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Abstract. The distribution of paths for large fluctuations away from a stable
state has been investigated, theoretically and by analog experiment. We have
found critical broadening of the distribution of the paths coming to a cusp point
representing the simplest generic singularity in the pattern of most probable
(optimal) fluctuational paths in a non-equilibrium system. The critical behavior
can be described by a Landau-type theory.

A wide variety of physical phenomena, ranging from nucleation at phase
transitions to failures of electronic devices, are driven by large rare fluctua-
tions. In many cases the fluctuating systems of interest are far from thermal
equilibrium. It was recognized by Onsager and Machlup [1] that an insight
into the physics of large fluctuations can be gained from an analysis of the dis-
tribution of fluctuational paths along which the system moves to a given state.
This distribution is a fundamental characteristic of the fluctuation dynamics,
and its understanding paves the way to controlling the fluctuations. It peaks
sharply at the optimal (i.e. most probable) path; we report below the first
experimental observations of this pattern.

In thermal equilibrium, with white noise, the optimal paths are time-
reversed deterministic paths [2]. But this is not true for nonequilibrium
systems, because they lack time reversibility. The statistical distribution of
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nonequilibrium systems may have singular features [3], and so may the pat-
tern of optimal paths. Optimal paths represent the extrema of a variational
problem. A generic property of the pattern of extreme paths is the occurrence
of caustics [4], in general starting in pairs from a cusp (focal) point: see Fig. 1.

Caustics and cusps in the pattern of extreme paths have been found nu-
merically [5] and investigated analytically [6]. Note that contributions to the
probability distribution from different paths are all positive: interference ef-
fects do not occur and the singularities in the pattern of optimal paths are
therefore different from those known for wave fields [6]. Although optimal
fluctuational paths do not encounter caustics, but they can focus into cusp
points. Use of the prehistory probability density [7] (see below) enables us to
reveal and analyze the singular behavior, theoretically and experimentally [8].

SINGULAR BEHAVIOR OF THE DISTRIBUTION
OF FLUCTUATIONAL PATHS

The simplest system that displays singularities of optimal paths is an over-
damped Brownian particle driven by a periodic force K(q; t),

q = K(q; t) + ~(t), K(q; t) = K(q; t + T),
(~(t)~(t')) = D8(t - t').

For small noise intensities D, within a rela.'Cationtime Tr the system (1) will
approach the stable periodic state q(O}(t), q(O} = K(q(O}; t), q(O}(t + T) =
q(O}(t), and a periodic stationary probability distribution will be formed in the
basin of attraction to this state.

Analysis of the prehistory probability density, Ph(q, tl qj, tj) [7] enables the
distribution of paths in large fluctuations to be investigated and visualized. It
is the conditional probability density for a system that had been fluctuating
about q(O)(t) for a time greatly exceeding Tr, and arrived to the point qj at
the instant tj, to have passed through the point q at the instant t (t < tj). It
can be written as a path integral:

Ph(q,tlqj,tj) = const x lq
(t!)=q! 1Jq(t')exp [- S[qD(t)]]

q( ti )~q(O) (ti)

x8(q(t) - q), ti -+ -00, J dqph(q,tlqj,tj) = 1 (2)

Here, S[q] determines the probability distribution over the paths of a Marko-
vian system. To lowest order in the noise intensity D it takes the form of
the action functional for an auxiliary dynamical system with the Lagrangian
L(q,qjt) (cr. [9]):

S[q(t)] = [it! dtL(q, qj t), L(q, q; t) = ~[q - K(qj tWo (3)



FIGURE 1. Extreme paths of (1) for K = q - q3 + 0.264 cos 1.2t. The stable state q(O) (t)
from the vicinity of which the paths start is shown by the dashed line. The bold line
emanating from the cusp point is the switching line calculated for D -t O. The data points
show the maxima of the prehistory probability distribution measured for three final points
away from the cusp. Reduced variances of the corresponding Gaussian distributions (72

(displaced along the ordinate axis for clarity) are comp¥ed with the theory in the inset.

The optimal (most probable) fluctuational path qopt(tl q/, t /) along which the
system arrives at q/ at time t/ is found by solving the variational problem

8S[q] = 0 (I )8q(t) , qopt t/ q/, t/ = q/,

qopt(til q/, t/) -+ q(O) (ti) for ti -+ -00.

But Eq.(4) describes extreme fluctuational paths, which are not necessarily
the optimal paths that provide the global minimum of the action S[q] and are
therefore of physical significance. Extreme paths q(t) as given by (3), (4) can
intersect, since a dynamical system with the Lagrangian (3) is nonintegrable.
In contrast, generically only one optimal path can arrive at a given point.

The shape of the prehistory probability density Ph (2) can be found by
expanding the coordinate q(t) into the orthonormal functions 1/Jn(t) which
diagonalize the second variation of the action:

q(t) = qopt(tlq"t/) + l:an1/Jn(t).
n

It follows from (3) that the functions 1/Jn(t)satisfy a Schrodinger-type equation

.. [82K 182K2]-1/Jn + V(t)1/Jn = An1/Jn,V(t) = 8 8t + 2 -8 2
q q opt



FIGURE 2. Generation of singularities: (middle plot) LM in the space (t,q,p) with two
folds; (lower plot) projection of LM onto (t, q) plane; (upper plot) multivalued action surface

S(q, t).

with the boundary conditions 7/Jn(ti) = 7/Jn(tf) = 0 (in (6) the derivatives of
K == K(q; t) are evaluated for q = qopt(t! qf, tf )).

For trajectories q(t) close to the optimal path, the an in (5) are small, and
the action S[q(t)] is quadratic in an (unless (qf,tf) is close to the cusp: see
below),

S[q(t)] = S(qf,tf) +s({an}), s({an}) = ~LAna~,
n

S(qf,tf) == S[qopt(tlqf,tf)]'

If one writes the path integral (2) as an integral over all an and substitutes
Eqs. (5), (7) into (2), one obtains

I) (
[q-qOPt(tlqf,tf)]2)

Ph(q,t qf,tf =Mexp - 2Da2(tlqf,tf) ,

a2(tlqf,tf) = LA;;l7/J~(t), M = (2rrDa2)-1/2. (8)
n

Near the maximum, the distribution Ph is evidently Gaussian in the distance of
(q, t) from the optimal path qopt(tl qf, tf) (cf. [7]). Therefore by investigating
Ph one can find directly the optimal path itself, and also analyze the shape
of the tube of paths arriving at a given point (qf, tf), Away from the cusp
point, the width of this tube is ex D1/2• The reduced width of the distribution
(8) a(tl qf, tf) is independent of qf, tf for tf - t :» Tr: it gives the reduced
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FIGURE 3. Cross-sections of the prehistory probability distribution calculated (curves)
and measured (points) for fluctuations to the cusp point in Fig. 1 ((qc ~ -0.70, tc ~ 7.69),
for three values of t. The distribution is Gaussian very close to, and far from, the cusp; but
it is critically broadened and strongly non-Gaussian at intermediate values of t.

width of the stationary Gaussian distribution about q(Ol(t). Experiments on
an analog electronic model of (1), based on astandard technique [10},have
yielded results which are in a very good agreement with Eqs. (4), (8); see
Fig. 1 (the explicit form of a(tl qf' t f) is given in [8]).

Eq.(8) does not apply if the final point (qf, tf) is close to a singularity of the
pattern of extreme paths [8]. The origin of the singularities can be understood
from topological arguments [6]: see Fig. 2. The trajectories of the auxiliary
Hamiltonian system (3) form a Lagrangian manifold (LM) in the phase space
of the system. Projections of these trajectories onto the (q, t) plane are optimal
paths. The Lagrangian manifold in the space (t,q,p) is also shown: note that
p == 8L/8q = q-K(q, t) is a momentum of the au..xiliarysystem corresponding
to the coordinate q. Generically the LM can have folds emerging in pairs from
the cusp, and it is their projections onto the plane (q, t) that creates the
caustics. Caustics and cusp points are the only generic structurally stable
singularities of the pattern of extreme paths of S[q] (3) [llJ. Since caustics
may not [6] be observed in the pattern of optimal paths, it is particularly
interesting to investigate the distribution Ph near a cusp point (qc, tc). If the
final point (qf, t f) coincides with (qc, tc), then the smallest eigenvalue AO = 0
[4Jand Eq. (8) does not apply; in particular, a diverges for AO = o.

At the cusp point it is necessary [4] to keep in the expansion of the action
s (7) the higher-order terms in the amplitude ao of the "soft mode" 'l/Jo(t).
Detailed analysis shows [8] that, when (qf, tf) approaches (qc, tc), fluctuations



about the optimal path become strongly non-Gaussian. The characteristic
width of the distribution, tv D1/4, is determined by the soft mode 'l/Jo(t). The
measured and calculated evolutions of the distribution with t - tc are in good
agreement: see Fig. 3.

In conclusion, we have used general topological arguments, and the concept
of the prehistory probability distribution, to analyze singular features of the
pattern of optimal fluctuational paths in systems away from thermal equilib-
rium. We have described theoretically, and observed, critical broadening of
the distribution of paths arriving in the vicinity of a cusp point.
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