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The effect of fluctuations on the nonlinear response of an underdamped oscillator to an external periodic
field at a subharmonic frequency has been investigated theoretically, numerically, and with an analog elec-
tronic circuit model. The system studied has often been analyzed in nonlinear optics in the context of two-
photon absorption and second-harmonic generation. We consider its nosiieearoscopylts resonant non-
linear response is described over a broad range of the fluctuation intensities. It is shown that the fluctuation
intensity can be used to “tune” the oscillator so as to maximize the nonlinear response. The dependence of the
absorption cross section on the fluctuation intensity displays a clearly resolved maximum. If the eigenfre-
guency of the oscillator is a nonmonotonic function of its energy, the signal at the second harmonic displays
a resonant peak at one of two different frequencies, depending on the noise intensity.
[S1063-651X96)10308-1
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[. INTRODUCTION used to “tune” the system to a resonance with the frequency
of the external force or its overtones. On the other hand, with
The resonant response of a nonlinear system to periodincreasing fluctuation intensity the resonance itself is
forcing at a subharmonic frequency is studied in several arsmeared out. The latter occurs when the frequency smearing
eas of physics. For a nonlinear oscillator this problem has$w due to the fluctuations exceeds the uncertainty in the
been investigated in detail in mechanics. A nonlinear  vibration frequency due to finite damping. For small fluctua-
oscillator also constitutes a simple and useful model thation intensity the frequency smearing is given by
enables the susceptibility to be calculated, and is therefore ofw=|w'(0)|(E), wherew' (E)=dw(E)/dE.
major interest for nonlinear optid®]. The susceptibility is The effects of classical and quantum fluctuations on the
often analyzed with account taken of damping of the osciHinear response of a nonlinear oscillator have been investi-
lator, but with a neglect of fluctuations. However, the cou-gated in considerable detditf. [3—13]; see alsq14] for
pling to a thermal bath that gives rise to the damping musteviews. The problem is immediately related to the infrared
also result in the occurrence of fluctuations. Additionally, absorption spectra of localized vibrations in solid$], and
fluctuations may result from an external noise driving thealso to problems of acoustics and of engineering structures.
oscillator. An advantageous feature of using a fluctuating oscillator as a
The role of fluctuations is particularly important for the model is that, in case of an underdamped oscillator, it is
resonant response of amderdampeascillator. The eigen- asymptotically exactly solvable: although the nonlinearity of
frequency of the vibrations of a nonlinear oscilla®@(E) the oscillator is by no means small, a theoretical analysis of
depends on the oscillator energy(or, equivalently, on the the resonant response can be fulfilled in closed fofi{see
vibration amplitude For a fluctuating oscillator the energy also[10,13). The nonlinear response of the oscillator to a
varies in time, creating a distribution ovEr in the case of nearly resonant field has also been analyzed in considerable
thermal fluctuations arising from a bath at temperaflire detail, and the results discussed in the context of optical bi-
this distribution is of the formz ~lexp(—E/T). As a result, stability and phase conjugatidié], transmission of high-
the eigenfrequency(E) fluctuates as well, with two impor- Q optical and microwave cavitigd 7], cyclotron resonance
tant consequence§) a corresponding frequency distribution of an electron in a Penning trdfi8], and underdamped vi-
is formed, i.e., the oscillator frequency is smeared; @nd brations of ions trapped in a potential well below the surface
the mean frequencyw(E)) differs from the frequency of of liquid helium[19].
small-amplitude vibrations(0) (where we measure the en-  In the present paper we investigate the effect of fluctua-
ergy relative to its value at the equilibrium position of the tions in an underdamped oscillator on its resonant nonlinear
oscillatop. Therefore, on the one hand, fluctuations may beresponse to driving at subharmonidrequency. We concen-
trate on the case of driving at a frequenfy close to 3
w(E) for energieskE that lie within the width of the distri-
“Permanent address: Research Institute for Metrological Servichution overE. In this case, the nonlinear resonant absorp-
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second-harmonic generatiociSHG). TPA and SHG have 1.6
been recently recognized as particularly advantageous for in-
vestigating systems with broken inversion symmetry, like in-
terfaces between isotropic medlejuid-vapor interface, ejc
[20-22. Often the immediate object of investigation is non-
linear vibrations at the interfacéas in references cited
above, and in many cases such vibrations are underdamped.
Understanding the spectroscopy of TPA and SHG, and the
effects of fluctuations on the corresponding spectra, are ex-
tremely important in this context.

Based on the arguments given above one would expect
that, in the appropriate range 6, it would be possible to
increase the nonlinear response by increasing the fluctuation . | . | .
intensity and thus “tuning” the oscillator to resonance, but 0.0 0.4 0.8 1.2
that, with further increase in the fluctuation intensity, the E
response would decrease because of the broadening of the
resonance due 10 frequency Srr_lear?ng. Sl_JCh a behavior of the FIG. 1. The dependence of the oscillation eigenfrequency
response as a funptlon of noise intensity has.recently at&)(E) on the energyE of the oscillator(1), measured from the
tracted much attention in the context of stochastic resonangg,itom of the potential well, for different values of the parameter
[23]. Stochastic resonance is most often considered fof yith y=wy=1. The values of corresponding to the three
bistable systems, but there is no reasopriori to suppose  cyrves, from bottom to top, were 1.666, 1.000, and 0.300. All quan-
that it need be restricted to such systems. Indeed, a noiS@tes are in dimensionless units.
induced increase in linear response has been demonstrated in
analog experiments for a resonantly driven monostable un-
derdamped oscillatdr24].

If the eigenfrequency of an oscillator is a nonmonotonic
function of its energy, an increase of noise intensity may (f(1))=0,
result in a narrowing of the peak of the resonant absorption ) o
[12] and the occurrence, for very small damping and within ave assume the ozscnlatzor to be monostable, which is the case
certain range of noise intensities, of an additional peak at therovided y>0, B°<4wgy. The energy dependence of the
extremal frequencyw, [25]. One would expect a similar eigenfrequency of the vibrations(E) (the dispersion curye
peak to occur in the spectrum of nonlinear absorption. 1S shown fory=wo=1 in Fig. 1. For 8%/ yw§>9/10 the

In Sec. Il we discuss the model and provide an analyticafunction o(E) is nonmonotonic, with a minimum at a fre-
theory of the resonant nonlinear response of an underdampétiencyw.. We further assume that the friction coefficient
nonlinear oscillator. The theory is valid for weak noise; itisI" is small compared both to the frequency of small-
perturbative in the amplitude of the driving field, but it is amplitude vibrations»y=w(0) and to the frequency detun-
nonperturbative in the oscillator nonlinearity. In Sec. Ill we ing of a nonresonant periodic foréecos(lt,
describe the analog simulator. In Sec. IV we present experi-
mental results and compare them with the theory. Section V I'<w(E), Q, |o(E)-Q],
contains concluding remarks. In Appendix A we analyze the
resonant nonlinear response for noise-induced frequendpr E<T. The characteristic noise intensityin (1) corre-
smearingdw greatly exceeding the oscillator damping. The sponds to temperature if both the noise and the friction force
method of moments for the nonresonant linear response of a 2I'q originate from the coupling of the oscillator to a ther-
nonlinear oscillator in the case of weak noise intensities ignal bath.
described in Appendix B. We note that many of the results discussed below will

actually apply to a much broader class of systems than
white-noise-driven systems with a friction force proportional

q+2I'q+ w3q+ Bg?+ yq®=Fcodt+ f(t),

(FOF(t))=4TTS(t—t"). (1)

Il. THEORY OF AN UNDERDAMPED OSCILLATOR to the instantaneous value of the velocity. What is important
DRIVEN AT A SUBHARMONIC FREQUENCY is that the effects of retardation on the slowly varyiog a
time scale~wgl) amplitude and phase of the oscillator be
A. Model small[14].

We will analyze fluctuation effects for the simplest model In the analysis of the resonant nonlinear response, we
that possesses a resonant second-order susceptibility: a n@ssume that the doubled frequency of the forde, B close
centrosymmetric Duffing oscillator. This is the model that, into the band of frequencies of thermally excited vibrations of
the absence of fluctuations, has traditionally been considergtie oscillator,
in connection with a variety of problems in nonlinear optics
[2]. We will limit ourselves to a phenomenological analysis |20 — w(E)|<w(E) for E<T. 2
in which fluctuations are induced by an externally applied
noisef(t). The noise will be assumed to be white and Gauss- Theoretical formulations need to be somewhat different
ian. for different ranges of noise intensify. We shall concen-

The equation of motion of the oscillator is of the form  trate in this section on the case wha&rés moderately small,
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so that the nonlinear termis3g3+ 2vyq* in the potential en- The equation of motion for the vibrations at frequency
ergy of the oscillator are small compared to the harmoni@(} in the range of moderately small noise intensiti@scan
term %wng: be obtained by seeking the solution of Ed) in the form
q(t)=~q®(t)+q@(t). The equation forq®(t) may be
T<wgly, wg/p® (3 written as

The major effect of noise in rang®) is smearing of the . .
frequency of the oscillator. Although the frequency strag- G®+2rq'?+wgq'?+ BLa?17+ g ¥
gling dw remains relatively smalldo=|w(T)— w|<wy, F2
and so also are the amplitudes of noise-induced vibrations at ~f(t)— ———753B[cog2Qt+ 2¢M)+1].
the overtones of the eigenfrequencieéE), the straggling 2(wp— Q%)

Sdw may substantially exceed the frequency uncertainty (6)
due to damping. Therefore, in the sense that the @didl

may still be large, the nonlinearity and fluctuations cannot b&y/e have neglected terms of higher orderfinas well as
assumed to be small. Consequently, the resonant non””e?érmsocﬁFq(z), YF[q®@7]2, yF2q@. These terms contain, in
response is qualitatively different from that in the neglect of, yition toF, a small[in range(3)] factor proportional to the
fluctuational smearing of the frequency. The case where thgmplitude of fluctuational vibrationgThe term = yF2q®®
noise intensity is not limited by3) is considered in Appen- describes the frequency shiftyF2, which is similar to the

A 4, 62
dix A; in the rangeT=wg/y,wo/ A%, one may neglect fre-  goq,ency shift in the dynamical Stark effect. It could easily
quency smearing due to dissipation, which in many respeci§e incorporated; but we have chosen not to do so because it

simplifies the problem. may be assumed small compared to the frequency smearing
N due to nonlinearity and dampingThe nonresonant time-
B. Quasilinear response independent term on the right-hand sidg@fis retained for

For small amplitudes of the driving force and for moder-the sake of clarity; it gives rise to a shift of the equilibrium
ately weak noise intensitie®), the analysis of the resonant POsition of the nonlinear oscillator due to periodic driving.
nonlinear response of the oscillator may be done in two steps Equation(6) is the equation of motion of a nearly reso-
familiar from [1]: (i) one first ignores the oscillator nonlin- nantly driven nonlinear oscillator with coordinaé” . For
earity, so that a sinusoidal external force results in nonresesmallF the response of the oscillator to the fore@F? can
nant vibrations at the force frequen€y (the perturbation be described by linear response the[®g]:
parameter is the force amplituéie weighted with nonlinear-

ity constantg, and(ii) in the next iteration one substitutes the BF?

corresponding oscillating term in the oscillator coordinate <q(2)>“—m

into the nonlinear terms in the restoring force of the oscilla- Lo

tor. These terms then oscillate at the overtoneQ pand act BF? —2i(at+ o)

as an effective force that drives the oscillator. The resonant - W[X(ZQ)G

linear response to this force may then be analyzed. In this 0

way, for an oscillator with a non-weak nonlinearity, a com- +x*(2Q)e? (o], )

plicated problem of resonant nonlinear response may be re-

duced to the already solved problem of resonant linear re- . - .
sponse. y P where x(2Q)) is the susceptibility of the oscillator at(R

For moderately small noise intensitié3) and to lowest In the frequency rang¢2) the susceptibilityx(2(Q2) is

order in the force amplitud€&, nonresonantorced vibra- ~ esonantly 2Iargze. In 71the absence  of noise,
tions may be described in the harmonic approximation, ~ X(2)~(4Q°—wg—4iI'Q) ~. The imaginary part of the
susceptibilityy”(2Q) for a finite noise intensitybut limited

" F @ by (3)], and for|2Q — wo| <, was evaluated in our former
9 (D)~ —7— 7 CoLQt+ ), work [7]. A complete analysis of the susceptibility
0 x(2M)=x"(2Q) +ix"(2Q) is presented in Sec. Il C.
¢(1)~—2FQ/(wS—QZ). (4) In terms of nonlinear optics, the onset of vibrations at

twice the frequency of the driving force corresponds to

The phase shiftp® allows for a weak linear absorption by Second-harmonic generatid8HG). Equation(7) fully de-
the oscillator. The absorption coefficietis defined as the Scribes resonant SHG in an underdamped fluctuating nonlin-

ratio of the average energy absorbed per unit timE%oln  €ar oscillator.

the limit of small fieldk= %), wherex") is the coefficient Equation(7) also makes it possible to analyze resonant
of linear nonresonant absorption and, with account taken ofPsorption at frequency (2, i.e., two-photon absorption
(), (TPA), in the language of nonlinear optics. To do this one
has to iterate Eq(1) once more and find the term(®)(t)
k=F~%(q(t)Fcodt), k—«kP for F—O0, which is of third order inF. This term should then be sub-
stituted into Eq.(5) for the absorption coefficienk. The
K(1)=F92/(w§—02)2 (5) resulting overall expression fot allows both for nonreso-

nant linear(in F) absorption due to oscillator damping, and
(the overbar denotes averaging over the periad(2). for a resonant nonlinegin F) absorption. It takes the form
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k~kD+ k3, 1500

Kl

2) Q ﬁF 2 ”
:4(0)2_92)2 wZ_QZ X (29)1 (8)
° ° 1000

wherex™®) and«(® are the coefficients of linear and nonlin-
ear absorption, respectively. The coefficieddt) for small
noise intensities is given b{p).

It follows from (8) that, in rang€&3), TPA as a function of
frequency and temperature should display a behavior similar
to that displayed by linear absorption of a nonlinear oscilla-
tor, which is described by the imaginary part of the suscep-
tibility x”(2Q)). We note that the proportionality factor be- 0
tween «® and y"(2Q) is the squared coefficient of the
cubic nonlinearityB, in agreement with the well-known fact
that TPA occurs in honcentrosymmetric systems.

x()l®

500

FIG. 2. Dependence of the susceptibility on noise intensity, for
B=1.666. The curves represent the calculdtetlo)|? at the sec-
C. Resonant susceptibility ond harmonic =2() of the field frequency). The frequencies
were (a) Q/wg= 0.490, (b) 0.483, (c) 0.463, (d) 0.440, and(e)

Equations(7) and (8) relate the intensity of the second 0.415.

harmonic signalSHS and the coefficient of nonlinear ab-
sorption x(? to the resonanlinear susceptibility of the os-
cillator y(2Q)) at frequency 2). Theoretical and experimen-
tal results on the evolution with noise intensity of the system(see Sec. Il
imaginary part of the susceptibility’(w) have clearly dem- i P
onsgate(y?lO—lZ,Z}that, ir?an L%,d(eréamped syst)ém, even ILis clear from F|gs; 2 and”4 that, both f@r? wo and
comparatively small changes in the noise intensity carf®™@es the functionsy’(w), x"(w), a”d|X(‘_")|H display
strongly affect linear resonant absorption. nonmonotonic dependences @n The peaks iny"(w) and
Complete analysis of the susceptibility is facilitated by thelX(®)|* vs T are most pronounced fas~ w,. This is due to
fact that, in the absence of the periodic force, the systenf’€ fact that noise-induced “tuning” of an underdamped os-
investigated is effectively in thermal equilibrium at tempera-Cillator to a given frequency is most effective for small
ture T which is characterized by the noise intensity. For therWhere the fluctuational smearingw of the oscillator fre-
mal equilibrium systems the real and imaginary parts of théluéncy is small and the oscillator may display a strongly
susceptibility y(w) are related to each other via Kramers- '€Sonant response. o ,
Kronig relations, and both can be expressed in terms of the 1he Spectral shape and position of the maximum of the

spectral density of fluctuations of the oscilla@®)(w) [26]: ~ narrow peak of the functioy”(w), and their variation with
temperature fosw < I', have been described [@]. With

T increasing noise intensity the position of the maximusy,
X' ()= TQ(O)(‘”)’ shifts in the direction determined by the sign of

dw(E)/dE(E—0), and the peak is broadened and becomes
non-Lorentzian. As a result the absorption can decrease or

algorithm of[12] and relationg9), and the parameters were
taken to be the same as in the experimentally investigated

, 2 e ) w%
X (w)=$ PJo dw,Q (wl)Hv 9

2000

1=
QO (w)= Eﬁwdt &v(q(t)q(0)),
1500

where P implies the Cauchy principal value andis the
temperature.

The quantityQ(®)(w) for an underdamped nonlinear os-
cillator has been investigated analytically in considerable de-
tail for the range of moderately small noise intensit{8s 500
[7], and numerically and experimentally in the general case
[12].

In Figs. 2 and 3 we show theoretical curves for the

1000

x()l®

squared absolute value of the susceptibilig(w)|? as a 0.7

function of the noise intensity for five values ofw=2Q, w

and as a function ob for three values oT, respectively. In

Fig. 4 we show the dependence orof the real and imagi- FIG. 3. Frequency dependence| g w)|? for different values of

nary parts ofy(w). All curves have been obtained using the the noise intensity(a) T= 0.0065,(b) 0.035, andc) 0.080.
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f/(t")

Fa®)

X' (@), x"()

FIG. 4. Dependence on noise intensityf the susceptibility at . L
the second harmonic«(=2Q) for two different frequencies: FIG. 5. Block diagram of the electronic circuit used to model
Q/wy= 0.483(solid curve$ and 0.415(dotted curves The real the system(1) in the experiments. The component values were cho-

partsy’ are shown byb) and(d), and the imaginary partg’ by (a) sen such thay=1.00,8=1.67,wy=1.00, and the damping constant
and(c). I'=0.0061.

increasgwithin a limited range of noise intensitiedepend- ~ Of the phase shift is that it can be easily determined by ex-
ing on the frequency of the external field. periment. At the same time, it is given just by the negative of
It is seen from Fig. 3 that, for higheF, the peak of the imaginary part of the logarithm ofy, and its

|x(w)|? at w~w, is broadened, and for yet high@rthe ~ T-dependent component is determined by the imaginary part
dominating peak ifx(w)|? is the one at, which is due to  Of the correction=T in (10).
the singularity in the density of vibrational states of the os-
cillator [12,25. 11l. ANALOG ELECTRONIC MODEL

AND NUMERICAL ALGORITHMS

D. Nonresonant suscepiibilities The effects of noise on resonant SHG and TPA have been

Although the nonlinear absorption that we investigate isinvestigated in analog electronic experiments. The analog
resonant, it is comparatively small for small amplitudes ofmodel of (1) was of a standard design, constructed on the
the driving forceF. Therefore, in the analysis of the effect of basis of the principles described in detail elsewhigd€],
noise on the totallinear + nonlineay absorption of the os- using operational amplifiers, multipliers, and other standard
cillator, it is necessary to take into account not only noise-analog components to perform the required mathematical op-
induced changes in nonlinear absorption, but also noisesrations of addition, subtraction, multiplication, division, in-
induced corrections to linear nonresonant absorption. Thedegration, etc. A block diagram of the circuit is shown in Fig.
corrections are obtained in Appendix B by solving the5. HereF(t')=F'cod)’t’ and f'(t'), are respectively, a
Fokker-Plank equation. Alternatively, they can be found by asignal and an external noise applied to an underdamped non-
perturbation method applied directly to the Langevin equalinear oscillator.F’ is the amplitude of the signal in volts,

tion (1). f’(t") is the value of the noise voltage applied to the circuit,
With account taken of corrections linearT the suscep- and{)’ andt’ are the real frequency and time.
tibility x(Q) is of the form The differential equation for the voltagein the circuit is
) of the form
0 yT BT
X=X 1+A—7 +B— |, d’x R, dx
0 0 R3C1RsCy 75 + = RsCp — + X+ R(1/Rg+ 1/R;)X?
dt R, dt
A 3 1+i 2ra ) R R
_ | '
o— Q7 o— 07 +x3+ —2F'cod)'t + =2 f'(t')
R, Ry
2(6w5—0?) —0, (11)

B= (402—02)(02—02)
where we have chosen
4iT 8ws+18wi02— 120304+ 08
O T @m0 wt-0z2 - 10 R=Rg=10 k2, R,=R,=100 k0,

It is clear from Eqs(4) and(5) that, for small absorption, the R;=11 kQ, Rs=22 k), R,=1.1MQ,
absorption coefficient is proportional to the phase shift be-
tween the signadj(t) and the force. An advantageous feature R;,=15 k), C;=C,=20nF.
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On introducing the time constant = R;C,=2R3C; and

damping constant'’ = R3/R,, Eq. (11) reduces to
72X+ 2T 7' X+ 2(wdx+ Bx2+ yx3)

=—0.2F"cod)'t' —0.22'(t"), (12

where parameters are readily related to those in mdgdly
means of the scaling relations

, t=—, Q=Q'7, I'=s—

T J2'

y=1.0, B=1.666, wo=1.0, F=-0.11F’,

ol

f(t)=—0.11f"(t").

2371

longer total integration time was used: note that the integra-
tion time step itself places a lower limit on the precision of
the phase measuremeritee aboveof ~2x10 4 rad. The
number of averages included for each value of noise inten-
sity was typically 840 000 periods of the periodic force. The
quoted error on the phase lag from the digital simulations
was estimated by means of & likelihood approach: the
840 000 averages were divided into 42 statistically indepen-
dent samples(of 20 000 averages eaghthe “average”
phase lag was determined for each sample, and, from these
42 independent measurements of the phase ladydha fide
phase lag corresponding to the given noise intensity and its
error (taken as one standard deviation in t® was com-
puted.

For the case when periodic forcing was absent, given that
the dampingl’ was typically very small so that the energy

The nominal value of" was 0.0071. However, for such E (see introductionwas changing slowly, it was also pos-
small damping, the actual value usually differs from themble_to integrate the equations (_)f motion using a quasisym-
nominal one due to the effects of stray capacitances and rél€ctic scheme: some symplectic schemes are discussed in
sistances in the circuit. In the present case, the actual valub30l- For the present case, the scheme used reads

measured experimentally by two independent metHa8$

was found to bd"=0.0061. For the chosen circuit param-
eters the variation of the oscillator’s eigenfrequency with en-

ergy had a minimum &&,,=0.1635, as shown in Fig. @he
lowest curve.

The circuit model was driven by noise from a feedback
shift-register noise generator and by a sinusoidal periodic

w_o N
q qt+2pta

1
Pen=7pl (1~ TPt hF(Q*) + V4T Thw],

(14

force from a Hewlett-Packard Model 3325B frequency syn-

thesizer. The response of the circuit to the stochastic and
periodic forces was analysed with the aid of a Nicolet 1080

digital data processor.

The intensity of the second harmonic of the signal was o
measured directly from the ensemble-averaged signal in th¥1€réda=a(t=aj, pa

circuit (x(t)) at frequency 2). It follows from (7) that this

intensity divided byB?F*/16(w3— Q?)* gives us the value

of the susceptibility |x(2Q)|2, provided F is small
(F=0.0176 in our experiment

The two-photon absorption coefficient was determine
from measurements of the phase shiftrelative to the driv-

ing force of the ensemble-averaged signai(t)) at fre-

quency{}. In the range of moderately weak noise intensities
(3) the expression for the phase shift can be obtained in a
way similar to that used to derive E(B) for the absorption
coefficient. In the limit of weak absorption the phase shift is

given by a sum of the contributions™ and ¢(® that cor-
respond, respectively, to linear absorption and to TPA:

1 IBZFZ

~ ) ) )L A /]
é d’(l +¢(2’ ¢(2 5 (wg_ﬂz)sx (2Q),

13

where the phase shit*) is given by Eq.(4) with the cor-
rection determined by Eq10).

h
Ge+n=0"+ 5 Prsn-

=q(t=a), etc., h is the integration
time stepF(q) is the deterministic force, and is a random
Gaussian variable with zero average and a standard deviation
of unity.

The spectral densities obtained using the algorithm of Eq.
14) coincided with those obtained using the algorithm of
29].

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Second harmonic generation

Measurements of the intensity of the signal at the second
harmonic of the forcing frequency are shown for two fre-
guencies by the data points in Figgapand Gb). In the
range of force amplitudes investigated, the intensity of the
second-harmonic signaBHS was proportional td=*, and
the data in Fig. 6 have been appropriately scaled for com-
parison with the relevant theoretical susceptibility curves
from Fig 2. Also included in Fig. 6 are theoretical values of
| x| from (9) derived from power spectra obtained via digital
simulations of the dynamics. It is evident that all the results

The digital simulation was based on the algorithm de-agree well within experimental errofDirect measurements
scribed in[29]. In all cases we used an integration time stepof the linear response to a weak force at theonantfre-
of order 10 4. For measurement of the spectral densities ofquency Q=w, were also found to be in good agreement
fluctuations, we averaged typically over 20 000 periods ofwith theory) It is clear that the dependence of the SHS in-
the periodic forcing, or for an equivalent total time in the tensity on the noise intensity is strongly nonmonotonic, the

absence of the periodic force.

peak of the SHS intensity being particularly tall and narrow

For measurement of the phase lag as a function of noistr Q~ jw,. The noise-induced enhancement, defined as the
intensity in the presence of the periodic forcing, a muchratio of the maximal intensity of the signal at a given fre-
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: additional peak as a function &f. This occurs when the
0o i frequency of the forc&)~ w¢ /2, where w,=w(E,) is the
800~ 9o (a) extremal value of the frequenay(E),

o' (Ex)=0, o'(E)=dw(E)/dE.

The nonmonotonicity ofo(E) gives rise to a singularity in
the density of vibrational stat¢slw(E)/dE] 2. In turn, this
singularity gives rise to noise-induced narrowing of the peak
of x"(w) with increasing noise intensifyL2], and the occur-
rence of a characteristic zero-dispersion peakyTiw) at
we [25] for extremely low damping.

One would expect that the singularity @t might affect

the resonant nonlinear response o+ 3 w,, and for noise
intensitiesT of the order ofE,. It is this effect that is seen in
Figs. 2 and 6.

The sharp noise-induced increase and subsequent de-
crease of the response with increasing noise intensity seen in
Fig. 2 may be viewed as a manifestation of stochastic reso-
nance. Two distinctive features should be emphasized in this
context: (i) the system we have investigatednmnostable
and the increase of the response is not related to a noise-
induced increase of the rate of switching between coexisting
stable states of a bistable system as is often investigated in
stochastic resonan¢@3]; and(ii) in contrast tq 24] we ob-
serve the effect of the noise-induced increase nbalinear
response, whereas the nonresoriamar response changes
only slightly with varying noise intensity. One may say that,
within a certain range of noise intensities, noise may make a
system “more nonlinear,” but eventually with further in-
crease ofT the nonlinearity is suppress¢gi)].

FIG. 6. Comparison of signal intensities measured for the ana-
log electronic model with susceptibilities calculated fré@, as a
function of noise intensityl in units of g/ y. The measured values
(circles and squarghave been scaled h§?F*/16(w2— Q?)* with As explained above in Sec. lll, a convenient way to in-
B=1.666 andF=1.76x 10 2 to facilitate direct comparison with vestigate the absorption of a periodic driving foFegodt in
the relevant theoretical curves from Fig. 2. The pluses also reprean analog experiment is to determine the phase shift between
sent calculated susceptibilities, but using(# spectral densities the ensemble-averaged sigia(t)) at frequency() and the
derived from digital simulations of the dynamics. The frequenciesforce itself. It follows from the theorysee Egs(8) and(13)]
used werga) (/wo= 0.483 and(b) 0.415. that the absorption coefficient and the phase shift are each

made up of a sum of two components, representing linear
guency to the intensity fof =0, was found to exceed a and nonlinear contributions. In Figs(&J and 8a) we com-
factor of 4.5 under the experimental conditions. pare the measured and calculated dependences of the total

To understand the temperature dependence of the SHS,Rfase shifip on the noise intensity. It is clear thpp| dis-
is illuminating to consider how resonance curves in the freflays a peak as a function @ that for 2~ 3w, this peak is
quency domain evolve with temperature: see Fig. 3. As excomparatively narrow and sharp, and that for ;e the
plained above, the increase of the SHS is due to the fact tha@eak, although well-resolved, is much broader. The theoreti-
by increasingT, the system can be tuned to resonance withcal curves(solid lineg in Figs. 1a) and 8a) were calculated
the frequency 2. The left-hand peaks in Fig. 2 occur for using Eq.(13) with ¢(*) given by (4) with the T-dependent
values of the noise intensity given, in order of magnitude, bycorrection—Im[In ()] from (10), and¢? given by (13)

T~ (20— wg)/w’(0). With further increase inT, (i) the  with x(2Q) from (9). To evaluate the spectral density of
maximum in the frequency response shifts away frofy; 2 fluctuations in(9), we used the numerical algorithm @f2].

and (i) the half-width of the resonant peak in the suscepti- We also carried out an additional numerical experiment in
bility as a function of frequency increasésom the value which the phase lag at the frequency of the weak periodic
I" which is determined by dissipative spectral broadening foforce was found directly, as described in Sec. lll, and the
low T whereI'>dw, to dw for higher T where so>T).  spectral density of fluctuation®®(w) (in the absence of
Therefore the SHS intensity decreases, and the overall dée driving force was obtained by Monte Carlo simulation
pendence of the signal on the noise intensity displays a shagf the dynamics. The resultant values@f)(w) were used
peak. to evaluate the phase shift according to E@®.and (13),

An interesting feature of the SHS intensity is that, for thewith ¢(*) given by — arctany”(Q)/x'(Q). In Figs. 7 and 8
case wherew(E) has a minimum, it may also display an these results are compared with those derived from theory

B. Nonlinear absorption
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FIG. 7. (@) Dependence on noise intensify (in units of FIG. 8. (a) Dependence on noise intensify (in units of
wgly) of the phasep of the response at the frequengy of the wg/y) of the phasep of the response at the frequenfy of the
driving force for Q/wy=0.483 and the reduced field amplitude driving force, for Q/wy=0.415 and the reduced field amplitude
F=1.76x10 2 measured for the analog modeblid circle3. The F=1.76x10 2 (solid squares The results are compared to the
results are compared to the thedsplid line) for ¢ (see text, to the  theory(solid line) for ¢ (see texk, to the values of) obtained from
values of ¢ obtained from computer simulations of the spectral computer simulations of the spectral density of fluctuations
density of fluctuationgcrossey and to direct computer simulations (crossey and to direct computer simulations éffor these param-
of ¢ for these parameterdarg. (b) As in (a), but without direct  eters(barg. (b) As in (a), but without direct computer simulations
computer simulations and witk=4.4x1073, i.e., for a driving  and withF=4.4x 103, i.e., for a driving force only a quarter as
force only a quarter as strong, so thst ). strong, so thaip~ ¢,

_ ) ~ tions were omitted in this case as being too time consuming.
and from analog experiment. All the results — including Note that the relatively large scatter of the data arose because
those from theory, direct analog simulations, and numericajhe values ofp') far from resonance were extremely small,
simulations, both direct and in the absence of force — are iRo that the measurements were necessarily being performed
good agreement with each other. close to the instrumental resolution: the most important point

As discussed at the end of Sec. Il, the contribution of theto note is that the results were clearly very different from
linear nonresonant phase shift to the total phase shift is verthose of Figs. ) and §a).
important when the nonlinear resonant effect is relatively The dependence on noise intensity of the linear phase
small. It is especially true for the broad and relatively weakshift at a nonresonant frequency is monotonic. However, this
peak atQ~3w,. For this reason we have measured thedependence is unexpectedly strong for the value of the cubic
phase shift for very small force amplitudes whepr= ¢ nonlinearity paramete=23 used in the experiments. The
(see below. The temperature dependences of the measuresumerical values of the reduced noise intensifl/ wg for
phase shift¢ and the calculated linear phase shit*) are  which deviations from(10) become substantial are as small
shown, for two different frequencies, in Figsbyand 8b).  as 2x 10 2. Formally, this is a consequence of large numeri-
It can be seen thatp), as given by (4) with the cal factors in the expression for the correctiom? in Eq.
T-dependent correctior- Im[Inx(€2)] from (10), is in rea-  (10). Intuitively, it can be understood from the shape of the
sonable agreement with both the measuped®™) and with  potential of the oscillator: for the valug= 3 this potential
the values ofpY)= —arctany”(Q)/ x' (Q) obtained by com- has already become strongly anharmonic for energies that are
puter simulation ofQ(®)(w). (The direct computer simula- much smaller than the characteristic energy vala&ﬁz
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0.0 monicfrequency(}, and carried out a detailed experimental
investigation of the oscillator dynamics. The theory applies
for an arbitrary nonlinearity of the oscillator. For moderately
strong noise, the resonanonlinearresponse of the oscilla-

tor has been described in terms dfreear susceptibility. The
results describe thgpectraof nonlinear absorptiofthe clas-
sical analog of two-photon absorptjoand the signal at the
second harmonic as functions of the fluctuation intensity. We
have been able to predict, and measure, a strong noise-
induced amplification of resonant SHG and of TPA.

We have shown that both the signal at the second har-
monic, and the nonlinear absorption, display peaks as a func-
. [ . | . | tion of the noise intensity. The peaks are sharp if(R lies
0.0 0.01 0.02 0.03 close to the frequencyw, of small-amplitude vibrations of

F the oscillator. We have shown that peaks can also occur if
2Q) is close to the extremal value, of the oscillator’s

FIG. 9. The dependence of the phase siifn the the reduced €i9enfrequency»(E). The theory is in good qualitative and
field amplitudeF of the force forQ)/wq, = 0.483 and noise intensity quantitative _agreement W_'th experiment. The_ reSUIFS also
yT/w? = 0.012, which corresponds to the absorption maximum af2drée well with those obtained from computer simulations of
this frequency. Measurements on the analog electronic circuit Nonlinear oscillator in the absence of periodic driving. The
(circles are compared with the theotfull curve). The dashed line ~effects considered may be of importance in connection with
indicates the position op®. a number of applications, from nonlinear optics and two-

photon spectroscopy to nonlinear response of underdamped
used in(3) as the upper limit of noise intensity for which the syperconducting quantum interference devices.
theory applies. Our results demonstrate that a simple theoretical model

In Fig. 9 we present the measured and calculated depeRy, provide physical insight into the interrelation between
dences of¢p on the amplitude~ of the driving force. ItiS  he jinear and nonlinear responses of the oscillator and reveal
seen thatp increases nearly linearly with the squared amph—the connection between two-photon absorption in under-
tude of the forceF?, as indicated by the theoretical curve. damped systems and stochastic resonance
These results provide a clear demonstration that the phenom- '
ena we are observing correspond to two-photon absorption
[cf. Eq.(13)]. Note, in particular, that the value of the force ACKNOWLEDGMENTS
amplitude used in all experimentexcept the linear phase
shift measuremenksvas chosen as the largest amplitude for The work was supported by the Center for Fundamental
which the theory was expected to be applicable, and that, foMaterial Research at MSU, the Engineering and Physical
small amplitudes~, ¢ approaches the value of the phaseSciences Research CoundilK), the European Community,
shift for linear response'Y). This latter feature made it pos- the Royal Society of London, the Gosstandart of Russia and
sible to separate the linear and nonlinear contributions to thehe International Science Foundation under Grant Nos.
phase shift, simply by changing the amplitude of the drivingN62000 and N62300. DGL gratefully acknowledges the ex-

force in the experiment. _ . tremely warm hospitality of Lancaster University.
Finally we note that the theory can immediately be gen-

eralized in two ways. First of all, strictly speaking, E¢B)

and (8) which we used to obtain the theoretical results and APPENDIX A: NONLINEAR RESPONSE OF AN

the computer simulation data shown in Figs. 2—8, do not OSCILLATOR IN THE LIMIT OF SMALL DAMPING

apply away from rangé3); and the full theory discussed in

Appendix A should then be used. However, in the most in- In this appendix we consider the nonlinear response of an
teresting range o where the dependence of the SHS onunderdamped oscillator in the general case in which the
noise intensity is nonmonotonic, the amplitudes of vibrationnoise intensity is not limited to moderately small values as
of the oscillator at the overtones of the eigenfrequenciespecified by(3). For an oscillator performing Brownian mo-
w(E) are small for energieE<T, and the simple theory of tion the analysis may be done using the Fokker-Planck equa-
Sec. |l provides a good approximation. Second, the numerition (FPE) for the probability densityv(l, ¢,t|lo,¢q,to) of a

cal algorithm[12] used to evaluate the spectral density oftransition from a state with a given actiég and phasep,
fluctuations, and thus the linear susceptibili®), is limited  occupied at initial timet, to a state (,¢) at timet. If the

to resonant frequencies whe@®(w) has a peak. General oscillator is described by Eq1), the FPE may be written in
analysis of the linear susceptibility requires a complete soluthe form[32]

tion of the appropriately modified Fokker-Planck equation.

We have developed the necessary algorithm, and details will ow w P

be given in a later paper. ow_ ow oW  _»
P w(E) 7% F codt D +I'Lw. (A1)

-0.02

-0.04

-0.06

-0.08

V. CONCLUSIONS

In conclusion, we have developed a theory of an underHereL is an operator that describes the dissipation and dif-
damped nonlinear oscillator driven by a field asabhar-  fusion terms in the FPE. In the absence of forcing it results in
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w(l,é,t|1g,¢0,tg) approaching the stationary distribution Wi, =F[WM(1,Q)e M+ W (1, —Q)e ',
w(1,¢) as the time intervat—ty,—o. For thermal equi-

librium systems, 1 a,(l)nw(E)

(1) ~ IV (0)
W )= o feE 10 Ve (AS)
wg'(1,¢)=2""exid —E(1)/T], (A2) | . o |
We notice that, in the case of driving at a subharmonic fre-
) quency as considered in the present paper, the denominators
|:f w0 YE)dE, 2227,] dl exd —E(1)/T]. in (A5) are nonresonant. However E@\S5) also describes,
0 for dw>T", the resonant linear response to driving at fre-
quencies() which lie within the “band” of the oscillator

The coordinate and momentum of the oscillajoandp are  frequenciesw(E) with E<T, or within the corresponding

periodic functions of the phasg, bands at the overtones of(E). The singularity in the de-
nominator can be dealt with in a standard way by making the
p=p(l,¢)=p(l,¢+2m), replacement

nw(E)—nw(E)—id, &6—0",

a=q(l,¢)=q(l,¢+ 277):; an(1)e"?,  (A3)  which allows for the decay of correlations in the system.
To second order inF, the stationary distribution
w (I, ¢,t) contains terms oscillating at frequencf22and it

p:w(E)a_q poa_99p _, also contains a nonresonant time-independent teff,
dp’' Il J adl a9 ) )
¢ ¢ ¢ W2 (1,8 = FIW2(1,20)e? 2+ WR)(|, - 20)e 2
The procedure for finding the Fourier components of the +\7V(2)(I 0] (A6)
n 1

coordinatea,(I)=ay (1) is standard. It becomes particularly

simple for an oscillator with a potential of the form of a where

fourth-order polynomial irg as in Eq.(1) (cf. [12]), since in d

this case the solution can be written explicitly in terms of (2) 1 i -1 _ o 9am

elliptic functions. Wi (1,20)=3[20 4 ne(B)] %: (n=m) dl
We will be seeking the asymptotic distribution of a peri-

odically driven oscillatomw,{1,¢,t). This distribution is pe- WD (] Q) | ngjm(| Q)
riodic in time, with period 2r/Q; it too is periodic in¢, nom(l,€) —may( )—al .
(A7)
Wadl, ¢,1) = En: wi(l,t)e"?, It is clear from(A7) that, if the frequency @ lies within the

band of the eigenfrequencies(E) with E<T, the terms
w(1,20), W (1,—2Q) contain resonant denominators.
EquationgA4) and (A7) thus provide a solution to the prob-
lem of resonant enhancement of the signal at the second
harmonic of the driving force, i.e., of resonant second-
harmonic generation.

With Egs.(5) and(A3) taken into account, the coefficient

It is known from the theory of the linear response of a non-Cf two-photon absorption can be written as

linear oscillatol{ 14] that the shape of the distributidA4) is

determined by the relation between the fluctuation-induced K(2)=i7TF2f d1Y, ne(E)a_,(D[W3(1,-Q)
smearingdw of the oscillator frequencw(E) and the oscil- n

lator dampingf. For sw>I" damping affects resonant Iinc.aar. +W§13)(I )], (A8)
response primarily through the form of the stationary distri-

bution in the absence of driving\2). This is also true for a whereW ) is the coefficient in the expression for the third
resonant nonlinear response. Indeed, a nonlinear oscillateirder(in F) correction to the stationary distribution (A4),
has a continuous frequency spectrum, of width @ 3 ak3) (ot 3 ot
Sw~|w(T)— w(0)|, and the additional frequency smearing Wi (1,H)=F W (1,0)e " + W (1,~- Q)e™"

due to the lifetime being finite may be neglected when this ~ , ~ o

lifetime is large, i.e., whel' < dw [the case where(E) has +WE13)(| ’m)e3lﬂt+M3)(l'_3Q)e "

w,(l,t+27/Q)=w,(l,1),

<q(t)>:2w§ fdl a_ Wp(l,t). (A4)

an extremunw, and 2) =~ w, requires special consideration; (A9)
the corresponding analysis for the case of resonant one- ) (3) .
photon absorption wher@ ~ w, was done if25]]. The functionsW;>’ can be expressed in terms of the lower-

For comparatively weak driving, the solution of E&\1)  order termaV(® W2 in precisely the same way as the latter
for the functionsw,(I,¢) can be obtained by direct pertur- have been expressed in termsvaf?) cf. (A7).
bation theory in the force amplitude. To first order inF, It is clear that if, in the expressions for th,, the real
neglecting dissipation, we have parts of the frequency-dependent denominators
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nw(E)*=n’'Q did not become equal to zero for sofaethen _ (pw)

there would hold a relatioW®(1,— Q) =W®)(1,Q), and —iQw + g * %{[—ZFp—U’(q)]W(“}

the absorption coefficierA8) would be equal to zero. The

absorption is due to resonant processes in which the oscilla- Pwd  p o

tor is excited by the field; in the present case these are two- —2rT Ip? =TW (BS)

photon processes. The corresponding resonant denominators
are of the form of 22— w(E). They enter expressiofA7)  The asymptotic solution of this equation at low temperatures,
for W@(I,-Q), and thus they enter the terms in T—0, may be obtained by applying the method of moments.
WE)(1,+Q) that are proportional taV{?(1,+Q) or to the ~ We consider the quantities
derivative JW?)(1,+Q)/4l. It is straightforward to imple- .

' = (1)
ment on the computer the corresponding algorithm for evalu- Rmn_f dadpd’p"w'™. (B6)
ation of the coefficient of two-photon absorption.

The susceptibility is

APPENDIX B: NOISE-INDUCED CORRECTIONS TO THE x(Q)=Ry,. (B7)

LINEAR NONRESONANT SUSCEPTIBILITY . .
From (B5) we obtain a set of equation:

y r?]%?ig?]se we have a Brownian particle, with the equation (_iQ+2rn)Rmn_mRmfln+1+n(wcz)Rerlnfl
. + B8R _1+vR _)—2I'Tn(n-1)R
d+2Fq+w§q+Bq2+yq3=f(t), ,f m+2211 YRm+3n-1) (N-1)Rpy 2
=Ta"™p"" o. (B8)
(f(Of(t'))=4TTS(t—t"), (B1) . ) ) )
The averaging on the right-hand side (@&8) is performed

and that the damping and temperature are both smallyith the equilibrium distributiorw(®). We have

I'<wg,|y|T/wg<1, and B2T/w§<1. We are interested in 1
the linear response of the system ta@nresonanforce. In (@™ o=(a™o(PN0, <p2”>o=F/§(2T)” n—3 /.
the harmonic approximation the susceptibility (B9)
xO(Q)=(wi—0%2-2iTQ)"L. (B2) _
In particular,
To allow for nonlinear corrections to first order i it is (pDo=T, (p*o=3T2
convenient to start from the corresponding Fokker-Plank
equation To first order ing,
oW dpw) d . om 1 2T\™ _1|
T o _%{[—ZFP—U (q)Jw} (q >°~F’7 : m=-3]
(m+2)
9w 0, OW 2m+1y B 2_T ha
+2I‘T&—p2—Fe Iﬂt%’ (83) <q >0 m w(z) m+2 L (B].O)
U’ (a)=wia+ B+ yg°. The set of algebraic equatiofiB8) should be solved for

) L the conditionsR,,=0 for negativem or n. It is seen from
In linear response theory, we seek a solution in the formygg) that, if we are interested in the terrisear in tempera-

2 . . . .
' U ture, it suffices to restrict ourselves with m+n<3,
w=w® 4 Fe-i®tyd) W<0>zzlexp< L (_q)) re, o Rinn

2T T
(B4) Rmn=0 for m+n>3.

and assume that the correction tewh" is independent of This reducegB8) to a set of nine equations. They can be
time and of field amplitud&. The equation fow®) is of the  easily solved, and the resulting expression for the the suscep-
form tiblity takes the form of Eq(10) in the text.
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