Lancaster EPrints

Noise induced escape from different types of chaotic attractor.

Khovanov, I. A. and Anishchenko, V. S. and Luchinsky, D. G. and McClintock, Peter V. E. (2000) Noise induced escape from different types of chaotic attractor. In: Stochastic and Chaotic Dynamics in the Lakes. American Institute of Physics, Melville, NY, pp. 48-53. ISBN 1-56396-915-7

PDF (AIPlakes2000NoiseInduced.pdf)
Download (411Kb) | Preview


    Noise-induced escape from a quasiattractor, and from the Lorenz attractor with nonfractal boundaries, are compared through measurements of optimal paths. It has been found that, for both types of attractor, there exists a most probable (optimal) escape trajectory, the prehistory of the escape being defined by the structure of the chaotic attractor. For a quasi-attractor the escape process is realized via several steps, which include transitions between low-period saddle cycles co-existing in the system phase space. The prehistory of escape from the Lorenz attractor is defined by stable and unstable manifolds of the saddle center point, and the escape itself consists of crossing the saddle cycle surrounding one of the stable point-attractors.

    Item Type: Contribution in Book/Report/Proceedings
    Additional Information: Proceedings of the Conference on Stochastic and Chaotic Dynamics (STOCHAOS), Ambleside, August, 1999.
    Subjects: Q Science > QC Physics
    Departments: Faculty of Science and Technology > Physics
    Faculty of Science and Technology > Engineering
    ID Code: 31943
    Deposited By: Professor P. V. E. McClintock
    Deposited On: 08 Mar 2010 12:13
    Refereed?: No
    Published?: Published
    Last Modified: 07 Jan 2015 20:33
    Identification Number:

    Actions (login required)

    View Item