Lancaster EPrints

Noise in nonlinear dynamical systems. Volume 3. experiments and simulations.

Moss, F. and McClintock, Peter V. E. (1989) Noise in nonlinear dynamical systems. Volume 3. experiments and simulations. Cambridge University Press, Cambridge. ISBN 0-521-35265-7

Full text not available from this repository.

Abstract

Nature is inherently noisy and nonlinear. It is noisy in the sense that all macroscopic systems are subject to the fluctuations of their environments and also to internal fluctuations. It is nonlinear in the sense that the restoring force on a system displaced from equilibrium does not usually vary linearly with the size of the displacement. To calculate the properties of stochastic (noisy) nonlinear systems is in general extremely difficult, although considerable progress has now been made, particularly during the past two decades. The three volumes that make up Noise in nonlinear dynamical systems comprise a collection of specially written authoritative reviews on all aspects of the subject, representative of all the major practitioners in the field. It is anticipated that this work will help to stimulate new research, and that it will be of value to all those entering or already working in the field by bringing together all the experimental and theoretical tools needed. The books will be of interest not only to researchers in statistical physics, but also to those people working in relevant areas of chemistry, engineering and biology, and many other branches of science and technology. The third volume deals with experimental aspects of the study of noise in nonlinear dynamical systems. It covers noise-driven phenomena in superfluid helium, liquid crystals, lasers and optical bistability as well as the solution of stochastic equations by digital simulation and analogue experiment.

Item Type: Book/Report/Proceedings
Additional Information: Third volume of an edited trilogy
Subjects: Q Science > QC Physics
Departments: Faculty of Science and Technology > Physics
ID Code: 32315
Deposited By: Professor P. V. E. McClintock
Deposited On: 23 Mar 2010 09:47
Refereed?: No
Published?: Published
Last Modified: 27 Jul 2012 00:08
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/32315

Actions (login required)

View Item