environment). Position RMSE of the mobile node: compar-

ison between the MM AUX-PF AS and the MM AUX-PF AM.



of the correlation coefficient (e.g., 0.8), the algorithm
neglecting the noise correlation is almost always divergent,
whereas the MM AUX-PF (both with AS and AM) shows
reliable performance. The MM AUX-PF AS has shown more
accurate performance than the MM AUX-PF AM.

4.2 Results with Real Data

The performance of the proposed localization MM-AUX-PF
algorithms, with AS and AM, respectively, has been
investigated over a cellular wireless network, with real
RSSIs, collected from BSs in Glasgow, United Kingdom. The
mobile station was a vehicle driving in the city center. More
than 400 BSs are available in the area where the car was
moving. However, only data from the six with the highest
RSSIs were provided to the localization algorithm. Also, a
GPS system collected the actual positions of the moving
mobile, for the purposes of validating the performance of the
developed algorithms. Fig. 12 presents the map of the urban
environment, with the nearest base stations and the
trajectory of the car (shown increased in size in Fig. 13).
The vehicle trajectory contains both patterns with sharp

maneuvers and rectilinear motion, including a stretch at the
end where the vehicle is parked. Additional information for
the road is included as position constraints in the algorithms.

Apart from the signal strengths, a GPS system collected
the actual positions of the mobile unit. All parameters for
the filters (tested with the real data) are the same as the
parameters given in Table 1, except for the sampling
period T ¼ 0:5 s, Vmax ¼ 25 m/sec, sample size Tm ¼ 800,
�x ¼ ½30; 1; 0:3; 30; 1; 0:3�0, and �v ¼ 5:5 dB. The transition
probability matrix � has the same form as in Section 4.1.
Fig. 14 shows the actual trajectory of the mobile together
with the estimated trajectories, and Fig. 15 gives the
respective position RMSEs. With the real RSSIs, we
compared the performance of: 1) the MM AUX-PF that
does not take into account the temporal measurement
noise correlation with the MM AUX-PF with AM and MM
AUX-PF with AS. From both Figs. 14 and 15, it is evident
that the accuracy of the MM AUX-PF with AS and the
MM-AUX PF with AM is higher than the accuracy of the
MM AUX-PF neglecting the temporal noise correlation.

The estimated trajectory obtained with the MM AUX-
PF accounting for the noise correlation is more accurate
than the MM AUX-PF estimate without taking into
account this correlation.

The computational complexity is another important issue
that we investigated. The MM AUX-PF execution time
increases with the number of maneuvering models used in
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Fig. 12. The area in Glasgow, United Kingdom, where the vehicle is
moving. The nearest BSs, the start, and destination positions are
indicated on the map.

Fig. 13. The vehicle trajectory (from the left to the right side). The start

and destination positions are indicated on the map.

Fig. 14. This figure shows the actual and the estimated trajectory of the

vehicle by: 1) the MM AUX-PF neglecting the measurement noise

correlation, 2) the MM AUX-PF with augmented state, and 3) the MM

AUX-PF with artificial measurement.

Fig. 15. Position RMSE for: 1) the MM AUX-PF neglecting the

measurement noise correlation, 2) the MM AUX-PF with augmented

state, and 3) the MM AUX-PF with artificial measurement.



the implementation. The ratio between the computational

time of the MM AUX-PF with five models and the

computational time of the conventional AUX-PF is approxi-

mately 3:1. In the framework of the MATLAB environment,

one-step processing time of a mobile node is approximately

2 seconds on a conventional PC (AMD Athlon(tm) 64

Processor 1.81 GHz). By using C++ programming tools, the

computational time is reduced to the sampling interval. In

MATLAB environment with a nonoptimized code, the

execution time for the MM-AUX PF with AS and AM is 2.33

and 2.38 s, respectively.

5 CONCLUSIONS

This paper contributes to solving the problem of simulta-

neous localization of mobile nodes in wireless networks

with correlated in time measurement noises. Two MM

auxiliary particle filters (with an augmented state vector

and an artificial measurement, respectively) are proposed

for simultaneous localization of a mobile nodes in wireless

networks. The algorithms performance has been investi-

gated and validated over different scenarios and has shown

high accuracy for localizing maneuvering nodes.
The developed techniques have the potential to be used

in different applications, such as GPS-free position localiza-

tion of mobile nodes in wireless networks, for localization of

moving vehicles and robots. The algorithms proposed here

can be useful also in scenarios where the location informa-

tion for the mobile nodes is supporting basic network

functions.
Future work will be focused on localization when both

fixed and mobile nodes communicate with each other, on

techniques for localizing of a large number of nodes and

connectivity issues.
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