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Abstract. For a system driven by coloured noise, we investigate the activation en-
ergy of escape, and the dynamics during the escape. We have performed analogue
experiments to measure the change in activation energy as the power spectrum of the
noise varies. An adiabatic approach based on path integral theory allows us to calcu-
late analytically the critical value at which a phase transition in the activation energy
occurs.

INTRODUCTION

Gaussian white noise is a mathematical idealization which applies to a limited
number of physical situations where noise has a broad power spectrum. More
realistic models of random forces have also been proposed, and one of them, which
is in some sense opposite to the white noise model, is quasi-monochromatic noise
(QMN) [1,2]. In QMN, most of the power is concentrated within a relatively narrow
range of frequencies.

The problem of activated escape and diffusion in far from equilibrium systems
under the influence of different kinds of noise is of general interest. It has been
attracting increasing attention in diverse scientific contexts, from crystal growth
and current-induced desorption from crystal surfaces, to current switching in mi-
crostructures, and biological applications.

For an overdamped system in a double well potential driven by QMN, a bifur-
cation in the optimal path (the optimal trajectory for departure from an initial
attractor) was found theoretically [3], leading to the prediction of a marked reduc-
tion in the mean escape time [1]. As we show below, related effects which involve
the onset of focusing singularities and caustics, were observed in models with more
than one degree of freedom acted upon by white noise [4].
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FIGURE 1. Measured and calculated values of the action 5* as a function of F for the symmet-
rical potential with CJQ = 10. The squares represent experimental data from analogue simulations,
the diamonds are derived by solution of the nonadiabatic Hamiltonian, and the circles are ob-
tained by solution of the adiabatic theory. The horizontal line at S = 0.25 indicates the white
noise solution, and the line through the origin represents a least-squares fit to the adiabatic theory
for small F.

In the present paper we develop an adiabatic theory for a QMN-driven system in
order to study the bifurcation in the activation energy which is, in many respects,
closely analogous to a phase transition. We show that this is a "continuous" tran-
sition which corresponds to spontaneous breaking of time symmetry of the most
probable paths for escape from a metastable state. We present the first experimen-
tal demonstration of this transition through use of analogue electronic simulations
[5].

THE MODEL

A simple picture of QMN is the noise which results from filtering white noise
through a harmonic oscillator filter with natural frequency u;0 and damping F

- s ) . (1)

Here, £(t) represents Gaussian white noise of zero mean and intensity D, and we
assume that F <C ̂ o-
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The stochastic dynamics of the overdamped QMN-driven system that we consider
is given by

i + U'(x) = f ( t ) (2)

where U(x) is an arbitrary potential that we will assume to have more than one
minimum. For weak noise /(t), the system mostly performs small fluctuations
about one of the potential minima but, occasionally, a large fluctuation occurs in
which the system switches from one potential well to another. The probability
Pnm of a transition n —} m, where n and m are two minima, can be obtained [1]
through use of a path-integral technique [6,7]. The escape rate when D is small
can be found up to a prefactor as

P[xn^m] = Nexp(~S[xn^m(t)}/D) (3)

The idea is to find the path x(i) which minimises the action 5'. This path is
the solution of a variational problem which relates the optimal realization of the
force £(£) (with a probability density functional which can be immediately found
from (1)) and the trajectory of the coordinate (2), subject to the constraint that
this trajectory starts at the potential minimum and ends at the saddle [1]. The
action is the minimal value of the corresponding variational functional. We will
call the minimum action the activation energy of escape, by analogy with white
noise driven systems. The variational equations can be reduced to a sixth order
ordinary differential equation for a?(t), the Euler-Lagrange equation. Einchcomb
and McKane [3] showed that the problem could be recast in Hamiltonian form,
which proves to be convenient both for accurate numerical calculation of the action
and also for visualisation purposes. The Hamiltonian is

H ( x , p ) = {woW
x2U(x1}") + x3U"(x1) + z2

2t/'"(zi)} + Piz2 + P2Z3 (4)

The phase space is six dimensional, because the Euler-Lagrange equation is sixth
order. The components of x turn out to be rather simple in form

x = (xi, x2, x3] = ( x , x, x] (5)

The expressions for the generalised momenta are more complicated and we refer
the interested reader to [3].

If F is small, the motion of a particle driven by QMN consists of rapid oscillations
superimposed on a slow motion of the centre of oscillations. This suggests [1] that
we write

x ( t ) = x0 + x+e*wot + x-e~iwot (6)

and replace U(x) by an effective potential V(;TO, #+,#-) defined as
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V = — /2V(>o + x+e** + x.e-^di? (7)
Z7T JO

In this picture we obtain an effective adiabatic Hamiltonian

l-pl-^xl, (8)

and the phase space is reduced from six to four dimensions. As the phase of the
oscillations is arbitrary, we can set x+ = x^ in deriving Eq. (8).

A remarkable feature of the adiabatic Hamiltonian is its symmetry with respect
to the transformation x+ —> — x+, p+ —± — p+. This symmetry follows from the form
of the potential V, which depends only on the product x+x_ = xjj_. Therefore there
always exists an extreme trajectory of (8) with x+ = p+ = 0. However, besides
this trajectory, there may exist trajectories with broken symmetry, where x+ ^
0. Clearly such trajectories emerge in pairs. From (6), they correspond to fast-
oscillating solutions x(i) of the original variational problem. When they provide
the minimum to the action functional, this signals breaking of the time symmetry.
Since the phase of fast oscillations is arbitrary, this bifurcation is analogous to a
continuous symmetry-breaking transition.

THE DOUBLE WELL POTENTIAL

We consider the simple double-well potential

U(x) = --x + -x (9)

which has minima at x = ±1 and a saddle at x = 0.
For this potential, we were able to confirm the numerical results reported by

Einchcomb and McKane. We have performed the first experimental tests of the
theory by measurement of the activation energy using an analogue circuit. The
results for this symmetrical case are plotted in Figure 1.

There is a critical value of F below which our adiabatic equations yield two
solutions that provide extrema for the action. One of them gives a value for the
action identical with that for white noise; the other corresponds to oscillatory
motion. We will refer to them as the white solution and the coloured solution
respectively. Above the critical value of F, we can see only the white solution.
Einchcomb and McKane gave an estimate of Fc ~ 0.46 for the critical value at which
the bifurcation in the optimal path occurs. The analytical result which follows from
(8) is Fc = 0.5 [9], a value which we also found in analogue simulations [10].

Our numerical solution of Hamilton's equations utilised a shooting technique.
We followed a large number of trajectories emanating from a small region of phase
space surrounding the potential minimum at x = — 1. Paths which passed through
the saddle at x = 0 were identified as optimal paths and the corresponding action
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FIGURE 2. Optimal trajectories for T = 0.3

was calculated. Three such paths can be seen in Figure 2: the x-axis and the two
bounding curves. The majority of initial conditions give rise to paths which do not
reach x = 0 and therefore do not result in interwell transitions. Figure 2 shows
the rather complex topology of these paths, with a cusp being clearly visible at
(so, s+)« (-0.22,0).

Similar behaviour was found in the system which Maier and Stein introduced in
their analysis of the escape problem in non-equilibrium systems [4]. They describe
the motion of an overdamped particle in a two-dimensional field. The particle is
subject to additive isotropic white noise and its position on the (x, y) plane satisfies
the coupled Langevin equations

x = x — x3 — axy3 + fx(t)
y = -y - X

2y + fy(t) (10)

Since the field is not potential (unless a = 1) the dynamics do not satisfy detailed
balance. Clearly, the system (10) has the symmetry y -^ — y, which makes it
similar to the QMN-driven system. We note that the QMN-driven system provides
a natural physical realization of the system discussed by Maier and Stein.
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CONCLUSIONS

We have introduced and studied, theoretically and through analogue experi-
ments, fluctuations in a system driven by QMN. We have been able to develop an
adiabatic theory and to clarify the behaviour of the activation energy for a bistable
potential as we vary F keeping the frequency UJQ constant. The theory has made it
possible to understand the nature of the transition between the known regimes of
large fluctuations, which can be identified as a time symmetry-breaking transition.
The symmetry-breaking in the time domain is similar to the symmetry-breaking in
space observed in the system investigated by Maier and Stein.

REFERENCES

1. Dykman, M.I., Phys. Rev. A 42, 2020 (1990).
2. Dykman, M.I., McClintock, P.V.E., Stein, N.D. and Stocks N.G., Phys. Rev. Lett.

67, 933 (1991); Dykman, M.I., Mannella R., McClintock, P.V.E., Stein, N.D. and
Stocks, N.G., Phys. Rev. E47, 3996 (1993).

3. Einchcomb, S.J.B. and McKane, A.J., Phys. Rev. E 51, 2974 (1995).
4. Maier, R.S. and Stein, D.L., Phys. Rev. Lett. 71, 1783 (1993); Phys. Rev. E48, 931

(1993); Maier, R.S. and Stein, D.L., J. Stat. Phys. 83, 291 (1996).
5. Luchinsky, D.G., McClintock, P.V.E. and Dykman, M.I., Rep. Prog. Phys. 61, 889

(1998).
6. Onsager, L., and Machlup, S., Phys. Rev. 91, 1505 (1953); Feynman, R.P., and

Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965;
Dykman, M.I., and Krivoglaz, M.A., Soviet Phys. JETP 50, 30 (1979).

7. Bray, A.J. and McKane, A.J., Phys. Rev. Lett. 62, 493 (1989); McKane, A.J., Phys.
Rev. A 40, 4050 (1989); McKane, A.J., Luckock, H.C. and Bray, A.J., Phys. Rev. A
41, 644 (1990); Bray, A.J., McKane, A.J. and Newman, T.J., Phys. Rev. A 41, 657
(1990).

8. Einchcomb, S.J.B. and McKane, A.J., Phys. Rev. E 49, 259 (1994).
9. Arrayas, M. et al, to be published.

10. Arrayas, M., Optimal Paths and Large Fluctuations, PhD thesis, Lancaster Univer-
sity, 1998.

47






