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ABSTRACT
It is argued, on the basis of linear response theory (LRT), that new types of stochastic
resonance (SR) are to be anticipated in diverse systems, quite different from the one most
commonly studied to date, which has a static double-well potential and is driven by a net
force equal to the sum of periodic and stochastic terms. On this basis, three new non-
conventional forms of SR are predicted, sought, found and investigated both theoretically
and by analogue electronic experiment: (a) in monostable systems; (b) in bistable systems
with periodically modulated noise; (c) in a system with coexisting periodic attractors.
In each case, it is shown that LRT can provide a good quantitative description of the
experimental results for sufficiently weak driving fields. It is concluded that SR is a much
more general phenomenon than has hitherto been appreciated.

KEY WORDS: Analogue simulation; fluctuation phenomena; resonance; noise; spectral
density; linear response; periodic attractors.
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1. INTRODUCTION
The remarkable diversity(1,2) of the systems in which stochastic resonance (SR) has already
been found, or is being sought - ice-ages, lasers, electronic circuits, electron spin resonance
(ESR), superconducting quantum interference devices (SQUIDs), sensory neurons, and
passive optical systems, for example - is in a sense slightly misleading because, at a
fundamental level, the underlying phenomenon in all of these apparently disparate cases is
exactly the same. It arises because of the noise-induced increase in the system’s generalised
susceptibility χ(Ω) at some frequency Ω on the wing of the zero-frequency spectral peak
corresponding to hopping between two (or more) static attractors(3,4). For convenience,
we shall refer to the noise-induced enhancement of a weak periodic signal in systems of this
kind, where the net applied force is a sum of regular and stochastic terms, as conventional
SR. The overwhelming majority of earlier work on SR(1,2) has related to conventional
SR. We note that the description of conventional SR in terms of a susceptibility(3,4), i.e.
within the scope of linear response theory, has not only proven to be correct(5), but is also
simple and revealing.

The aim of the present paper is to return to the interesting question of whether there
may be other, quite different, classes of systems also able to support SR phenomena:
that is, to explore the possibility of non-conventional SR. We shall use the latter term
to describe SR in systems that do not have static potentials of the usual bistable (or
multistable) type, or for which the periodic and stochastic forces are not mutually additive:
in other words, we describe as non-conventional those systems which cannot be mapped
into conventional SR systems by a suitable change of variable.

In Section 2, we consider SR phenomena in thermal equilibrium systems with static
attractors, and ask whether there may be new forms of SR not related to the zero-
frequency spectral peaks associated with fluctuational transitions between the stable
states of bistable systems. We show that LRT leads immediately to the prediction and
observation of high-frequency SR in underdamped monostable systems. Section 3 ad-
dresses the interesting question of whether SR occurs in systems with static attractors
when the stochastic and periodic forces are applied multiplicatively, in the sense that the
former is modulated by the latter. It turns out that SR does manifest itself, but with a
phenomenology different from that of conventional SR. In Section 4, we describe the first
search for evidence of SR in a system with periodic attractors, and demonstrate that the
phenomenon does indeed occur at a (tunable) high frequency close to that of the main
periodic drive. The results are discussed, and general conclusions are drawn, in Section
5.

2. STOCHASTIC RESONANCE IN MONOSTABLE SYSTEMS
The advantages of treating conventional SR by LRT(3,4) have already been discussed in an
earlier paper(6) in this volume. We now show that, in addition to the obvious advantages
of simplicity, elegance, and wide applicability, the LRT approach also possesses strong
predictive power. This is a fortiori the case when seeking SR in systems of the thermal
equilibrium type where the stochastic force is white, Gaussian and additive, and the weak
periodic signal is also additive. The fluctuation dissipation theorem(7) is then applicable so
that the generalized susceptibility χ(Ω) of a given system at frequency Ω may be written
as

Re χ(Ω) =
2

T
P
∫ ∞
0

dω1[ω
2
1/(ω

2
1 − Ω2)]Q(0)(ω1) (1)
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Im χ(Ω) = (πΩ/T )Q(0)(Ω)

where Q(0)(ω) is the spectral density of the fluctuations (SDF) of the system in the
absence of the periodic signal, T is the temperature and P implies the Cauchy principal
part. Eq (1) also holds for quasi-thermal noise-driven systems, for example those moving
in a static potential with friction proportional to velocity under the influence of white
Gaussian noise; in such cases, T characterises the intensity of the noise.

All that is needed for a weak trial force at frequency Ω to be enhanced by added
noise, i.e. for SR to occur, is that |χ(Ω)|2 should rise with increasing T . What this
means in practice is that SR may reasonably be sought in any system for which Q(0)(ω)
exhibits a well-resolved narrow peak that is strongly dependent on T . If the value of
Q(0)(Ω) of the SDF for Ω within the range of the peak increases faster than linearly with
T , then signal enhancement may be expected; for the signal/noise ratio to increase with
noise intensity, it is necessary that Q(0)(Ω) should rise faster than quadratically with T .
Dramatic manifestations of SR are to be anticipated in those cases where Q(0)(Ω) rises
extremely rapidly (e.g. exponentially) with T , as it does in the case of conventional SR(6).

This perception of the origins of SR suggests that it is actually a very general phe-
nomenon. In particular, there is no obvious reason why it should be confined to bistable
(or multistable) systems. It is equally likely, for example, to manifest itself in single-well
nonlinear oscillators under appropriate conditions, i.e. in monostable systems. We now
consider two cases of non-conventional SR of this kind that we have found in the single-
well Duffing oscillator, driven by Gaussian white noise of intensity T and a weak periodic
force of amplitude A

q̈ + 2Γq̇ +
dU(q)

dq
= f(t) + A cos Ωt (2)

U(q) =
1

2
q2 +

1

4
q4 +Bq

Γ� 1, 〈f(t)〉 = 0

〈f(t)f(t′)〉 = 4ΓTδ(t− t′)

We distinguish two cases, depending(8) on whether or not |B| > 8/7
3
2 ' 0.43. In case (a),

with |B|< 0.43, the variation of the oscillator’s eigenfrequency with energy is monotonic,
as sketched in Fig 1(a). In the absence of the periodic force (A = 0), for small noise
intensity T , the SDF consists of a narrow Lorentzian peak of width ∼ Γ at frequency
ω(0), where ω(E) is the frequency of eigenvibrations of a given energy E measured from
the bottom of the potential well. As T is increased, the average energy E of the oscillator
rises, and the peak broadens asymmetrically(8) towards higher frequencies. For an [Ω −
ω(0)] > Γ in the position shown by the dashed line in Fig 1(a), initially on the tail of the
spectral peak the magnitude of Q(0)(Ω) will therefore increase very rapidly (approximately
exponentially) with T . The corresponding increase in the susceptibility χ(Ω) of the system
implied by (1) means that, when there is a weak periodic force on the right hand side of
(2), it will be amplified by an increase of T , i.e. SR will occur. The SR maximum is to
be expected when T has been “tuned” to adjust E such that ω(E) ' Ω. The argument is
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We distinguish two cases, depending (8) on whether or not IBI>
8/73/2 ~ 0.43. In case (a), with IBI ~ 0.43, the variation of the oscillator's
eigenfrequency with energy is monotonic, as sketched in Fig. la. In the
absence of the periodic force (A = 0), for small noise intensity T, the SDF
consists of a narrow Lorentzian peak of width ~ r at frequency w(O),
where w(E) is the frequency of eigenvibrations of a given energy E
measured from the bottom of the potential well. As T is increased, the
average energy E of the oscillator rises, and the peak broadens asymmetri-
cally(8) toward higher frequencies. For an [.0 - w(O)] > r in the position
shown by the dashed line in Fig. la, initially on the tail of the spectral
peak the magnitude of Q(O)(.o) will therefore increase very rapidly
(approximately exponentially) with T. The corresponding increase in the
susceptibility X(.o) of the system implied by (1) means that, when there is
a weak periodic force on the right-hand side of (2), the corresponding
signal will be amplified by an increase of T, i.e., SR will occur. The SR
maximum is to be expected when T has been "tuned" to adjust E such that
w(E) ~ .0. The argument is obviously extremely general and can be applied,
with minor variations where necessary, to any underdamped nonlinear
oscillator.

In case (b), on the other hand, where IBI> 0.43, w(E) is nonmono-
tonic, as sketched in Fig. lb. In the absence of the periodic force (A = 0),
the system is known(8) to exhibit noise-induced spectral narrowing of the
main peak in the SDF; and, for sufficiently small values of the damping

Fig. 1. Sketches to show the dependence of the eigenfrequency w(E) on energy E for the
nonlinear oscillator (2): (a) for IBI< 0.43; (b) for IBI> 0.43. The frequencies Q at which a
weak periodic force will be amplified by SR are indicated.

Figure 1: Sketches to show the dependence of the eigenfrequency ω(E) on energy E for
the nonlinear oscillator (2): (a) for |B| < 0.43; (b) for |B| > 0.43. The frequencies Ω at
which a weak periodic force will be amplified by SR are indicated.

obviously extremely general and can be applied, with minor variations where necessary,
to any underdamped nonlinear oscillator.

In case (b), on the other hand, where |B| > 0.43, ω(E) is nonmonotonic, as sketched
in Fig 1(b). In the absence of the periodic force (A = 0), the system is known(8) to exhibit
noise-induced spectral narrowing of the main peak in the SDF; and, for sufficiently small
values of the damping constant Γ, exceedingly sharp zero-dispersion peaks (ZDPs) of

width ∝ Γ
1
2 appear(9,10) in the SDF close to the frequency ωm of the extremum where

dω(E)/dE = 0. The magnitude of the ZDP rises exponentially fast with increasing T
so that, just as in case (a), the correspondingly rapid increase of χ(Ω) will imply a
manifestation of SR for Ω close to ωm. The extreme narrowness of the ZDP, and its very
rapid rise with T , suggests that SR in case (b) will be a much more dramatic phenomenon
than in case (a).

To test these predictions, we have sought evidence of SR in an electronic model of (2)
designed, constructed and operated according to standard practice(11). The parameter
values used were: Γ = 0.011; A = 0.020; and B = 0 or 2.00 for cases (a) or (b) respectively.
The model was driven with quasi-white noise from an external noise generator, and with
a weak periodic force from an HP3325 frequency synthesizer. The resultant fluctuating
q(t) was digitized in 1024 point blocks and ensemble-averaged by a Nicolet LAB80 data-
processor to yield 〈q(t)〉. The advantages of averaging in the time domain, rather than as
more commonly(1) in the frequency domain, is that it enables measurements to be made
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constant r, exceedingly sharp zero-dispersion peaks (ZDPs) of width
oc r1/2 appear(9.10)in the SDF close to the frequency Wm of the extremum
where dw(E)jdE = O. The magnitude of the ZDP rises exponentially fast
with increasing T so that, just as in case (a), the correspondingly rapid
increase of X(.Q) will imply a manifestation of SR for .Q close to Wm' The
extreme narrowness of the ZDP and its very rapid rise with T suggest that
SR in case (b) will be a much more dramatic phenomenon than in case (a).

To test these predictions, we have sought evidence of SR in an elec-
tronic model of (2) designed, constructed, and operated according to
standard practice.(ll) The parameter values used were r=O.Oll, A =0.020;
and B = 0 or 2.00 for cases (a) or (b), respectively. The model was driven
with quasiwhite noise from an external noise generator, and with a weak
periodic force from an HP3325 frequency synthesizer. The resultant fluc-
tuating q(t) was digitized in 1024 point blocks and ensemble-averaged
by a Nicolet LAB80 dataprocessor to yield <q(t). The advantages of
averaging in the time domain, rather than as more commonly(l) in the
frequency domain, is that it enables measurements to be made of the
phase shift r/J between the drive and the response, as well as yielding the
amplitude a of the response directly.

Some typical experimental results are shown by the data points in
Fig. 2, for case (a) (squares) and case (b) (circles), respectively. The

Fig. 2. SR in monoslable syslems. The squared stochastic amplification factor ,2 measured
for case (a) with B= 0 (squares) and case (b) with B = 2 (circles), plotted as function of noise
intensity T for the electronic circuit model of (2) with A =0.02, T=O.Oll. The full curves
represent theoretical predictions derived using LRT and the fluctuation-dissipation theorem.

Figure 2: SR in monostable systems. The squared stochastic amplification factors, r2,
measured for case (a) with B = 0 (squares) and case (b) with B = 2 (circles) are plotted
as functions of noise intensity T for the electronic circuit model of (2) with A = 0.02,
Γ = 0.011. The full curves represent theoretical predictions derived using LRT and the
fluctuation dissipation theorem.

of the phase shift φ between the drive and the response, as well as yielding the amplitude
a of the response directly.

Some typical experimental results are shown by the data points in Fig 2, for case
(a) (squares) and case (b) (circles) respectively. The measurements are expressed in
terms of a stochastic amplification factor r = a(T )/a(0), where a(0) is the amplitude of
the periodic response 〈q(t)〉 when T = 0; for more convenient comparison with earlier
results in conventional SR(1), we have plotted r2 rather than r. The form of the data is
strikingly similar to that found in conventional SR(1), in that the variation of r2 with T
passes through a bell-shaped maximum, steeper on its low-T side. As inferred above, the
maximum is indeed higher for case (b) than for case (a).

The measured phase lag −φ between the drive and the response is plotted for case
(a) (squares) and case (b) (circles) in Fig 3. The forms of −φ(T ) for the two cases
are strikingly different, but they can readily be understood by analogy with an ordinary
(deterministic) resonance. In case (a) with T = 0, the periodic driving force is being
applied to the oscillator at a frequency well beyond its natural frequency, Ω > ω(0) [see
Fig 1(a)]. Consequently, −φ is close to 180◦ (just as it would be for a harmonic oscillator
with Ω/ω(0)� 1). As T is increased, however, the natural frequency is effectively being
tuned past the fixed driving frequency. Near resonance −φ passes through 90◦ and, in the
high T limit where the natural frequency substantially exceeds Ω, −φ decreases towards
0◦ exactly as it would in a deterministic resonance.

5



measurements are expressed in terms of a stochastic amplification factor
r = a(T)ja(O), where a(O) is the amplitude of the periodic response <q(t) >
when T = 0; for more convenient comparison with earlier results in conven-
tional SR, (1) we have plotted r2 rather than r. The form of the data is
strikingly similar to that found in conventional SR, (1) in that the variation
of r2 with T passes through a bell-shaped maximum, steeper on its low-T
side. As inferred above, the maximum is indeed higher for case (b) than for
case (a).

The measured phase lag - <p between the drive and the response is
plotted for case (a) (squares) and case (b) (circles) in Fig. 3. The forms of
- <p( T) for the two cases are strikingly different, but they can readily be
understood by analogy with an ordinary (deterministic) resonance. In
case (a) with T= 0, the periodic driving force is being applied to the
oscillator at a frequency well beyond its natural frequency, Q > w(O)
(Fig. 1a). Consequently, -<p is close to 180° [just as it would be for a
harmonic oscillator with Qjw(O) ~ 1]. As T is increased, however, the
characteristic frequency Q(T) is effectively being tuned past the fixed
driving frequency. Near resonance - <p passes through 90° and, in the
high-T limit where the Q(T) substantially exceeds Q, -<p decreases toward
0° exactly as it would in a deterministic resonance.
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Fig. 3. Phase shifts for SR in monostable systems. The phase difference -¢J (in degrees)
between the periodic driving force A cos Ot and the periodic response <q(t) > measured for
case (a) with B= 0 (squares) and case (b) with B = 2 (circles), plotted as function of noise
intensity T for the electronic circuit model of the monostable system (2) with A = 0.02. The
full curves represent theoretical predictions derived using LRT and the fluctuation-dissipation
theorem.

Figure 3: Phase shifts for SR in monostable systems. The phase differences −φ (in
degrees) between the periodic driving force A cos Ωt and the periodic response 〈q(t)〉
measured for case (a) with B = 0 (squares) and case (b) with B = 2 (circles) are plotted
as functions of noise intensity T for the electronic circuit model of the monostable system
(2) with A = 0.02. The full curves represent theoretical predictions derived using LRT
and the fluctuation dissipation theorem.

In case (b) on the other hand, the natural frequency never falls below its minimum
value, to which the periodic force A cos Ωt has been tuned [see Fig 1(b)]. Consequently
the phase lag −φ is always less than 90◦, although it approaches 90◦ near the resonance
maximum just as one might have expected from the analogy with the deterministic case.
The resultant −φ(T ) is therefore nonmonotonic, and similar in form to the phase shift
observed previously(4,6) for conventional SR.

The application of LRT to provide a quantitative theoretical description of these in-
teresting phenomena is relatively straightforward, because the SDF of (2) for A = 0,
Q(0)(ω), is already known(8), theoretically and experimentally, for both cases (a) and (b).
Inserting the relevant expressions in the fluctuation dissipation relations (1) yields χ(Ω)
immediately, whence

r2 = [a(T )/a(0)]2 = |χ(Ω)|2/{[ω(0)2 − Ω2]2 + 4Γ2Ω2} (3)

−φ = tan−1[Imχ(Ω)/Reχ(Ω)] (4)

These two quantities, calculated for (2) with the parameters used in the circuit, are plotted
(full curves) as functions of T in Figs 2 and 3 for comparison with the experimental
measurements. Given that there are no adjustable parameters, the agreement between
experiment and theory can be regarded as excellent.
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The results of Figs 2 and 3, representing the first observation of SR in a monostable
system, demonstrate that the bistability (or multistability) of a system is not in fact
a necessary condition for SR to occur, as had previously been assumed(1). We would
emphasize that the case (a) variant of SR investigated in the present work is in no way
confined to the particular system (2). Rather, it is a quite general phenomenon that is
to be anticipated in all underdamped nonlinear oscillators (including, for example, those
for which |B|> 0.43 in the model (2)). In all situations where, as in case (b) of (2),
the eigenfrequency varies nonmonotonically with energy (or has singular points of higher
order), a more pronounced manifestation of SR is to be anticipated near the frequency
ωm of the extremum; it might reasonably be called zero-dispersion stochastic resonance
(ZDSR). There is an interesting distinction between the present results and those of
conventional SR. In the latter case, stochastic amplification occurs in both overdamped
and underdamped systems but is at its most pronounced when the damping is large;
the nonconventional forms of SR studied above, on the other hand, are restricted to
underdamped systems and are most pronounced when the damping is small.

3. STOCHASTIC RESONANCE FOR PERIODICALLY MODULATED NOISE
INTENSITY

In this section we consider a system with a static bistable potential, as in conventional
SR, but with an unconventional driving force. In conventional SR, the net driving force
is a sum of periodic and stochastic terms; we now address the rather different situation
that arises when the noise and the periodic force are introduced multiplicatively, so that
the former is amplitude-modulated by the latter. Periodically modulated noise is not
uncommon and arises, for example, at the output of any amplifier (e.g. in optics, or
radio-astronomy) whose gain varies periodically with time. It is of obvious importance,
therefore, to establish whether or not a modulated zero-mean noise can give rise to a
periodic signal in the system it is driving. Such an effect would not, of course, occur in
a linear system where the signal is directly proportional to the driving force so that they
must both, on average, vanish. In a nonlinear system, on the other hand (e.g. a diode
rectifier) there obviously can be a periodic signal in the output. We now show a form of
SR can occur for the particular case where the system has a bistable potential.

To demonstrate the onset of this new form of SR, and to reveal its characteristic
features, we treat the simplest nontrivial system: an overdamped Brownian particle,
moving in an asymmetric bistable potential, with equation of motion

q̇ +
dU(q)

dq
= f(t) ≡ (

1

2
A cos Ωt+ 1)ξ(t) (5)

U(q) = −1

2
q2 +

1

4
q4 +Bq

Here again, B characterizes the asymmetry of the potential. For −2/(3
√

3) < B <
2/(3

√
3) the potential U(q) has two minima, i.e. the system is bistable. The function

ξ(t) represents white Gaussian noise of intensity D, so that

〈f(t)f(t′)〉 = 2Dδ(t− t′)
[
1 + A cos (Ωt) +

A2

8
(1 + cos (2Ωt))

]
(6)

i.e. the intensity of the driving force f(t) is periodic in time. In what follows, we assume
the modulation to be weak, A� 1, and neglect the term ∼ A2 in (6).

7



For sufficiently weak noise, when D is much less than the depths ∆U1,2 of the potential
wells,

D � ∆U1, ∆U2, ∆Un = U(qs)− U(qn), n = 1, 2

U ′(q1,2) = U ′(qs) = 0, q1 < qs < q2 (7)

the motion of the system consists mostly of small intrawell fluctuations about the equi-
librium positions at the potential minima at q1,2. Occasionally, large fluctuations will
occur, sufficient to cause interwell transitions across the potential maximum at qs. Peri-
odic modulation of the noise influences both types of fluctuation, and so there are two
contributions to the signal 〈q(t)〉: one from the modulation of the intrawell fluctuations;
and the other from the modulation of the populations w1,2(t) of the wells 1, 2

〈q(t)〉 '
∑
n=1,2

〈q(t)〉nwn(t) (8)

where, 〈〉n implies averaging over the nth well. The system (5), (6) is not of the thermal
equilibrium type, and so cannot be described by the fluctuation dissipation relations (1).
We can still apply LRT, however, and we assume that the periodic response to weak
modulation can be described by a generalised susceptibility κ(Ω)

〈q(t)〉 = 〈q〉(0) + ARe [κ(Ω) exp(−iΩt)] (9)

where, as previously, the superscript (0) means that the corresponding quantity refers to
the case A = 0.

We shall consider the response for the physically important case of low frequency
modulation, Ω � U ′′(q1,2), where the adiabatic approximation holds. Both the intrawell
fluctuations and the transition probabilities W12,W21 are then the same as they would be
for white noise of instantaneous intensity D (1 + A cos Ωt). The well populations w1, w2

for periodically modulated noise depend on the relationship between Ω and the Wnm. To
lowest order in the modulation amplitude A, the probability Wnm of an n→ m transition
is

Wnm ≡ Wnm(t) ' W (0)
nm(1 + A

∆Un
D

cos Ωt) (10)

where W (0)
nm ∝ exp(−∆Un/D) is the usual Kramers transition rate. The corresponding

periodic modulation of the well populations w1,2 is described by the balance equation
ẇ1 = −W12w1 + W21w2. The periodic redistribution over the wells gives a contribution
κtr(Ω) to the susceptibility κ(Ω) of the form

κtr(Ω) = − 1

D
(q1 − q2)(∆U1 −∆U2)w

(0)
1 w

(0)
2

W (0)

W (0) − iΩ

W (0) = W
(0)
12 +W

(0)
21 (11)

w
(0)
1 = W

(0)
21 /W

(0), w
(0)
2 = 1− w(0)

1

In obtaining (11) from (8)-(10), we have neglected the deviations of 〈qn〉 from qn in
comparison with |q2 − q1|. According to (10), (11),
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|κtr(Ω)| ∝ ζ exp(−ζ), ζ = |∆U1 −∆U2|/D (12)

i.e. the interwell transitions contribute to κ(Ω) provided that the potential is asymmetric.
This is easily understood qualitatively. For a symmetric potential, the wells are equally
populated irrespective of noise intensity and so the modulation of the latter does not
influence the populations w1, w2. For asymmetric potentials, on the other hand, the
ratio of the populations w

(0)
1 /w

(0)
2 ∝ exp [(∆U2 −∆U1)/D] depends sharply on the noise

intensity, and will be strongly influenced by the modulation of D. It is also evident that,
for very large ζ, a weak modulation will not result in a substantial redistribution over the
wells because the product w1w2 ∝ exp(−ζ) will remain exponentially small: |κtr(Ω)| must
therefore vary nonmonotonically with ζ ∝ D−1, with a maximum at ζ = 1, and increase
rapidly with D in the range exp (ζ)� 1. This increase can in itself give rise to stochastic
resonance, since the periodic signal is rising rapidly with increasing noise intensity.

However, the intrawell fluctuations are also to be considered. Their contribution to
the susceptibility κ(Ω) is connected with the local asymmetry of the potential about
each of its minima (just as for the zero frequency peaks in the power spectra of single-
well underdamped systems(12)). The partial susceptibility for the nth well, κn(Ω), can be
obtained for small D by expanding U(q) in (1) to second order in (q− qn) and calculating
〈q − qn〉 formally to second order in f(t). For Ω� U ′′(qn) one arrives at the expression

κn(Ω) = −U ′′′(qn) [U ′′(qn)]
−2
D/2 (13)

The susceptibility κ(Ω) as a whole is then given by the sum of the above contributions

κ(Ω) =
∑
n=1,2

κn(Ω)w(0)
n + κtr(Ω) (14)

Eqs (9), (11), (13), (14) describe completely the periodic response of the system to pe-
riodically modulated noise. Following Ref 12, the influence of the noise intensity on the
response can be characterised by a signal/noise ratio R equal to the ratio of the δ-like
spike in the power spectral density of the fluctuations of the system

Q(ω) =
1

4πτ
|
∫ τ

−τ
dt eiωtq(t)|2, τ →∞ (15)

at the modulation frequency Ω to the value Q(0)(Ω) of Q(Ω) in the absence of modulation.
According to (9)

R =
1

4
A2|κ(Ω)|2/Q(0)(Ω) (16)

[Note that a similar equation was given in Ref 6 for the case of additive periodic forcing;
we emphasize, however, that in contrast with Refs 3, 4, 6, the effective susceptibility κ(Ω)
is not now given directly by the fluctuation dissipation theorem in terms of Q(0)(ω)].

The most interesting and important situation arises when the main contributions to
both κ(Ω) and Q(0)(Ω) are due to fluctuational interwell transitions. In this case, (16)
simplifies and, allowing for the explicit form(6) of Q(0)(Ω), one obtains

R ' Rtr =
π

4
A2ζ2W

(0)
12 W

(0)
21 /(W

(0)
12 + W

(0)
21 ) (17)

It can be seen from the Kramers expression for the transition probability that Rtr ∝ ζ2

exp (−∆U/D) where ∆U = max (∆U1,∆U2) is the depth of the deeper potential well.
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Fig. 4. SR for periodically modulated noise. Measurements (square data points) of the
signal/noise ratio R (x 15) for the system (5), compared with theory (lower full curve),
plotted as a function of reduced noise intensity D! L1U with B = 0.2, A = 0.14, .Q = 0.029. The
circle data points represent measurements on the same electronic circuit with additive periodic
forcing (conventional SR) under similar conditions; the upper full curve represents the
theoretical prediction of ref. 5. The dashed regions of each curve lie beyond the parameter
range where the theory is strictly valid.

It is interesting to compare SR with periodically modulated noise with
conventional SR for which f(t) in (5) is replaced by

Experiment and the LRT prediction for signal/noise in conventional SR are
also shown in Fig. 4, by the circle data points and upper full curve, respec-
tively. The behavior is seen to be remarkably similar in the two cases,
although the size of the SR effect for periodically modulated noise tends to
be much smaller. The most striking difference between these two forms
of SR relates, however, to the variation of R with the asymmetry param-
eter B, shown in Fig. 5. For periodically modulated noise, the signal seems
to disappear for equal well depths (B = 0) and steadily increases as the
difference in well depths with increasing B. For conventional SR, on the
other hand, the situation is reversed: it is most pronounced for equally
populated stable states.

These ideas are readily set on a more quantitative basis. The asym-
metry of our model (5) is controlled by B, and when B is small we can
write

Figure 4: SR for periodically modulated noise. Measurements (square data points) of
the signal/noise ratio R (× 15) for the system (5) are compared with theory (lower full
curve), plotted as a function of reduced noise intensity D/∆U with B = 0.2, A = 0.14,
Ω = 0.029. The circle data points represent measurements on the same electronic circuit
with additive periodic forcing (conventional SR) under similar conditions; the upper full
curve represents the theoretical prediction of Ref 3. The dashed regions of each curve lie
beyond the parameter range where the theory is strictly valid.

For non-equal well depths, it is obvious that Rtr increases sharply with increasing D, i.e.
stochastic resonance occurs. We emphasize that (17) holds for ζ not too large: this is
because the contributions to κ(Ω), Q(0)(Ω) from the interwell transitions are proportional
to exp (−ζ) and, for large ζ, they become small compared to the intrawell contributions.

The theory has been tested by means of an electronic analog experiment, using a
circuit of conventional design(11) to simulate (5). Measurements of the signal/noise ratio
R are shown by the square data points in Fig 4. We note immediately that the existence
of stochastic resonance for the case of periodically modulated noise is confirmed by the
data. We stress here that the rate of increase of R is faster than D, so that it does not
represent merely the proportionality of the modulation to D in Eq (6). The lower solid
line in Fig 4 represents a fit of Eqs (13-17) to the experimental data, demonstrating the
universal character of the shape of the SR.

It is interesting to compare SR with periodically modulated noise with conventional
SR for which f(t) in (5) is replaced by

f̃(t) = ξ(t) + A cos Ωt (18)

Experiment and the LRT prediction for signal/noise in conventional SR are also shown in
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(5) with periodically modulated noise, compared with theory (lower curve), plotted as a
function of the asymmetry parameter B with A =0.15, (D/LlU)B~O=0.303, .0=0.029. The
circle data represent measurements on the same electronic circuit with additive periodic
forcing (conventional SR) under similar conditions; the upper curve represents the theoretical
prediction of ref. 5.
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1.0

Fig. 6. Comparison of (signal/noise) 1/2 = R 1/2 measured as a function of signal amplitude A
for conventional SR (circles) and (x 5) for SR with periodically modulated noise (squares) for
the same values of Band D. Note that the dependence is linear for small signals in both cases,
and that the rise in R with A saturates within the parameter range investigated for the case
of periodically modulated noise.

Figure 5: Measurements (square data points) of the signal/noise ratio R (× 15) for the
system (5) with periodically modulated noise, compared with theory (lower curve), plotted
as a function of the asymmetry parameter B with A = 0.15, (D/∆U)B=0 = 0.303, Ω =
0.029. The circle data represent measurements on the same electronic circuit with additive
periodic forcing (conventional SR) under similar conditions; the upper curve represents
the theoretical prediction of Ref 3.

Fig 4, by the circle data points and upper full curve respectively. The behaviour is seen to
be remarkably similar in the two cases, although the size of the SR effect for periodically
modulated noise tends to be much smaller. The most striking difference between these
two forms of SR relates, however, to the variation of R with the asymmetry parameter,
B, shown in Fig 5. For periodically modulated noise, the signal seems to disappear for
equal well depths (B = 0), and steadily increases as the difference in well depths with
increasing B. For conventional SR, on the other hand, the situation is reversed: it is most
pronounced for equally populated stable states.

These ideas are readily set on a more quantitative basis. The asymmetry of our model
(5) is controlled by B, and when B is small we can write

ζ ≡ |∆U1 −∆U2|/D ' 2|B|/D (19)

Consequently, one would expect from (17), (19) that R ∝ B2 for small B. This is to be
compared with conventional SR, where Rtr decreases(6) with increasing B. For large B,
however, the rise in Rtr may be expected to saturate because the depth of the deeper
well increases until, eventually, the interwell transitions get frozen out. We note that,
for periodic forcing of the system described by (5), (18), R should be larger than for
periodic modulation of the noise for the same dimensionless amplitude A, just because
of the additional asymmetry factor ζ2 in (17). It can be seen from Fig 5 that the above
theory (full curves) is in good agreement with the experiment.

The results in Fig 6 demonstrate that the signal/noise ratio saturates with increasing
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Fig. 5. Measurements (square datil points) of the signal/noise ratio R (x 15) for the system
(5) with periodically modulated noise, compared with theory (lower curve), plotted as a
function of the asymmetry parameter B with A =0.15, (D/LlU)B~O=0.303, .0=0.029. The
circle data represent measurements on the same electronic circuit with additive periodic
forcing (conventional SR) under similar conditions; the upper curve represents the theoretical
prediction of ref. 5.
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1.0

Fig. 6. Comparison of (signal/noise) 1/2 = R 1/2 measured as a function of signal amplitude A
for conventional SR (circles) and (x 5) for SR with periodically modulated noise (squares) for
the same values of Band D. Note that the dependence is linear for small signals in both cases,
and that the rise in R with A saturates within the parameter range investigated for the case
of periodically modulated noise.

Figure 6: Comparison of (signal/noise)
1
2 = R

1
2 measured as a function of signal ampli-

tude A for conventional SR (circles) and (× 5) for SR with periodically modulated noise
(squares) for the same values of B and D. Note that the dependence is linear for small
signals in both cases, and that the rise in R with A saturates within the parameter range
investigated for the case of periodically modulated noise.

amplitude of the periodic modulation. The effect is easily understood, because the am-
plitude of the signal due to interwell transitions in effectively limited to one half of the
distance between the attractors. It is more striking than the corresponding saturation ef-
fect in conventional SR, for which the additive periodic force also distorts the shape of the
potential (cf Ref 6 where nonlinear effects for large amplitude modulation in conventional
SR are considered).

4. STOCHASTIC RESONANCE FOR PERIODIC ATTRACTORS
The third form of non-conventional SR that we treat relates to an entirely different form
of bistability - one where the coexisting attractors are not static, but periodic. We shall
consider the case where the period of vibration for each of the two attractors is the same,
and we will assume that they correspond to two different stable states of forced vibration
induced by an external periodic field driving the system. The underdamped nonlinear
oscillator to be considered provides a well-known simple, but nontrival, example(14) of a
system that behaves in just this way; its bistability under periodic, nearly resonant, driving
has recently been investigated in the context of nonlinear optics(15) and in experiments
on a confined relativistic electron excited by cyclotron resonant radiation(16).

The particular model we treat, the nearly-resonantly-driven, underdamped, single-well
Duffing oscillator(14) with additive noise, which serves as an archetype for the study of
fluctuation phenomena associated with coexisting periodic attractors(17), is described by

q̈ + 2Γq̇ + ω2
0q + γq3 = F cos(ωF t) + f(t) (20)
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Γ, |δω| � ωF , γδω > 0, δω = ωF − ω0

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 4ΓTδ(t− t′)
Note that, in contrast to (2), there is a strong periodic force on the right hand side
of (20) and it is this that can give rise(14) to the pair of periodic attractors. Weak
Gaussian noise of intensity T causes transitions to take place between the attractors; a
statistical distribution over the attractors is formed as a result, with the populations of the
attractors, w1 and w2, differing exponentially strongly from each other except in the close
neighbourhood of the kinetic phase transition(17−21) (KPT), where they become equal.
It is in this parameter range (the KPT range) that a supernarrow spectral peak(17,20)

arises in the SDF. It broadens dramatically with increasing noise intensity T , just like
the zero-frequency spectral peak(22) that is responsible(3,4,6) for conventional SR(1,2) in
systems with static attractors. The value of Q(0)(Ω) for ω close to ωF therefore rises very
rapidly (approximately exponentially) with increasing T . Correspondingly, by analogy
with thermal equilibrium systems (see above, Section 2), the generalised susceptibility
χ(Ω) of the system and hence the response to a trial force at frequency Ω may also be
expected to rise rapidly with T , i.e. SR is to be anticipated. Note that large supernarrow
peaks in the imaginary part of χ(Ω) were predicted theoretically(17) to arise for the case
of (20) within the KPT range and with Ω near ωF . We therefore consider the effect of an
additional extremely weak trial force A cos (Ωt+ ψ), of frequency Ω very close to ωF , on
the right-hand side of (20).

The trial force beats with the main periodic force and thus gives rise to vibrations, not
only at Ω, but also at the combination frequencies |Ω ± ωF |, |Ω ± 2ωF | . . ., the response
being strongest at Ω and the nearest resonant combination |Ω − 2ωF |. The amplitudes
of vibrations at the latter two frequencies can be described by generalised susceptibilities
χ(Ω), X(Ω), so that the trial-force-induced modification of the coordinate q, averaged
over noise, is of the form

δ〈q(t)〉 ' ARe
[
χ(Ω) exp(−iΩt− iψ) +X(Ω) exp[i(2ωF − Ω)t− iψ

]
] (21)

To obtain the susceptibilities, it is convenient to transform to slow variables u, u∗ in the
frame rotating at ωF and to introduce the usual dimensionless parameters(17−20) η, β and α
which characterise, respectively, the frequency detuning, the strength of the main periodic
field and the noise intensity

η = Γ/|δω|, β =
3|γ|F 2

32ω3
F (|δω|)3

, α = 3|γ|T/8ω3
FΓ (22)

In what follows, we will assume δω, γ >0. For small α (weak noise intensity) the trial
force has two main effects. First, it causes small periodic fluctuations about the stable
states. Secondly, by modulating the probability of fluctuational transitions between the
stable states, it causes a periodic modulation of their populations. As a result, each of
the susceptibilities has a structure similar to that found in conventional SR,

χ(Ω) =
∑
j

wjχj(Ω) + χtr(Ω) (23)

X(Ω) =
∑
j

wjXj(Ω) +X tr(Ω)
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Fig. 7. SR in a system (20) with coexisting periodic attractors. The natural log of its
response S to a weak trial force at frequency Q is plotted as a function of noise intensity T:
(a) at the trial frequency Q; (b) at the mirror-reflected frequency (2WF- Q). The data points
are experimental results from the electronic model. The curves represent the theory, incor-
porating measured values of the activation energies Rj• Inset in (a): variation of the response
S, measured at the trial force frequency Q with distance from the kinetic phase transition,
indicated by fl, for fixed noise intensity T=0.05. It takes the form of a cusp (note the log
scale), rounded by noise. ' r

Figure 7: SR in a system (20) with coexisting periodic attractors. The natural log of its
response S to a weak trial force at frequency Ω is plotted as a function of noise intensity
T : (a) at the trial frequency Ω; (b) at the mirror-reflected frequency (2ωF − Ω). The
data points are experimental results from the electronic model. The curves represent the
theory, incorporating measured values of the activation energies Rj. Inset in (a): variation
of the response S, measured at the trial force frequency Ω with distance from the kinetic
phase transition, indicated by β, for fixed noise intensity T = 0.05. It takes the form of
a cusp (note the log scale), rounded by noise.
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where χj, Xj are the partial susceptibilities corresponding to vibrations about the stable

states, χtr, X tr correspond to transitions between them, and their populations in the
absence of the trial force

w1 =
W21

W12 +W21

, w2 =
W12

W12 +W21

(24)

are expressed in terms of the transition probabilities Wij, which are known(17,20) to be of
the activation type ∝ exp(−Rj/α). By linearizing the equations of motion near the stable
states, the intra-attractor susceptibilities are readily shown to be of the form

χj(Ω) =
i

2ωF

Γ− i(Ω− ωF )− i(2|uj|2 − 1)(ωF − ω0)

Γ2ν2j − 2iΓ(Ω− ωF )− (Ω− ωF )2
(25)

Xj(Ω) =
−1

2ωF

u2j(ωF − ω0)

Γ2ν2j − 2iΓ(Ω− ωF )− (Ω− ωF )2

where

ν2j = 1 + η−2(3|uj|2 − 1)(|uj|2 − 1)

and the uj are the values(17−20) of the slow variables (complex dimensionless envelopes)
corresponding to each of the stable states.

For present purposes, however, the most significant effect of the trial field is that it
smoothly raises and lowers the effective barriers for transitions from each of the stable
states, with a period 2π/|Ω − ωF |. Consequently, the activation energies R1, R2 vary
periodically in time; so also do the transition probabilities Wij and, through the balance
equations, the populations of the stable states. The final expressions for the redistribution-
induced additions to the generalised susceptibilities are

chitr(Ω) =
w1w2

2ωF (ωF − ω0)
(u∗1 − u∗2)

µ1 − µ2

α

[
1− i(Ω− ωF )

W12 +W21

]−1
(26)

X tr(Ω) =
u1 − u2
u∗1 − u∗2

χtr(Ω), µj =
√
β

(
∂Rj

∂β

)
The strengths (integrated powers) of the periodic signals at Ω and (2ωF − Ω) are then
given by

S(Ω) =
1

4
A2|χ(Ω)|2 (27)

S(2ωF − Ω) =
1

4
A2|X(Ω)|2

Given the very rapid dependences of W12,W21 on noise intensity near the kinetic phase
transition(20), (26) suggests immediately that there will be a range of noise intensity near
the kinetic phase transition, w1 ' w2, in which S(Ω) and S(2ωF −Ω) should each increase
very rapidly with T, i.e. the system should indeed exhibit SR.

An electronic model has been used to test this theoretical prediction. Details of both
the model and the data-processing techniques will be given elsewhere(23) but, briefly, the
arrangements were as follows. The circuit model of (20), designed according to standard
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practice(11), was driven by Gaussian pseudo-white noise from a feedback shift-register noise
generator and additionally by strong and weak periodic forces from a pair of HP3325 fre-
quency synthesizers. The fluctuating voltage representing q(t) in the circuit was digitized
(12-bit precision) and the SDF of the fluctuations was computed by means of a standard
FFT routine using a Nicolet 1280 data-processor. In terms of scaled units, the circuit
parameters were: 2Γ = 0.0397; ω0 = 1.00; γ = 0.1; ωF = 1.07200; Ω = 1.07097; F =
0.068; A = 0.006. The acquisition process was then repeated, averaging the SDFs until
the statistical quality of the result was considered acceptable (typically including 500 re-
alizations). Because of the (necessarily) very close values of ωF and Ω, a relatively large
block size (8K) was used in order to provide the necessary frequency resolution.

The signal strengths were determined from measurements of the magnitudes of the
delta spikes corresponding to Ω and (2ωF −Ω), and are plotted (data points) as functions
of noise intensity T in Fig 7(a) and (b). The predicted SR effect - strikingly similar
in form to that seen in conventional SR and other forms of non-conventional SR (see
above) - is clearly evident in each case as a rapid rise, followed by a slower fall, in S
with increasing T. A quantitative comparison of these data with the theory is not entirely
straightforward, however, because the activation energies Rj have not yet been computed
within the relevant part of the phase diagram(17,20). However, the values of Rj have been
determined experimentally from transition rates measured as a function of T for the same
model. Use of these values in conjunction with (23)-(27) yields the full curves of Fig 7.
Given the large systematic errors inherent in the measurements - arising e.g. from δω
(20), a small difference between large quantities which, in β (22), is then raised to its
third power - the agreement between theory and experiment can be considered excellent.
The signal/noise ratios have also been measured: they each increase with T by a factor
of about 25 between their minimum and maximum values.

The magnitude of the fluctuation-induced signal at Ω has been measured as a function
of distance, expressed(17) in terms of β, from the kinetic phase transition. The result,
shown in the inset of Fig 7(a), exhibits a fast cusp-like (note the log scale) decrease
of S as β moves away from its critical value, demonstrating that, like the onset of the
supernarrow peak itself(20), HFSR for periodic attractors has the character of a critical
phenomenon. We note that conventional SR is also a KPT phenomenon(5,6) (cf Fig 5),
and it is clear that SR in bistable systems of any kind is quite generally always of this
nature except in those special cases (e.g. Sec 3) where the SR is suppressed by symmetry
arguments for equally populated attractors.

An interesting feature of SR for periodic attractors is that it occurs at a frequency that
is both high and tunable. Rather than being constrained to lie close to zero frequency
on the wing of the zero-frequency spectral peak (as in conventional SR), or close to the
characteristic high frequency of intrawell vibrations (as in SR for monostable systems),
the frequency of the trial force in the present case is constrained to lie close to that of the
strong periodic force in (20); and the latter can, of course, be adjusted within quite wide
limits while still keeping the system within the regime of bistability(17,20).

5. CONCLUSIONS
The prediction and successful demonstration of quite new forms of SR in completely
different classes of systems from that which supports conventional SR shows, first, that
SR is actually a very general phenomenon. In other words, there are many physical
situations where noise can be used to increase the response of a system to periodic driving;
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the effect is not confined to systems with coexisting static stable states, as was thought.
Correspondingly, SR may be more widespread in nature, and potentially of wider relevance
in science and technology, than has hitherto been appreciated. Secondly, these results can
be taken as a vindication of our contention(6) that LRT provides an approach to the SR
problem that is not only valid(3,4), but is also of extremely wide applicability. The results
that are discussed above demonstrate that the LRT treatment of SR possesses strong
predictive power and can therefore provide a useful basis on which to search for yet more
new variants of SR in systems that are far removed from the static double-well potential
in which this remarkable phenomenon was originally discovered.
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