
High-frequency stochastic resonance in SQUIDs

I.Kh.Kaufman∗†, D G Luchinsky∗†, P V E McClintock∗‡, S M Soskin∗§ and N D Stein∗

Abstract

It is shown theoretically and by analogue electronic experiment that stochastic resonance

(SR), in which a weak periodic signal can be optimally enhanced by the addition of noise

of appropriate intensity, is to be anticipated in underdamped SQUIDs (superconducting

quantum interference devices). It manifests under conditions quite unlike those needed

for classical SR, which is restricted to low frequencies and confined to systems that are

both overdamped and bistable. The zero-dispersion SR reported here can be expected

over a vastly wider, tunable, range of high frequencies in highly underdamped SQUIDs

that need not necessarily be bistable.
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Stochastic resonance (SR), in which a weak periodic signal in a nonlinear system can

be enhanced by an increase of the ambient noise intensity, appears to be widespread.

It has been observed or invoked in contexts including geophysics [1], lasers [2], passive

optical systems [3], electronic circuits and devices [4, 5], a Brownian particle in an optical

trap [6], a bistable SQUID (superconducting quantum interference device) [7], a quantum

2-level system [8], arrays of SR elements [9], coexisting periodic attractors [10], threshold

dynamics [11], subcritical bifurcations [12], transient dynamics [13], quasimonochromatic

noise [14], crayfish mechanoreceptors [15] and excitable neurons [16]. There have recently

been two topical conferences [17], several general scientific articles [18], and reviews [19,

20], including one [20] that attempts to place SR in historical context. The vast majority

of this huge body of work refers to the classical two-state SR that arises in bistable systems

or threshold dynamics – an inherently low frequency effect restricted to frequencies that

are small in comparison with the system’s reciprocal relaxation time. We now report a

strong manifestation of SR in a completely different type of system. We have observed

a marked noise-induced enhancement of the signal/noise ratio (SNR) for high-frequency

signals in a monostable SQUID model.

The dynamics of the magnetic flux through the periodically driven SQUID loop under

study can be described in terms of a resistively shunted model [21] whose governing

equation, after appropriate changes of variable (see Fig. 1(a) caption), can be written

q̈ + Γq̇ +
dU

dq
= f(t) + A cos(Ωt) (1)

U(q) =
1

2
B(q − qdc)2 − cos q (2)

〈f(t)〉 = 0, 〈f(t) f(t′)〉 = 2ΓTδ(t− t′) (3)

corresponding to classical motion in the potential U(q) under influence of the additive

noise f(t). We will consider the case where the amplitude A of the periodic force is

small, where the constant Γ is also small so that motion in the potential is underdamped,

and where the relative magnitudes of B and qdc are such that the potential has a single

potential well, e.g. as shown in Fig.1(b).

Why should SR occur at all in a system like that described by equations (1)–(3)?

The conventional, intuitively appealing, picture of SR as arising through nearly periodic

fluctuation-assisted jumps between coexisting attractors (the minima of a bistable poten-

tial) is clearly inapplicable — because there is only one attractor. Theories of SR that
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are specific to bistable systems (e.g. [1, 22] are equally inapplicable. The phenomenon

can, however, readily be understood in terms of the more general (universally applicable)

perception of SR [5] in which it is treated as a linear response phenomenon for which

a susceptibility can be defined, in close analogy [20] with the traditional treatments of

other statistical phenomena in physics such as paramagnetism and electric polarisability

[23]. If the SNR is defined in the usual way as the ratio of the intensity of the δ-spike in

the power spectrum at frequency Ω to the height of the smooth fluctuational background

Q(0)(ω) at the same frequency ω = Ω then [5]

SNR =
1

4
A2 | χ(Ω) |2 /Q(0)(Ω) (4)

For equilibrium (white-noise-driven) systems, the complex susceptibility χ(Ω) can be

found from the fluctuation dissipation theorem and the Kramers-Kronig relations [23]

and expressed as

Re [χ(Ω)] =
2

T
P
∫ ∞
0

dα

(
α2

α2 − Ω2

)
Q(0)(α)

Im [χ(Ω)] =
πΩ

T
Q(0)(Ω) (5)

where P denotes the Cauchy principal part and Q(0)(Ω) is the spectral density in the

absence of the periodic force. Perhaps surprisingly, the simplicity, generality and other

advantages of treating SR in terms of linear response theory (LRT) did not win immediate

acceptance. The approach [5] was subsequently vindicated by independent calculations

[24], however, and has also led to the successful prediction of several completely new forms

of SR, one of which was SR in monostable systems [25].

Equations (4) and (5) show that SR will occur in any system for which | χ(Ω) | rises

sufficiently fast with increasing noise intensity or, equivalently, whenever Q(0)(ω) in a

narrow range near ω = Ω does so. In classical bistable SR, the effect comes from the ex-

ponentially fast rise of a peak [26] in Q(0)(ω) centred on zero-frequency, related to the onset

of inter-attractor transitions (which is why classical SR can be considered an inherently

low-frequency effect). In underdamped monostable (or bistable or multistable) oscillators

that have one or more extrema in the variation of their oscillation eigenfrequency ω(E)

with energy E, the SR arises because of the appearance of very sharp zero-dispersion

peaks (ZDPs) [27] in Q(0)(ω) at finite frequency that rise extremely rapidly with noise

intensity. In the initial search [25] for evidence of SR in a monostable system (a tilted
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Duffing oscillator) the effect found was relatively weak: signal amplification was demon-

strated but, because the SNR did not increase, many scientists did not regard the effect as

being properly describable as SR. As we shall see, the SQUID model of equations (1)–(3)

gives rise to a much more striking manifestation, with SNR increases that are comparable

to those seen in classical bistable SR and which can in principle become arbitrarily large

if Γ is made sufficiently small.

The ω(E) dependence calculated for the SQUID equations (1)–(3) with B = 0.3 and

qdc = 0, shown in Fig.1(c), exhibits a local maximum and two local minima within the

range plotted. Each of these extrema may be expected to produce a ZDP in Q(0)(ω)

that could in principle give rise to SR. To test this inference, we have built an analogue

electronic model of equations (1)–(3) with Γ = 1.1 × 10−3, using standard techniques

[28]. When it was driven by quasi-white noise from an external noise generator, with

A = 0, the measured spectral density Q(0)(ω) underwent dramatic changes of shape with

increasing T , as shown in Fig. 2. The three ZDPs appeared sequentially as T “tuned”

the oscillator to different ranges of ω(E). When the weak periodic force A cos(Ωt) was

also added, with Ω chosen to lie close to the frequency of the local maximum of ω(E) and

the corresponding ZDP where | χ | is expected to be strongly noise-dependent, the SNR

was found to vary with increasing T as shown by the data points of Fig. 3. At first the

SNR falls, as one might expect on intuitive grounds; but there follows a range of T within

which the SNR markedly increases with increasing T , i.e. a strong manifestation of SR,

before falling again at very high T .

The theory of these phenomena has been developed on the usual LRT basis: first,

the power spectral densities Q(0)(ω) in the absence of the periodic force were calculated

for different values of T , by means of an algorithm similar to that described previously

[29]; secondly, the calculated Q(0)(ω) was inserted in equations (4),(5) to yield the SNR, as

required. The theory, shown by the full curves of Figs. 2 and 3, is in satisfactory agreement

with the measurements. It demonstrates that the size of the increase in SNR is related to

the magnitude of Γ and that, if Γ is made small enough, there is in principle no limit to

the rise in SNR that can be achieved. Note also that the SQUID parameters in the present

investigations have been chosen so as to provide a monostable potential mainly in order

to emphasize the marked difference between zero-dispersion SR and conventional SR; but

zero-dispersion SR will, of course, also occur in SQUIDs with multi-well potentials. A

fuller discussion of theory and experiment will be presented elsewhere.

There are two kinds of conclusion to be drawn. A general observation is that the
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present results illustrate convincingly the beauty, power, simplicity and generality of the

LRT approach [5] to SR. On this basis we have successfully predicted the occurrence

of SR in the system described by equations (1)–(3) and, furthermore, have been able

to derive a quantitative description of how the SNR varies with noise intensity. But

the LRT perception also shows clearly that SR is not restricted to nonlinear systems

of any particular type: from equations (4),(5), we can confidently anticipate SR in any

equilibrium system whose spectral density of fluctuations Q(0)(ω) contains sharp peaks

that rise rapidly with noise intensity; closely analogous arguments have already been used

to find SR in a nonequilibrium system [10].

A particular conclusion is that zero-dispersion SR is to be anticipated in underdamped

SQUIDs. The optimal frequencies for the SR, i.e. the ZDP frequencies, are tunable over

a very wide range — in principle running from near zero up to a maximum value not

much less than the Josephson plasma frequency — by adjustment of the applied static

magnetic field and/or the inductance of the loop. Although the SNR at the output of an

SR (or any other) device cannot exceed that at the input [20, 30], SR can still be used

to improve the output SNR of signals that are obliged to pass through the device as may

occur in biological systems [15, 16], or which originate within it as in SQUIDs where very

low-level periodic magnetic fields with ambient noise induce currents directly in the loop

[21]. The performance of a high-frequency SR device based on an underdamped SQUID

would probably be at least comparable with that of the low-frequency SQUID-SR device

already successfully demonstrated [7], and it would have the additional advantage of being

tunable over a wide range of frequencies and SQUID parameters.
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Fig. I. (a) The SQUID consists of a closed loop of superconductor containing a Josephson junction (weak link) indicated schemat
ically by the cross. The time evolution of the magnetic flux <P(t) threading the loop, can (21) be described by the equation 
LCd2q/dr2 +(L/RN)dq/dr+q+f3sin(q) =qe, where: q= 27r<P/<Po; qe =27r<Pe/<Po; /3=27rlle/<Po;<P is the full magnetic flux through 
the loop; <Pe is the flux of the external magnetic field; <Po = h/2e is the flux quantum; L is the inductance of the loop; and C, RN and le are 
respectively the capacitance, normal resistivity and critical supercurrent of the junction. Taking account of a noisy component <PN ( T) (arising 
from noise in the external flux, to which we can formally add contributions from thermal fluctuations within the loop itself and from noise 
in the Josephson junction), a constant component <Pde and a small periodic signal <P, cos( w,r), <Pe = <P0 ( r) =<Pde+ <P, cos( w,r) + <PN( r), 
(<PN( r)<PN( r')) = 2D8( r- r'). Introducing the normalised variables: t = wpr. r = I /wpRNC. n = w,/wp. A= <P,/ Lle, qde = 27r<Pde/<Po, 

T = 27rRND/<PoleL2, wp = J27rlc/C<Po, we obtain Eqs. (I), (2) with B = 1//3. (b) The potential of Eq. (2) with B = 0.3,qde = 0. 
(c) Calculated variation of eigenfrequency w(E) with energy E for the potential shown in (a). 
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Figure 1: (a) The SQUID consists of a closed loop of superconductor containing a Joseph-

son junction (weak link) indicated schematically by the cross. The time evolution of the

magnetic flux Φ(t) threading the loop, can [21] be described by the equation LC d2q
dτ2

+

L
RN

dq
dτ

+q+β sin(q) = qe where: q = 2πΦ/Φ0; qe = 2πΦe/Φ0; β = 2πLJc/Φ0; Φ is the

full magnetic flux through the loop; Φe is the flux of the external magnetic field; Φ0 = h/2e

is the flux quantum; L is the inductance of the loop; and C,RN and Jc are respectively the

capacitance, normal resistivity and critical supercurrent of the junction. Taking account of

a noisy component ΦN(τ) (arising from noise in the external flux, to which we can formally

add contributions from thermal fluctuations within the loop itself and from noise in the

Josephson junction), a constant component Φdc, and a small periodic signal Φs cos(ωsτ),

Φe ≡ Φe(τ) = Φdc + Φs cos(ωsτ) + ΦN(τ), 〈ΦN(τ)ΦN(τ ′)〉 = 2Dδ(τ − τ ′). Introducing

the normalised variables: t = ωpτ, Γ = 1/(ωpRNC), Ω = ωs/ωp, A = Φs/(LJc),

qdc = 2πΦdc/Φ0, T = 2πRND/(Φ0JcL
2), ωp =

√
(2πJc)/(CΦ0), we obtain Eqs. (1),(2)

with B ≡ 1/β. (b) The potential of Eq.(2) with B = 0.3, qdc = 0. (c) Calculated variation

of eigenfrequency ω(E) with energy E for the potential shown in (a).
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Fig. 2. Spectral density of fluctuations Q(w) measured (jagged 
lines) for the analogue electronic model of Eqs. ( l )-(3) with 
A = 0, B = 0.3 , qdc = 0, compared with the calculated behaviour 
(smooth curves) , for three noise intensities T. One ZDP is seen for 
T = 1.0 and three for T = 3.1. Note the differing ordinate scales. 
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may be expected to produce a ZDP in Q<0l ( w) that 
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Figure 2: Spectral density of fluctuations Q(ω) measured (jagged lines) for the analogue

electronic model of Eqs. (1)–(3) with A = 0, B = 0.3, qdc = 0, compared with the

calculated behaviour (smooth curves), for three noise intensities T . One ZDP is seen for

T = 1.0, and three for T = 3.1. Note the differing ordinate scales.

10



222 I.Kh. Kauftnan et al./ Physics Letters A 220 ( 1996) 219-223 

10 

SNR 

5 

2 4 
T 

6 8 

Fig. 3. Signal/noise ratio (SNR) measured (data points) 
for the analogue electronic model of Eqs. (I )-(3) with 
A= 0.016,fl = 0.62,B = 0.3,qctc = 0, compared with the be
haviour predicted (full curve) by LRT, Eqs. ( 4), ( 5), using the 
calculated spectral densities Q ( w) of which three examples are 
plotted as dashed lines in Fig. 2. 

data points of Fig. 3. At first the SNR falls, as one 
might expect on intuitive grounds; but there follows a 
range of T within which the SNR markedly increases 
with increasing T, i.e. a strong manifestation of SR, 
before falling again at very high T. 

The theory of these phenomena has been developed 
on the usual LRT basis: firstly, the power spectral den
sities Q< 0 l ( w) in the absence of the periodic force 
were calculated for different values of T, by means of 
an algorithm similar to that described previously [ 29]; 
secondly, the calculated Q<0l ( w) was inserted in Eqs. 
( 4), ( 5) to yield the SNR, as required. The theory, 
shown by the full curves of Figs. 2 and 3, is in satis
factory agreement with the measurements. It demon
strates that the size of the increase in SNR is related 
to the magnitude of r and that, if r is made small 
enough, there is in principle no limit to the rise in SNR 
that can be achieved. Note also that the SQUID pa
rameters in the present investigations have been cho
sen so as to provide a monostable potential mainly 
in order to emphasize the marked difference between 
zero-dispersion SR and conventional SR; but zero
dispersion SR will, of course, also occur in SQUIDs 
with multi-well potentials. A fuller discussion of the
ory and experiment will be presented elsewhere. 

I 

There are two kinds of conclusion to be drawn. A 
general observation is that the present results illustrate 
convincingly the beauty, power, simplicity and gener
ality of the LRT approach [5] to SR. On this basis 
we have successfully predicted the occurrence of SR 
in the system described by Eqs. ( 1)-(3) and, further
more, have been able to derive a quantitative descrip
tion of how the SNR varies with noise intensity. But 
the LRT perception also shows clearly that SR is not 
restricted to nonlinear systems of any particular type: 
from Eqs. ( 4), ( 5), we can confidently anticipate SR 
in any equilibrium system whose spectral density of 
fluctuations Q< 0l ( w) contains sharp peaks that rise 
rapidly with noise intensity; closely analogous argu
ments have already been used to find SR in a nonequi
librium system [ 10]. 

A particular conclusion is that zero-dispersion SR 
is to be anticipated in underdamped SQUIDs. The op
timal frequencies for the SR, i.e. the ZDP frequencies, 
are tunable over a very wide range - in principle run
ning from near zero up to a maximum value not much 
less than the Josephson plasma frequency - by adjust
ment of the applied static magnetic field and/ or the in
ductance of the loop. Although the SNR at the output 
of an SR (or any other) device cannot exceed that at 
the input [20,30], SR can still be used to improve the 
output SNR of signals that are obliged to pass through 
the device as may occur in biological systems [ 15, 16], 
or which originate within it as in SQUIDs where very 
low-level periodic magnetic fields with ambient noise 
induce currents directly in the loop [21]. The perfor
mance of a high-frequency SR device based on an un
derdamped SQUID would probably be at least compa
rable with that of the low-frequency SQUID-SR device 
already successfully demonstrated [7], and it would 
have the additional advantage of being tunable over a 
wide range of frequencies and SQUID parameters. 
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