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The effect of fluctuations on the nonlinear response of an underdamped oscillator to an external periodic
field at a subharmonic frequency has been investigated theoretically, numerically, and with an analog elec-
tronic circuit model. The system studied has often been analyzed in nonlinear optics in the context of two-
photon absorption and second-harmonic generation. We consider its nonlinearspectroscopy. Its resonant non-
linear response is described over a broad range of the fluctuation intensities. It is shown that the fluctuation
intensity can be used to ‘‘tune’’ the oscillator so as to maximize the nonlinear response. The dependence of the
absorption cross section on the fluctuation intensity displays a clearly resolved maximum. If the eigenfre-
quency of the oscillator is a nonmonotonic function of its energy, the signal at the second harmonic displays
a resonant peak at one of two different frequencies, depending on the noise intensity.
@S1063-651X~96!10308-1#

PACS number~s!: 05.401j, 05.20.Dd

I. INTRODUCTION

The resonant response of a nonlinear system to periodic
forcing at a subharmonic frequency is studied in several ar-
eas of physics. For a nonlinear oscillator this problem has
been investigated in detail in mechanics@1#. A nonlinear
oscillator also constitutes a simple and useful model that
enables the susceptibility to be calculated, and is therefore of
major interest for nonlinear optics@2#. The susceptibility is
often analyzed with account taken of damping of the oscil-
lator, but with a neglect of fluctuations. However, the cou-
pling to a thermal bath that gives rise to the damping must
also result in the occurrence of fluctuations. Additionally,
fluctuations may result from an external noise driving the
oscillator.

The role of fluctuations is particularly important for the
resonant response of anunderdampedoscillator. The eigen-
frequency of the vibrations of a nonlinear oscillatorv(E)
depends on the oscillator energyE ~or, equivalently, on the
vibration amplitude!. For a fluctuating oscillator the energy
varies in time, creating a distribution overE: in the case of
thermal fluctuations arising from a bath at temperatureT,
this distribution is of the formZ21exp(2E/T). As a result,
the eigenfrequencyv(E) fluctuates as well, with two impor-
tant consequences:~i! a corresponding frequency distribution
is formed, i.e., the oscillator frequency is smeared; and~ii !
the mean frequencŷv(E)& differs from the frequency of
small-amplitude vibrationsv(0) ~where we measure the en-
ergy relative to its value at the equilibrium position of the
oscillator!. Therefore, on the one hand, fluctuations may be

used to ‘‘tune’’ the system to a resonance with the frequency
of the external force or its overtones. On the other hand, with
increasing fluctuation intensity the resonance itself is
smeared out. The latter occurs when the frequency smearing
dv due to the fluctuations exceeds the uncertainty in the
vibration frequency due to finite damping. For small fluctua-
tion intensity the frequency smearing is given by
dv5uv8(0)u^E&, wherev8(E)[dv(E)/dE.

The effects of classical and quantum fluctuations on the
linear response of a nonlinear oscillator have been investi-
gated in considerable detail~cf. @3–13#; see also@14# for
reviews!. The problem is immediately related to the infrared
absorption spectra of localized vibrations in solids@15#, and
also to problems of acoustics and of engineering structures.
An advantageous feature of using a fluctuating oscillator as a
model is that, in case of an underdamped oscillator, it is
asymptotically exactly solvable: although the nonlinearity of
the oscillator is by no means small, a theoretical analysis of
the resonant response can be fulfilled in closed form@7# ~see
also @10,13#!. The nonlinear response of the oscillator to a
nearly resonant field has also been analyzed in considerable
detail, and the results discussed in the context of optical bi-
stability and phase conjugation@16#, transmission of high-
Q optical and microwave cavities@17#, cyclotron resonance
of an electron in a Penning trap@18#, and underdamped vi-
brations of ions trapped in a potential well below the surface
of liquid helium @19#.

In the present paper we investigate the effect of fluctua-
tions in an underdamped oscillator on its resonant nonlinear
response to driving at asubharmonicfrequency. We concen-
trate on the case of driving at a frequencyV close to 1

2

v(E) for energiesE that lie within the width of the distri-
bution overE. In this case, the nonlinear resonant absorp-
tion, in terms of nonlinear optics, corresponds to two-photon
absorption~TPA!, whereas the occurrence of forced vibra-
tions of the oscillator at frequency 2V corresponds to
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second-harmonic generation~SHG!. TPA and SHG have
been recently recognized as particularly advantageous for in-
vestigating systems with broken inversion symmetry, like in-
terfaces between isotropic media~liquid-vapor interface, etc!
@20–22#. Often the immediate object of investigation is non-
linear vibrations at the interface~as in references cited
above!, and in many cases such vibrations are underdamped.
Understanding the spectroscopy of TPA and SHG, and the
effects of fluctuations on the corresponding spectra, are ex-
tremely important in this context.

Based on the arguments given above one would expect
that, in the appropriate range ofV, it would be possible to
increase the nonlinear response by increasing the fluctuation
intensity and thus ‘‘tuning’’ the oscillator to resonance, but
that, with further increase in the fluctuation intensity, the
response would decrease because of the broadening of the
resonance due to frequency smearing. Such a behavior of the
response as a function of noise intensity has recently at-
tracted much attention in the context of stochastic resonance
@23#. Stochastic resonance is most often considered for
bistable systems, but there is no reasona priori to suppose
that it need be restricted to such systems. Indeed, a noise-
induced increase in linear response has been demonstrated in
analog experiments for a resonantly driven monostable un-
derdamped oscillator@24#.

If the eigenfrequency of an oscillator is a nonmonotonic
function of its energy, an increase of noise intensity may
result in a narrowing of the peak of the resonant absorption
@12# and the occurrence, for very small damping and within a
certain range of noise intensities, of an additional peak at the
extremal frequencyve @25#. One would expect a similar
peak to occur in the spectrum of nonlinear absorption.

In Sec. II we discuss the model and provide an analytical
theory of the resonant nonlinear response of an underdamped
nonlinear oscillator. The theory is valid for weak noise; it is
perturbative in the amplitude of the driving field, but it is
nonperturbative in the oscillator nonlinearity. In Sec. III we
describe the analog simulator. In Sec. IV we present experi-
mental results and compare them with the theory. Section V
contains concluding remarks. In Appendix A we analyze the
resonant nonlinear response for noise-induced frequency
smearingdv greatly exceeding the oscillator damping. The
method of moments for the nonresonant linear response of a
nonlinear oscillator in the case of weak noise intensities is
described in Appendix B.

II. THEORY OF AN UNDERDAMPED OSCILLATOR
DRIVEN AT A SUBHARMONIC FREQUENCY

A. Model

We will analyze fluctuation effects for the simplest model
that possesses a resonant second-order susceptibility: a non-
centrosymmetric Duffing oscillator. This is the model that, in
the absence of fluctuations, has traditionally been considered
in connection with a variety of problems in nonlinear optics
@2#. We will limit ourselves to a phenomenological analysis
in which fluctuations are induced by an externally applied
noisef (t). The noise will be assumed to be white and Gauss-
ian.

The equation of motion of the oscillator is of the form

q̈12Gq̇1v0
2q1bq21gq35FcosVt1 f ~ t !,

^ f ~ t !&50, ^ f ~ t ! f ~ t8!&54GTd~ t2t8!. ~1!

We assume the oscillator to be monostable, which is the case
providedg.0, b2,4v0

2g. The energy dependence of the
eigenfrequency of the vibrationsv(E) ~the dispersion curve!
is shown forg5v051 in Fig. 1. Forb2/gv0

2.9/10 the
function v(E) is nonmonotonic, with a minimum at a fre-
quencyve . We further assume that the friction coefficient
G is small compared both to the frequency of small-
amplitude vibrationsv0[v(0) and to the frequency detun-
ing of a nonresonant periodic forceFcosVt,

G!v~E!, V, uv~E!2Vu,

for E&T. The characteristic noise intensityT in ~1! corre-
sponds to temperature if both the noise and the friction force
22Gq̇ originate from the coupling of the oscillator to a ther-
mal bath.

We note that many of the results discussed below will
actually apply to a much broader class of systems than
white-noise-driven systems with a friction force proportional
to the instantaneous value of the velocity. What is important
is that the effects of retardation on the slowly varying~on a
time scale;v0

21) amplitude and phase of the oscillator be
small @14#.

In the analysis of the resonant nonlinear response, we
assume that the doubled frequency of the force, 2V, is close
to the band of frequencies of thermally excited vibrations of
the oscillator,

u2V2v~E!u!v~E! for E&T. ~2!

Theoretical formulations need to be somewhat different
for different ranges of noise intensityT. We shall concen-
trate in this section on the case whereT is moderately small,

FIG. 1. The dependence of the oscillation eigenfrequency
v(E) on the energyE of the oscillator~1!, measured from the
bottom of the potential well, for different values of the parameter
b with g5v051. The values ofb corresponding to the three
curves, from bottom to top, were 1.666, 1.000, and 0.300. All quan-
tities are in dimensionless units.
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so that the nonlinear terms13bq
31 1

4gq
4 in the potential en-

ergy of the oscillator are small compared to the harmonic
term 1

2v0
2q2:

T!v0
4/g, v0

6/b2. ~3!

The major effect of noise in range~3! is smearing of the
frequency of the oscillator. Although the frequency strag-
gling dv remains relatively small,dv[uv(T)2v0u!v0,
and so also are the amplitudes of noise-induced vibrations at
the overtones of the eigenfrequenciesv(E), the straggling
dv may substantially exceed the frequency uncertaintyG
due to damping. Therefore, in the sense that the ratiodv/G
may still be large, the nonlinearity and fluctuations cannot be
assumed to be small. Consequently, the resonant nonlinear
response is qualitatively different from that in the neglect of
fluctuational smearing of the frequency. The case where the
noise intensity is not limited by~3! is considered in Appen-
dix A; in the rangeT*v0

4/g,v0
6/b2, one may neglect fre-

quency smearing due to dissipation, which in many respects
simplifies the problem.

B. Quasilinear response

For small amplitudes of the driving force and for moder-
ately weak noise intensities~3!, the analysis of the resonant
nonlinear response of the oscillator may be done in two steps
familiar from @1#: ~i! one first ignores the oscillator nonlin-
earity, so that a sinusoidal external force results in nonreso-
nant vibrations at the force frequencyV ~the perturbation
parameter is the force amplitudeF, weighted with nonlinear-
ity constants!; and~ii ! in the next iteration one substitutes the
corresponding oscillating term in the oscillator coordinate
into the nonlinear terms in the restoring force of the oscilla-
tor. These terms then oscillate at the overtones ofV, and act
as an effective force that drives the oscillator. The resonant
linear response to this force may then be analyzed. In this
way, for an oscillator with a non-weak nonlinearity, a com-
plicated problem of resonant nonlinear response may be re-
duced to the already solved problem of resonant linear re-
sponse.

For moderately small noise intensities~3! and to lowest
order in the force amplitudeF, nonresonantforced vibra-
tions may be described in the harmonic approximation,

q~1!~ t !'
F

v0
22V2 cos~Vt1f~1!!,

f~1!'22GV/~v0
22V2!. ~4!

The phase shiftf (1) allows for a weak linear absorption by
the oscillator. The absorption coefficientk is defined as the
ratio of the average energy absorbed per unit time toF2. In
the limit of small fieldk5k (1), wherek (1) is the coefficient
of linear nonresonant absorption and, with account taken of
~4!,

k5F22^q̇~ t !FcosVt&, k→k~1! for F→0,

k~1!5GV2/~v0
22V2!2 ~5!

~the overbar denotes averaging over the period 2p/V).

The equation of motion for the vibrations at frequency
2V in the range of moderately small noise intensities~3! can
be obtained by seeking the solution of Eq.~1! in the form
q(t)'q(1)(t)1q(2)(t). The equation forq(2)(t) may be
written as

q̈~2!12Gq̇~2!1v0
2q~2!1b@q~2!#21g@q~2!#3

' f ~ t !2
F2

2~v0
22V2!2

b@cos~2Vt12f~1!!11#.

~6!

We have neglected terms of higher order inF as well as
terms}bFq(2), gF@q(2)#2, gF2q(2). These terms contain, in
addition toF, a small@in range~3!# factor proportional to the
amplitude of fluctuational vibrations.~The term}gF2q(2)

describes the frequency shift}gF2, which is similar to the
frequency shift in the dynamical Stark effect. It could easily
be incorporated; but we have chosen not to do so because it
may be assumed small compared to the frequency smearing
due to nonlinearity and damping.! The nonresonant time-
independent term on the right-hand side of~6! is retained for
the sake of clarity; it gives rise to a shift of the equilibrium
position of the nonlinear oscillator due to periodic driving.

Equation~6! is the equation of motion of a nearly reso-
nantly driven nonlinear oscillator with coordinateq(2) . For
smallF the response of the oscillator to the force}bF2 can
be described by linear response theory@26#:

^q~2!&'2
bF2

2v0
2~v0

22V2!2

2
bF2

4~v0
22V2!2

@x~2V!e22i ~Vt1f~1!!

1x* ~2V!e2i ~Vt1f~1!!#, ~7!

wherex(2V) is the susceptibility of the oscillator at 2V.
In the frequency range~2! the susceptibilityx(2V) is

resonantly large. In the absence of noise,
x(2V)'(4V22v0

224iGV)21. The imaginary part of the
susceptibilityx9(2V) for a finite noise intensity@but limited
by ~3!#, and foru2V2v0u!V, was evaluated in our former
work @7#. A complete analysis of the susceptibility
x(2V)[x8(2V)1 ix9(2V) is presented in Sec. II C.

In terms of nonlinear optics, the onset of vibrations at
twice the frequency of the driving force corresponds to
second-harmonic generation~SHG!. Equation~7! fully de-
scribes resonant SHG in an underdamped fluctuating nonlin-
ear oscillator.

Equation~7! also makes it possible to analyze resonant
absorption at frequency 2V, i.e., two-photon absorption
~TPA!, in the language of nonlinear optics. To do this one
has to iterate Eq.~1! once more and find the termq(3)(t)
which is of third order inF. This term should then be sub-
stituted into Eq.~5! for the absorption coefficientk. The
resulting overall expression fork allows both for nonreso-
nant linear~in F) absorption due to oscillator damping, and
for a resonant nonlinear~in F) absorption. It takes the form
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k'k~1!1k~2!,

k~2!5
V

4~v0
22V2!2 S bF

v0
22V2D 2x9~2V!, ~8!

wherek (1) andk (2) are the coefficients of linear and nonlin-
ear absorption, respectively. The coefficientk (1) for small
noise intensities is given by~5!.

It follows from ~8! that, in range~3!, TPA as a function of
frequency and temperature should display a behavior similar
to that displayed by linear absorption of a nonlinear oscilla-
tor, which is described by the imaginary part of the suscep-
tibility x9(2V). We note that the proportionality factor be-
tween k (2) and x9(2V) is the squared coefficient of the
cubic nonlinearityb, in agreement with the well-known fact
that TPA occurs in noncentrosymmetric systems.

C. Resonant susceptibility

Equations~7! and ~8! relate the intensity of the second
harmonic signal~SHS! and the coefficient of nonlinear ab-
sorptionk (2) to the resonantlinear susceptibility of the os-
cillator x(2V) at frequency 2V. Theoretical and experimen-
tal results on the evolution with noise intensity of the
imaginary part of the susceptibilityx9(v) have clearly dem-
onstrated@7,10–12,24# that, in an underdamped system, even
comparatively small changes in the noise intensity can
strongly affect linear resonant absorption.

Complete analysis of the susceptibility is facilitated by the
fact that, in the absence of the periodic force, the system
investigated is effectively in thermal equilibrium at tempera-
tureT which is characterized by the noise intensity. For ther-
mal equilibrium systems the real and imaginary parts of the
susceptibilityx(v) are related to each other via Kramers-
Kronig relations, and both can be expressed in terms of the
spectral density of fluctuations of the oscillatorQ(0)(v) @26#:

x9~v!5
pv

T
Q~0!~v!,

x8~v!5
2

T
PE

0

`

dv1Q
~0!~v1!

v1
2

v1
22v2 , ~9!

Q~0!~v!5
1

2pE2`

`

dt eivt^q~ t !q~0!& ,

where P implies the Cauchy principal value andT is the
temperature.

The quantityQ(0)(v) for an underdamped nonlinear os-
cillator has been investigated analytically in considerable de-
tail for the range of moderately small noise intensities~3!
@7#, and numerically and experimentally in the general case
@12#.

In Figs. 2 and 3 we show theoretical curves for the
squared absolute value of the susceptibilityux(v)u2 as a
function of the noise intensityT for five values ofv52V,
and as a function ofv for three values ofT, respectively. In
Fig. 4 we show the dependence onT of the real and imagi-
nary parts ofx(v). All curves have been obtained using the

algorithm of@12# and relations~9!, and the parameters were
taken to be the same as in the experimentally investigated
system~see Sec. III!.

It is clear from Figs. 2 and 4 that, both forv'v0 and
v've , the functionsx8(v), x9(v), and ux(v)u2 display
nonmonotonic dependences onT. The peaks inx9(v) and
ux(v)u2 vsT are most pronounced forv'v0. This is due to
the fact that noise-induced ‘‘tuning’’ of an underdamped os-
cillator to a given frequency is most effective for smallT,
where the fluctuational smearingdv of the oscillator fre-
quency is small and the oscillator may display a strongly
resonant response.

The spectral shape and position of the maximum of the
narrow peak of the functionx9(v), and their variation with
temperature fordv & G, have been described in@7#. With
increasing noise intensity the position of the maximum,vm
shifts in the direction determined by the sign of
dv(E)/dE(E→0), and the peak is broadened and becomes
non-Lorentzian. As a result the absorption can decrease or

FIG. 2. Dependence of the susceptibility on noise intensity, for
b51.666. The curves represent the calculatedux(v)u2 at the sec-
ond harmonic (v52V) of the field frequencyV. The frequencies
were ~a! V/v05 0.490, ~b! 0.483, ~c! 0.463, ~d! 0.440, and~e!
0.415.

FIG. 3. Frequency dependence ofux(v)u2 for different values of
the noise intensity:~a! T5 0.0065,~b! 0.035, and~c! 0.080.
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increase~within a limited range of noise intensities! depend-
ing on the frequency of the external field.

It is seen from Fig. 3 that, for higherT, the peak of
ux(v)u2 at v'v0 is broadened, and for yet higherT the
dominating peak inux(v)u2 is the one atve which is due to
the singularity in the density of vibrational states of the os-
cillator @12,25#.

D. Nonresonant susceptibilities

Although the nonlinear absorption that we investigate is
resonant, it is comparatively small for small amplitudes of
the driving forceF. Therefore, in the analysis of the effect of
noise on the total~linear1 nonlinear! absorption of the os-
cillator, it is necessary to take into account not only noise-
induced changes in nonlinear absorption, but also noise-
induced corrections to linear nonresonant absorption. These
corrections are obtained in Appendix B by solving the
Fokker-Plank equation. Alternatively, they can be found by a
perturbation method applied directly to the Langevin equa-
tion ~1!.

With account taken of corrections linear inT, the suscep-
tibility x(V) is of the form

x~V!'x~0!~V!S 11A
gT

v0
2 1B

b2T

v0
4 D ,

A52
3

v0
22V2 S 11 i

2GV

v0
22V2D ,

B5
2~6v0

22V2!

~4v0
22V2!~v0

22V2!

1
4iG

V

8v0
6118v0

4V2212v0
2V41V6

~4v0
22V2!2~v0

22V2!2
. ~10!

It is clear from Eqs.~4! and~5! that, for small absorption, the
absorption coefficient is proportional to the phase shift be-
tween the signalq(t) and the force. An advantageous feature

of the phase shift is that it can be easily determined by ex-
periment. At the same time, it is given just by the negative of
the imaginary part of the logarithm ofx, and its
T-dependent component is determined by the imaginary part
of the correction}T in ~10!.

III. ANALOG ELECTRONIC MODEL
AND NUMERICAL ALGORITHMS

The effects of noise on resonant SHG and TPA have been
investigated in analog electronic experiments. The analog
model of ~1! was of a standard design, constructed on the
basis of the principles described in detail elsewhere@27#,
using operational amplifiers, multipliers, and other standard
analog components to perform the required mathematical op-
erations of addition, subtraction, multiplication, division, in-
tegration, etc. A block diagram of the circuit is shown in Fig.
5. HereF in(t8)5F8cosV8t8 and f 8(t8), are respectively, a
signal and an external noise applied to an underdamped non-
linear oscillator.F8 is the amplitude of the signal in volts,
f 8(t8) is the value of the noise voltage applied to the circuit,
andV8 and t8 are the real frequency and time.

The differential equation for the voltagex in the circuit is
of the form

R3C1R5C2

d2x

dt82
1
R3

R4
R5C2

dx

dt8
1x1R~1/R611/R7!x

2

1x31
R3

R2
F8cosV8t81

R3

R1
f 8~ t8!

50, ~11!

where we have chosen

R5R6510 kV, R15R25100 kV,

R3511 kV, R5522 kV, R451.1MV,

R7515 kV, C15C2520 nF.

FIG. 4. Dependence on noise intensityT of the susceptibility at
the second harmonic (v52V) for two different frequencies:
V/v05 0.483 ~solid curves! and 0.415~dotted curves!. The real
partsx8 are shown by~b! and~d!, and the imaginary partsx9 by ~a!
and ~c!.

FIG. 5. Block diagram of the electronic circuit used to model
the system~1! in the experiments. The component values were cho-
sen such thatg51.00,b51.67,v051.00, and the damping constant
G50.0061.
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On introducing the time constantt85R5C252R3C1 and
damping constantG85R3 /R4, Eq. ~11! reduces to

t82ẍ12G8t8ẋ12~v0
2x1bx21gx3!

520.22F8cosV8t820.22f 8~ t8!, ~12!

where parameters are readily related to those in model~1! by
means of the scaling relations

t5
t8

A2
, t5

t8

t
, V5V8t, G5

G8

A2
,

g51.0, b51.666, v051.0, F520.11F8,

f ~ t !520.11f 8~ t8!.

The nominal value ofG was 0.0071. However, for such
small damping, the actual value usually differs from the
nominal one due to the effects of stray capacitances and re-
sistances in the circuit. In the present case, the actual value,
measured experimentally by two independent methods@28#
was found to beG50.0061. For the chosen circuit param-
eters the variation of the oscillator’s eigenfrequency with en-
ergy had a minimum atEm50.1635, as shown in Fig. 1~the
lowest curve!.

The circuit model was driven by noise from a feedback
shift-register noise generator and by a sinusoidal periodic
force from a Hewlett-Packard Model 3325B frequency syn-
thesizer. The response of the circuit to the stochastic and
periodic forces was analysed with the aid of a Nicolet 1080
digital data processor.

The intensity of the second harmonic of the signal was
measured directly from the ensemble-averaged signal in the
circuit ^x(t)& at frequency 2V. It follows from ~7! that this
intensity divided byb2F4/16(v0

22V2)4 gives us the value
of the susceptibility ux(2V)u2, provided F is small
(F50.0176 in our experiment!.

The two-photon absorption coefficient was determined
from measurements of the phase shiftf ~relative to the driv-
ing force! of the ensemble-averaged signal^x(t)& at fre-
quencyV. In the range of moderately weak noise intensities
~3! the expression for the phase shift can be obtained in a
way similar to that used to derive Eq.~8! for the absorption
coefficient. In the limit of weak absorption the phase shift is
given by a sum of the contributionsf (1) andf (2) that cor-
respond, respectively, to linear absorption and to TPA:

f'f~1!1f~2!, f~2!52
1

2

b2F2

~v0
22V2!3

x9~2V!,

~13!

where the phase shiftf (1) is given by Eq.~4! with the cor-
rection determined by Eq.~10!.

The digital simulation was based on the algorithm de-
scribed in@29#. In all cases we used an integration time step
of order 1024. For measurement of the spectral densities of
fluctuations, we averaged typically over 20 000 periods of
the periodic forcing, or for an equivalent total time in the
absence of the periodic force.

For measurement of the phase lag as a function of noise
intensity in the presence of the periodic forcing, a much

longer total integration time was used: note that the integra-
tion time step itself places a lower limit on the precision of
the phase measurements~see above! of '231024 rad. The
number of averages included for each value of noise inten-
sity was typically 840 000 periods of the periodic force. The
quoted error on the phase lag from the digital simulations
was estimated by means of ax2 likelihood approach: the
840 000 averages were divided into 42 statistically indepen-
dent samples~of 20 000 averages each!; the ‘‘average’’
phase lag was determined for each sample, and, from these
42 independent measurements of the phase lag, thebona fide
phase lag corresponding to the given noise intensity and its
error ~taken as one standard deviation in thex2) was com-
puted.

For the case when periodic forcing was absent, given that
the dampingG was typically very small so that the energy
E ~see introduction! was changing slowly, it was also pos-
sible to integrate the equations of motion using a quasisym-
plectic scheme: some symplectic schemes are discussed in
@30#. For the present case, the scheme used reads

q*5qt1
h

2
pt ,

pt1h5
1

11Gh
@~12Gh!pt1hF~q* !1A4GThw#,

~14!

qt1h5q*1
h

2
pt1h .

whereqa[q(t5a), pa[q̇(t5a), etc.,h is the integration
time step,F(q) is the deterministic force, andw is a random
Gaussian variable with zero average and a standard deviation
of unity.

The spectral densities obtained using the algorithm of Eq.
~14! coincided with those obtained using the algorithm of
@29#.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Second harmonic generation

Measurements of the intensity of the signal at the second
harmonic of the forcing frequency are shown for two fre-
quencies by the data points in Figs. 6~a! and 6~b!. In the
range of force amplitudesF investigated, the intensity of the
second-harmonic signal~SHS! was proportional toF4, and
the data in Fig. 6 have been appropriately scaled for com-
parison with the relevant theoretical susceptibility curves
from Fig 2. Also included in Fig. 6 are theoretical values of
uxu2 from ~9! derived from power spectra obtained via digital
simulations of the dynamics. It is evident that all the results
agree well within experimental error.~Direct measurements
of the linear response to a weak force at theresonantfre-
quencyV.v0 were also found to be in good agreement
with theory.! It is clear that the dependence of the SHS in-
tensity on the noise intensity is strongly nonmonotonic, the
peak of the SHS intensity being particularly tall and narrow
for V' 1

2v0. The noise-induced enhancement, defined as the
ratio of the maximal intensity of the signal at a given fre-
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quency to the intensity forT50, was found to exceed a
factor of 4.5 under the experimental conditions.

To understand the temperature dependence of the SHS, it
is illuminating to consider how resonance curves in the fre-
quency domain evolve with temperature: see Fig. 3. As ex-
plained above, the increase of the SHS is due to the fact that,
by increasingT, the system can be tuned to resonance with
the frequency 2V. The left-hand peaks in Fig. 2 occur for
values of the noise intensity given, in order of magnitude, by
T;(2V2v0)/v8(0). With further increase inT, ~i! the
maximum in the frequency response shifts away from 2V;
and ~ii ! the half-width of the resonant peak in the suscepti-
bility as a function of frequency increases~from the value
G which is determined by dissipative spectral broadening for
low T whereG@dv, to dv for higher T where dv@G).
Therefore the SHS intensity decreases, and the overall de-
pendence of the signal on the noise intensity displays a sharp
peak.

An interesting feature of the SHS intensity is that, for the
case wherev(E) has a minimum, it may also display an

additional peak as a function ofT. This occurs when the
frequency of the forceV've/2, whereve[v(Ee) is the
extremal value of the frequencyv(E),

v8~Ee!50, v8~E![dv~E!/dE.

The nonmonotonicity ofv(E) gives rise to a singularity in
the density of vibrational states@dv(E)/dE#21. In turn, this
singularity gives rise to noise-induced narrowing of the peak
of x9(v) with increasing noise intensity@12#, and the occur-
rence of a characteristic zero-dispersion peak inx9(v) at
ve @25# for extremely low damping.

One would expect that the singularity atve might affect

the resonant nonlinear response forV' 1
2 ve , and for noise

intensitiesT of the order ofEe . It is this effect that is seen in
Figs. 2 and 6.

The sharp noise-induced increase and subsequent de-
crease of the response with increasing noise intensity seen in
Fig. 2 may be viewed as a manifestation of stochastic reso-
nance. Two distinctive features should be emphasized in this
context:~i! the system we have investigated ismonostable,
and the increase of the response is not related to a noise-
induced increase of the rate of switching between coexisting
stable states of a bistable system as is often investigated in
stochastic resonance@23#; and~ii ! in contrast to@24# we ob-
serve the effect of the noise-induced increase of anonlinear
response, whereas the nonresonantlinear response changes
only slightly with varying noise intensity. One may say that,
within a certain range of noise intensities, noise may make a
system ‘‘more nonlinear,’’ but eventually with further in-
crease ofT the nonlinearity is suppressed@31#.

B. Nonlinear absorption

As explained above in Sec. III, a convenient way to in-
vestigate the absorption of a periodic driving forceFcosVt in
an analog experiment is to determine the phase shift between
the ensemble-averaged signal^x(t)& at frequencyV and the
force itself. It follows from the theory@see Eqs.~8! and~13!#
that the absorption coefficient and the phase shift are each
made up of a sum of two components, representing linear
and nonlinear contributions. In Figs. 7~a! and 8~a! we com-
pare the measured and calculated dependences of the total
phase shiftf on the noise intensity. It is clear thatufu dis-
plays a peak as a function ofT, that forV' 1

2v0 this peak is
comparatively narrow and sharp, and that forV' 1

2ve the
peak, although well-resolved, is much broader. The theoreti-
cal curves~solid lines! in Figs. 7~a! and 8~a! were calculated
using Eq.~13! with f (1) given by ~4! with theT-dependent
correction2Im@ln x(V)] from ~10!, andf (2) given by~13!
with x(2V) from ~9!. To evaluate the spectral density of
fluctuations in~9!, we used the numerical algorithm of@12#.

We also carried out an additional numerical experiment in
which the phase lag at the frequency of the weak periodic
force was found directly, as described in Sec. III, and the
spectral density of fluctuationsQ(0)(v) ~in the absence of
the driving force! was obtained by Monte Carlo simulation
of the dynamics. The resultant values ofQ(0)(v) were used
to evaluate the phase shift according to Eqs.~9! and ~13!,
with f (1) given by2 arctanx9(V)/x8(V). In Figs. 7 and 8
these results are compared with those derived from theory

FIG. 6. Comparison of signal intensities measured for the ana-
log electronic model with susceptibilities calculated from~9!, as a
function of noise intensityT in units ofv0

4/g. The measured values
~circles and squares! have been scaled byb2F4/16(v0

22V2)4 with
b51.666 andF51.7631022 to facilitate direct comparison with
the relevant theoretical curves from Fig. 2. The pluses also repre-
sent calculated susceptibilities, but using in~9! spectral densities
derived from digital simulations of the dynamics. The frequencies
used were~a! V/v05 0.483 and~b! 0.415.
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and from analog experiment. All the results – including
those from theory, direct analog simulations, and numerical
simulations, both direct and in the absence of force — are in
good agreement with each other.

As discussed at the end of Sec. II, the contribution of the
linear nonresonant phase shift to the total phase shift is very
important when the nonlinear resonant effect is relatively
small. It is especially true for the broad and relatively weak
peak atV' 1

2ve . For this reason we have measured the
phase shift for very small force amplitudes whenf'f (1)

~see below!. The temperature dependences of the measured
phase shiftf and the calculated linear phase shiftf (1) are
shown, for two different frequencies, in Figs. 7~b! and 8~b!.
It can be seen thatf (1), as given by ~4! with the
T-dependent correction2Im@ lnx(V)# from ~10!, is in rea-
sonable agreement with both the measuredf'f (1) and with
the values off (1)52arctanx9(V)/x8(V) obtained by com-
puter simulation ofQ(0)(v). ~The direct computer simula-

tions were omitted in this case as being too time consuming.!
Note that the relatively large scatter of the data arose because
the values off (1) far from resonance were extremely small,
so that the measurements were necessarily being performed
close to the instrumental resolution: the most important point
to note is that the results were clearly very different from
those of Figs. 7~a! and 8~a!.

The dependence on noise intensity of the linear phase
shift at a nonresonant frequency is monotonic. However, this
dependence is unexpectedly strong for the value of the cubic
nonlinearity parameterb5 5

3 used in the experiments. The
numerical values of the reduced noise intensitygT/v0

4 for
which deviations from~10! become substantial are as small
as 231022. Formally, this is a consequence of large numeri-
cal factors in the expression for the correction}b2 in Eq.
~10!. Intuitively, it can be understood from the shape of the
potential of the oscillator: for the valueb5 5

3 this potential
has already become strongly anharmonic for energies that are
much smaller than the characteristic energy valuev0

6/b2

FIG. 7. ~a! Dependence on noise intensityT ~in units of
v0
4/g) of the phasef of the response at the frequencyV of the

driving force for V/v050.483 and the reduced field amplitude
F51.7631022 measured for the analog model~solid circles!. The
results are compared to the theory~solid line! for f ~see text!, to the
values off obtained from computer simulations of the spectral
density of fluctuations~crosses!, and to direct computer simulations
of f for these parameters~bars!. ~b! As in ~a!, but without direct
computer simulations and withF54.431023, i.e., for a driving
force only a quarter as strong, so thatf'f (1).

FIG. 8. ~a! Dependence on noise intensityT ~in units of
v0
4/g) of the phasef of the response at the frequencyV of the

driving force, for V/v050.415 and the reduced field amplitude
F51.7631022 ~solid squares!. The results are compared to the
theory~solid line! for f ~see text!, to the values off obtained from
computer simulations of the spectral density of fluctuations
~crosses!, and to direct computer simulations off for these param-
eters~bars!. ~b! As in ~a!, but without direct computer simulations
and withF54.431023, i.e., for a driving force only a quarter as
strong, so thatf'f (1).
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used in~3! as the upper limit of noise intensity for which the
theory applies.

In Fig. 9 we present the measured and calculated depen-
dences off on the amplitudeF of the driving force. It is
seen thatf increases nearly linearly with the squared ampli-
tude of the force,F2, as indicated by the theoretical curve.
These results provide a clear demonstration that the phenom-
ena we are observing correspond to two-photon absorption
@cf. Eq. ~13!#. Note, in particular, that the value of the force
amplitude used in all experiments~except the linear phase
shift measurements! was chosen as the largest amplitude for
which the theory was expected to be applicable, and that, for
small amplitudesF, f approaches the value of the phase
shift for linear responsef (1). This latter feature made it pos-
sible to separate the linear and nonlinear contributions to the
phase shift, simply by changing the amplitude of the driving
force in the experiment.

Finally we note that the theory can immediately be gen-
eralized in two ways. First of all, strictly speaking, Eqs.~7!
and ~8! which we used to obtain the theoretical results and
the computer simulation data shown in Figs. 2–8, do not
apply away from range~3!; and the full theory discussed in
Appendix A should then be used. However, in the most in-
teresting range ofT where the dependence of the SHS on
noise intensity is nonmonotonic, the amplitudes of vibration
of the oscillator at the overtones of the eigenfrequencies
v(E) are small for energiesE&T, and the simple theory of
Sec. II provides a good approximation. Second, the numeri-
cal algorithm@12# used to evaluate the spectral density of
fluctuations, and thus the linear susceptibility~9!, is limited
to resonant frequencies whereQ(0)(v) has a peak. General
analysis of the linear susceptibility requires a complete solu-
tion of the appropriately modified Fokker-Planck equation.
We have developed the necessary algorithm, and details will
be given in a later paper.

V. CONCLUSIONS

In conclusion, we have developed a theory of an under-
damped nonlinear oscillator driven by a field at asubhar-

monic frequencyV, and carried out a detailed experimental
investigation of the oscillator dynamics. The theory applies
for an arbitrary nonlinearity of the oscillator. For moderately
strong noise, the resonantnonlinear response of the oscilla-
tor has been described in terms of alinear susceptibility. The
results describe thespectraof nonlinear absorption~the clas-
sical analog of two-photon absorption! and the signal at the
second harmonic as functions of the fluctuation intensity. We
have been able to predict, and measure, a strong noise-
induced amplification of resonant SHG and of TPA.

We have shown that both the signal at the second har-
monic, and the nonlinear absorption, display peaks as a func-
tion of the noise intensityT. The peaks are sharp if 2V lies
close to the frequencyv0 of small-amplitude vibrations of
the oscillator. We have shown that peaks can also occur if
2V is close to the extremal valueve of the oscillator’s
eigenfrequencyv(E). The theory is in good qualitative and
quantitative agreement with experiment. The results also
agree well with those obtained from computer simulations of
a nonlinear oscillator in the absence of periodic driving. The
effects considered may be of importance in connection with
a number of applications, from nonlinear optics and two-
photon spectroscopy to nonlinear response of underdamped
superconducting quantum interference devices.

Our results demonstrate that a simple theoretical model
can provide physical insight into the interrelation between
the linear and nonlinear responses of the oscillator and reveal
the connection between two-photon absorption in under-
damped systems and stochastic resonance.
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APPENDIX A: NONLINEAR RESPONSE OF AN
OSCILLATOR IN THE LIMIT OF SMALL DAMPING

In this appendix we consider the nonlinear response of an
underdamped oscillator in the general case in which the
noise intensity is not limited to moderately small values as
specified by~3!. For an oscillator performing Brownian mo-
tion the analysis may be done using the Fokker-Planck equa-
tion ~FPE! for the probability densityw(I ,f,tuI 0 ,f0 ,t0) of a
transition from a state with a given actionI 0 and phasef0
occupied at initial timet0 to a state (I ,f) at time t. If the
oscillator is described by Eq.~1!, the FPE may be written in
the form @32#

]w

]t
52v~E!

]w

]f
2F cosVt

]w

]p
1GL̂w. ~A1!

Here L̂ is an operator that describes the dissipation and dif-
fusion terms in the FPE. In the absence of forcing it results in

FIG. 9. The dependence of the phase shiftf on the the reduced
field amplitudeF of the force forV/v0 5 0.483 and noise intensity
gT/v0

4 5 0.012, which corresponds to the absorption maximum at
this frequency. Measurements on the analog electronic circuit
~circles! are compared with the theory~full curve!. The dashed line
indicates the position off (1).
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w(I ,f,tuI 0 ,f0 ,t0) approaching the stationary distribution
wst
(0)(I ,f) as the time intervalt2t0→`. For thermal equi-

librium systems,

wst
~0!~ I ,f!5Z21exp@2E~ I !/T#, ~A2!

I5E
0

E~ I !
v21~E!dE, Z52pE dI exp@2E~ I !/T#.

The coordinate and momentum of the oscillatorq andp are
periodic functions of the phasef,

p[p~ I ,f![p~ I ,f12p!,

q[q~ I ,f![q~ I ,f12p!5(
n

an~ I !e
inf, ~A3!

p5v~E!
]q

]f
,

]p

]I

]q

]f
2

]q

]I

]p

]f
51.

The procedure for finding the Fourier components of the
coordinatean(I )[an* (I ) is standard. It becomes particularly
simple for an oscillator with a potential of the form of a
fourth-order polynomial inq as in Eq.~1! ~cf. @12#!, since in
this case the solution can be written explicitly in terms of
elliptic functions.

We will be seeking the asymptotic distribution of a peri-
odically driven oscillatorwas(I ,f,t). This distribution is pe-
riodic in time, with period 2p/V; it too is periodic inf,

was~ I ,f,t !5(
n

wn~ I ,t !e
inf,

wn~ I ,t12p/V!5wn~ I ,t !,

^q~ t !&52p(
n
E dI a2nwn~ I ,t !. ~A4!

It is known from the theory of the linear response of a non-
linear oscillator@14# that the shape of the distribution~A4! is
determined by the relation between the fluctuation-induced
smearingdv of the oscillator frequencyv(E) and the oscil-
lator dampingG. Fordv@G damping affects resonant linear
response primarily through the form of the stationary distri-
bution in the absence of driving~A2!. This is also true for a
resonant nonlinear response. Indeed, a nonlinear oscillator
has a continuous frequency spectrum, of width
dv;uv(T)2v(0)u, and the additional frequency smearing
due to the lifetime being finite may be neglected when this
lifetime is large, i.e., whenG!dv @the case wherev(E) has
an extremumve and 2V've requires special consideration;
the corresponding analysis for the case of resonant one-
photon absorption whereV've was done in@25##.

For comparatively weak driving, the solution of Eq.~A1!
for the functionswn(I ,f) can be obtained by direct pertur-
bation theory in the force amplitudeF. To first order inF,
neglecting dissipation, we have

wn
~1!~ I ,t !5F@Wn

~1!~ I ,V!eiVt1Wn
~1!~ I ,2V!e2 iVt#,

Wn
~1!~ I ,V!'

1

2T

an~ I !nv~E!

nv~E!1V
w st

~0! . ~A5!

We notice that, in the case of driving at a subharmonic fre-
quency as considered in the present paper, the denominators
in ~A5! are nonresonant. However Eq.~A5! also describes,
for dv@G, the resonant linear response to driving at fre-
quenciesV which lie within the ‘‘band’’ of the oscillator
frequenciesv(E) with E&T, or within the corresponding
bands at the overtones ofv(E). The singularity in the de-
nominator can be dealt with in a standard way by making the
replacement

nv~E!→nv~E!2 id, d→01,

which allows for the decay of correlations in the system.
To second order inF, the stationary distribution

w st(I ,f,t) contains terms oscillating at frequency 2V, and it
also contains a nonresonant time-independent term}F2,

wn
~2!~ I ,t !5F2@Wn

~2!~ I ,2V!e2iVt1Wn
~2!~ I ,22V!e22iVt

1W̃n
~2!~ I ,0!# ~A6!

where

Wn
~2!~ I ,2V!' 1

2 @2V1nv~E!#21(
m

F ~n2m!
dam
dI

3Wn2m
~1! ~ I ,V!2mam~ I !

]Wn2m
~1! ~ I ,V!

]I G .
~A7!

It is clear from~A7! that, if the frequency 2V lies within the
band of the eigenfrequenciesv(E) with E&T, the terms
W21

(2)(I ,2V), W1
(2)(I ,22V) contain resonant denominators.

Equations~A4! and~A7! thus provide a solution to the prob-
lem of resonant enhancement of the signal at the second
harmonic of the driving force, i.e., of resonant second-
harmonic generation.

With Eqs.~5! and~A3! taken into account, the coefficient
of two-photon absorption can be written as

k~2!5 ipF2E dI(
n

nv~E!a2n~ I !@Wn
~3!~ I ,2V!

1Wn
~3!~ I ,V!#, ~A8!

whereWn
(3) is the coefficient in the expression for the third

order~in F) correction to the stationary distributionwst ~A4!,

wn
~3!~ I ,t !5F3@Wn

~3!~ I ,V!eiVt1Wn
~3!~ I ,2V!e2 iVt

1W̃n
~3!~ I ,3V!e3iVt1W̃n

~3!~ I ,23V!e23iVt#.

~A9!

The functionsWn
(3) can be expressed in terms of the lower-

order termsWn
(2) ,W̃n

(2) in precisely the same way as the latter
have been expressed in terms ofWn

(1) cf. ~A7!.
It is clear that if, in the expressions for theWn , the real

parts of the frequency-dependent denominators
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nv(E)6n8V did not become equal to zero for someE, then
there would hold a relationWn

(3)(I ,2V)5W2n
(3)(I ,V), and

the absorption coefficient~A8! would be equal to zero. The
absorption is due to resonant processes in which the oscilla-
tor is excited by the field; in the present case these are two-
photon processes. The corresponding resonant denominators
are of the form of 2V2v(E). They enter expression~A7!
for Wn

(2)(I ,2V), and thus they enter the terms in
Wn

(3)(I ,6V) that are proportional toWn
(2)(I ,6V) or to the

derivative]Wn
(2)(I ,6V)/]I . It is straightforward to imple-

ment on the computer the corresponding algorithm for evalu-
ation of the coefficient of two-photon absorption.

APPENDIX B: NOISE-INDUCED CORRECTIONS TO THE
LINEAR NONRESONANT SUSCEPTIBILITY

Suppose we have a Brownian particle, with the equation
of motion

q̈12Gq̇1v0
2q1bq21gq35 f ~ t !,

^ f ~ t ! f ~ t8!&54GTd~ t2t8!, ~B1!

and that the damping and temperature are both small,
G!v0 ,uguT/v0

4!1, andb2T/v0
6!1. We are interested in

the linear response of the system to anonresonantforce. In
the harmonic approximation the susceptibility

x~0!~V!5~v0
22V222iGV!21. ~B2!

To allow for nonlinear corrections to first order inT, it is
convenient to start from the corresponding Fokker-Plank
equation

]w

]t
52

]~pw!

]q
2

]

]p
$@22Gp2U8~q!#w%

12GT
]2w

]p2
2Fe2 iVt

]w

]p
, ~B3!

U8~q!5v0
2q1bq21gq3.

In linear response theory, we seek a solution in the form

w5w~0!1Fe2 iVtw~1!, w~0!5Z21expS 2
p2

2T
2
U~q!

T D ,
~B4!

and assume that the correction termw(1) is independent of
time and of field amplitudeF. The equation forw(1) is of the
form

2 iVw~1!1
]~pw~1!!

]q
1

]

]p
$@22Gp2U8~q!#w~1!%

22GT
]2w~1!

]p2
5
p

T
w~0!, ~B5!

The asymptotic solution of this equation at low temperatures,
T→0, may be obtained by applying the method of moments.
We consider the quantities

Rmn[E dqdpqmpnw~1!. ~B6!

The susceptibility is

x~V!5R10. ~B7!

From ~B5! we obtain a set of equation:

~2 iV12Gn!Rmn2mRm21 n111n~v0
2Rm11 n21

1bRm12 n211gRm13 n21!22GTn~n-1!Rm n-2

5T-1^qmpn11&0 . ~B8!

The averaging on the right-hand side of~B8! is performed
with the equilibrium distributionw(0). We have

^qmpn&05^qm&0^p
n&0 , ^p2n&05

1

p1/2~2T!nS n2
1

2D !.
~B9!

In particular,

^p2&05T, ^p4&053T2.

To first order inb,

^q2m&0'
1

p1/2S 2Tv0
2DmSm2

1

2D !,
^q2m11&0'2

b

3p1/2T S 2Tv0
2D ~m12!Sm1

3

2D !. ~B10!

The set of algebraic equations~B8! should be solved for
the conditionsRmn50 for negativem or n. It is seen from
~B8! that, if we are interested in the termslinear in tempera-
ture, it suffices to restrict ourselves toRmn with m1n<3,
and to set

Rmn50 for m1n.3.

This reduces~B8! to a set of nine equations. They can be
easily solved, and the resulting expression for the the suscep-
tiblity takes the form of Eq.~10! in the text.
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