PHYSICAL REVIEW
LETTERS

VOLUME 76 10 JUNE 1996 NMBER 24
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It is shown theoretically and by analog electronic experiment that, in dissipative oscillatory systems
for which the frequency of eigenoscillation displays an extremum as a function of energy, the dynamics
of nonlinear resonance can differ markedly from the conventional case. Transitions between the
conventional and novel types of nonlinear resonance, as parameters vary, correspond to changes in the
topology of basins of attraction. With added noise, they can result in drastic changes in fluctuational
transition rates between small- and large-amplitude regimes. [S0031-9007(96)00357-2]

PACS numbers: 05.40.+j, 03.20.+i, 05.45.+b

Nonlinear oscillators are well known to exhibit a re- tude against the driving frequency. Sometimes, however,
markably rich variety of interesting phenomena (see, e.gthe dynamics of the system is no less important, and this is
[L-3]). A distinct class of oscillatory systems manifest-especially true in those cases where external noise is also
ing unusual phenomena both in their deterministic dypresent. One of the most important ways of characteriz-
namics and in the presence of noise was identified antohg the dynamics is in terms dfasins of attractior{ BAs)
studied recently [4—9]. Their common feature is an ex-of the stable states (attractors) in the phase space [2]. We
tremum in the dependence of a frequency of eigenoscilshow in this Letter that, for the class of systems consid-
lation on its energy. Many real physical systems such aered, the BAs undergo qualitative (topological) changes
SQUIDs [10], relativistic oscillators [11], electrical cir- as parameters vary which, in the presence of noise, may
cuits [1], polymeric molecules, and others (see the discushe expected to result in drastic changes in interattractor
sion in [4-8]) can be described by models of this type fluctuational transition rates.

If a periodic force, or noise and associated dissipation, or First, however, we discuss the problem in the absence
their combination are added, interesting phenomena caof noise, taking as an example a one-dimensional potential
arise. It has been predicted [7] that, if a weak periodicsystem subject to a weak linear friction and a weak
force of frequency close to the extremal eigenfrequencyeriodic force, such that
is applied in the absence of dissipation, a novel type of
nonlinear resonancegero-dispersion nonlinear resonance  ; = p, p = _dUlg) _ Ip + hcodwst). (1)
(ZDNR), can occur. dq '

.Real systems are usually subject to dissipatiqn. Proour goals will be to find period-1 orbits [13] and to
vided that_thls is weak, however, there can S.t'” be Yescribe the transition regimes. With these aims, we
Iarge—amplltudel response (_:orrespondlng a_lppr_OXImater Bansform to the slow variables actioh and phase
the resonant eigenoscillation of the dissipationless sy ifference ¢ — ¢ — w;1 between the force and the

Fem,_and t_hus the concept'of 'nonlmear resonance [3.1 sponse; we neglect high-frequency oscillatory terms.
is still valid. Often, one is interested only in stable
; . . ) Then (1) can be reduced to
regimes which can be characterized, e.g., by a multivalued ) )
frequency-response curve [1], plotting the response ampli- I = —hg;sin(y) — I'T,
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wherew = w(I) is the eigenfrequency corresponding to 9 2 2
I, andgq, is the first harmonic in the Fourier expansion of 10 < B/ywy <4, 6)

7 with @y = 1,8 = 5/3,y = 1. With these coefficients

_ _ - in (6), there is a minimum iw(I): w,, = 0.805,1,, =

4= qd.v) ZHZOQ"(I)COS(W)' ®) 0187, 0! = dwl)/d2 = 105, g = qi(l) =
) ] o ] 0.325. Figure 2 shows the bifurcation diagram in the

The period-1 orbits are located by finding the stationanyane of the driving force parameters fbr= 0.011. Its
solutions of (2) with nonzero action. These can be of tWostycture is typical of that expected for any system with

types, an extremum in eigenfrequency as a function of energy
dq = —arcsiT Iy /hq (I}, (or action). The theoretical lines were obtained from
. ) the condition that curves corresponding to the left- and
o = arcsiql'ly/hqi(Is)} — (4)  right-hand sides of (5) touch rather than cross each other

(cf. Fig. 1); they are in good agreement with the analog
L7172 electronic measurements (data points) based on the use

dg\(Is)| | _ < I'ls ) (5) ©f a standard technique [15] to model (1) and (6) which

dl hqg1(Ig) represent the first experimental observations of ZDNR.

in which the plus and minus refer to the upper and IowerVW[hln the region bounded by the full lines (exceysiry

equations of (4), respectively. Equation (5) can be soIveglose to cusps O.f full lines), point S1 in Fig. 1 is well
o . Separated in action fron$2/S3. The response corre-
explicitly for very small z, or numerically for larger

(Fig. 1) sponding t0S2/S3 is always strongly nonlinear. The
Lc;okihg at Fig. 1 one can easily understand that, jus esponse corresponding to S1 is linear in the region far

) A . elow the upper full line. It starts to be nonlinear when

as in the dissipationless case [7], there will be a range : P
X . Closer to the line, but even then it is still significantly

of w; for which the extremum of the full line comes
above the abscisséw = wy) line but still intersects
the upper dotted line neaf,; i.e., a large amplitude ' ; T ; T ; ' T
response can exist even &, is beyond the spectrum @ 007
of eigenfrequencies.

For further analysis, we turn to an archetypal example 1 @
[5] of a potential whose dependence of eigenfrequency ol

wherel, satisfies the equation

w(ly) — wyp = *h

energy possesses an extremum [14], —E
\E 1.20
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FIG. 2. The bifurcation diagram in the plane of the driving
force parameters for (1) and (6) withy =y = 1.0,8 =
5/3,T = 0.011 (the normalization of the vertical axis is
qim/T1, = 159.0). Full lines bound the region within which
both the linear (S1) and one or both of nonlinear (S2,S3)
responses can exist: The upper line (theory) and triangles
(analog electronic simulation) mark the boundary of linear
0 I response, and the lower line and squares mark that for the
nonlinear responses. Dashed lines bound the region where
FIG. 1. Typical dependence ab — w; on I for a system both nonlinear responses (S2,S3) coexist: The upper dashed
with a minimum in o(E) (full line), and solutions of (5) line (theory) and circles (simulation) mark the boundary for
for stationary actions. The dotted line representsqgi[1 — the lower action attractor (S2), and the lower dashed line and
(T'1/hqy)?]"2. The intersections corresponding to stable pointsdiamonds mark that for the larger action attractor (S3). The
(attractors) and unstable ones (saddles) are labeled S1-S3 acmiculated ZDNR-NR transition is shown by the dotted line.
U1 and U2, respectively. The inset provides an enlarged plot of the region near the cusp.
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smaller thanS2/S3; in order to distinguish S1 from
S2/S3, we shall refer to it as “linear” within the whole (a)
region bounded by the full lines. '
The evolution of the phase space with increasing
calculated for fixedh, is shown in Fig. 3. One can
see a distinct difference in the structure of the BAs
of the nonlinear responses at differeng. At smaller
wy [Figs. 3(a) and 3(b)], the phase difference between
attractor and saddle [16] for each BA is negligible,
whereas for largew, [Figs. 3(c)—3(e)] it is of the same
order as the characteristic width of the BA. This holds

true throughout the whole region enclosed by the full lines 0.8
in Fig. 2 (exceptvery close to bifurcation lines), the two

types of behavior being separated by the dotted line. In 0.4
analogy with the dissipationless case [7], the parameter

ranges to the left and right of the dotted line can be 0.0

defined as the zero-dispersion (ZDNR) and conventional
(NR) stages of nonlinear response [and the definition can
be formulated in a similar way for the original system (1)
in terms of a stroboscopic Poincaré section]. .
In the dissipationless case, the transition between the 0.8
ZDNR and NR stages as parameters change occurs
[8] through separatrix reconnectior{17], resulting in
a different topology of separatrices between regions of
trapped and untrapped motion: The separatrices are
homoclinic or heteroclinic for ZDNR or NR, respectively
[7,8]. Inthe presence of dissipation, the transition occurs
typically via asaddle connectiof2] as can be seen from
Figs. 3(b) and 3(c) [18]. It also results in a change
of topology of the BAs of the nonlinear responses.

Just before the bifurcation, at the ZDNR stage, the 0.8
basin corresponding to the larger action attractor (S3)
encompasses the other one (S2), whereas the opposite 0.4
applies for the NR stage just after the bifurcation, see
Figs. 3(b) and 3(c). Beyond the close vicinity of the cusp, 0.0

the frequencyw}(e") of the ZDNR-NR transition can be
shown to satisfy an asymptotié — 0) formula which is
valid for the general case rather than for (6) only:

(er) 0.8
wi” = on + sgiw)) (whl/2)"
3 .
X (3 hqinl(l = 7*)'* = nl7/2 - arcsinn)]}) ,2/3 0.4
(7)
Il 0.07 =
n=——"<I1, -10
hq1m
2/3 (tr) 1/2
r Wy Oy . . - .
T < — < 1. FIG. 3. Evolution with driving frequencyw, of the basins
lw 112, wnly, of attraction (BAs) of nonlinear responses in2a band of

the phase space of the slow variablésotdinate,y abscissa)

for the same system as in Fig. 2 but averaged over the high-
It can be found more exactly by numerical solution of (2)frequency oscillations [Egs. (2) and (3)] far = 0.0143 and
(Fig. 2). (@) w; = 0.8, (b) 0.83, (c) 0.85, (d) 0.88, and (e) 0.92. The

L . . . boundaries of the BAs of S2 (S3) and trajectories emerging

) It Is interesting to nOte_ one m_ore, no_ntrIVIaI bifurca- from the saddles are drawn by full (dashed) lines. One can
tion that has no analog in the dissipationless case: thgbtain the complete phase space by repeating the above picture
alternation between the BA of one attractor, either encomwith a period2 in .
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passing the other one or simply moving around itand can also result in a rather unusual dependence of the

[Figs. 3(c)—3(e)], as the frequency is changed (for smalleintensity of the transition peak on the frequency of the

I', a similar alternation takes place at the ZDNR stagalriving force: Quite unlike the case of the Duffing oscil-

also). These bifurcations are also of the saddle connectidator [21], it can have a two-humped structure.

type, and, together with the ZDNR-NR transition, they are Zero-dispersion nonlinear resonance and related phe-

characteristic of any oscillatory system whose variatiomomena offer a rich manifold of interesting problems,

of eigenfrequency with energy possesses an extremuronly a few of which have been identified or discussed

The ZDNR-NR and encompassing or moving aroundabove. Others that would be likely to repay early inves-

bifurcations are of particular interest because they may bggation are associated with the dynamical chaos that is to

expected to give rise to unusual fluctuational phenomenbe anticipated for larger amplitudes of the driving force,

(see below). Yet other global bifurcations are alsoand its interaction with external noise.

possible; they will be considered in detail elsewhere. We are grateful to N.B. Abraham, M. |. Dykman, and
In the presence of noise, previously stable states beA.B. Neiman for useful discussions, to B.V. Chirikov

come metastable. Escape from an attractor takes pla@d G.M. Zaslavsky for illuminating correspondence,

with overwhelming probability via one of the saddle and to G.R. Pickett for timely assistance. Two of us

points of its BA (see, e.g., [19,20]). Thus the transition(D.G.L. and S.M.S.) would like to acknowledge the

of a saddle point from the BA of one nonlinear responsehospitality of Lancaster University. The work was sup-

to the other at the ZDNR-NR bifurcation would be ex- ported by the Engineering and Physical Sciences Research

pected to result in a jump-wise change in the probabilitiesCouncil (UK), the Royal Society of London, the British

of fluctuational transitions between the nonlinear and lin-Council, and the International Science Foundation (Grants

ear responses [in Figs. 3(b) and 3(c), the trajectory outgaNo. UBY0/200 and No. N620/300).

ing to the right from the saddle point with a lower action

goes to the attractor corresponding to linear response]:

For ZDNR, just before the bifurcation, there are no di-

rect transitions between attractors S1 and S2, whereas for

NR, just after the bifurcation, there are no direct transi- *Permanent address: VNIIMS, Andreevskaya nab 2,

tions between S1 and S3. A similar effect should oc- ~ Moscow 117965, Russia. . :

cur at global bifurcations of the “encompassing or moving " ermanent address: Institute of Semiconductor Physics,

- . Ukrainian Academy of Sciences, Kiev, Ukraine.
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