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Abstract. Escape from a metastable potential is considered on time-scales less than
are needed for the creation of quasi-equilibrium within the well. It is shown that the
escape flux may then depend exponentially strongly, and in a complicated way, on
friction and time.

INTRODUCTION

In his celebrated paper [1], Kramers considered the flux from a metastable po-
tential well (Fig. l(a)) induced by weak noise. Over the last 60 years, there have
been many developments and generalizations of the Kramers problem (see [2,3]
for major reviews). However both Kramers and most of those who followed him
considered the quasi-stationary flux, i.e. the flux that occurs on a time-scale ex-
ceeding the time needed for the formation of a quasi-stationary distribution within
the metastable well. But what happens on shorter time-scales?

The process of formation of the quasi-equilibrium differs markedly depending on
whether there are, or are not, internal barriers within the metastable part of the
potential: c.f. Figs. l(b) and (a) respectively. In the latter case, the formation time
is of the order of an optimal fluctuation duration topt (equal to the characteristic
relaxation time) whereas, in the former case, the formation proceeds via two distinct
stages: first, quasi-equilibrium is formed within the initial well, much as in the
single-well case; secondly, equilibrium between different wells is established, which
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FIGURE 1. Single-well (a) and double-well (b) metastable potentials.

is an exponentially longer process. Correspondingly, escapes for these two cases
occur quite differently.

ESCAPE ON DIFFERENT TIME-SCALES

Fig. 2 presents some typical results from a computer simulation of the escape
flux from the potential shown in Fig. l(b). The system is put initially into the
bottom of well-1, and then it follows the stochastic equation

(i)
=0,

U(q) = |0-
(f(t)f(t'))=2TT6(t-t'),

at q<qi=4.5,
at q>qt,

until either the coordinate limit qi or a (rather arbitrary) time limit t\ = 1000 is
reached, after which the system is reset to the bottom of the well-1 and everything
is repeated. Once the statistics are deemed adequate, the flux

(2)Nte:

is computed as a function of time. Here, A^reset is the overall number of resettings
and AJV(t) is the number of escapes that occur in the interval [t,t + At] where
At is chosen to be much larger than the typical interval between two successive
escapes, but much smaller than characteristic time-scales at which the flux may
change significantly.

One can resolve in Fig. 2 all the stages mentioned above: an initial rapid growth
of J on a time-scale ~ topt; then a slow decay over a time ts (related to the formation
of quasi-equilibrium between wells 1 and 2); and finally an even slower exponential
(quasi-stationary) decay with a time-scale tqs ^> ts.
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FIGURE 2. Simulations of the escape flux J(t) (2) (thin jagged line) for the model (1) (see
U(q) in Fig. l(b)) with F = 0.15, T = 0.4, compared with approximations of J(i) by Eq. (3) in
which ai2, «2i and aqs are calculated by the Kramers-Melnikov formula [3]. The thick full line is
for arises = ags(l-|-(QiQ2~1 exp((C/i — U2)/T))±l)/(l + (m~1 exp(Ar5's2^.Si/^)):tl), where QI and
f^2 are frequencies of eigenoscillation in the bottom of wells 1 and 2 respectively; k is equal to 1
and -1 for ranges F providing noise-free trajectories 82 ̂  2 and 82 ̂ i 1 respectively; the action
Ss2->-Si f°r the transition 82 —> Si is calculated from the theory [5]; m is the only adjustable
parameter, related to the prefactor in (4) (here, m rc 0.9). For comparison, the dashed line is for:
Qfl3 = 0, C*23 = OtqsQ + Of21/Of 12)-

The flux J(i) can be well-described in terms of kinetic equations for the well
populations, using the concept of inter-attractor1 transition rates a^ (c.f. [4]):

J(t) = (3)

> ^opt-

The significance of the two terms in (3) is easily understood (c.f. Fig. 2). The first
one, corresponding to direct escapes (i.e. not via the bottom of well-2), dominates
during the first and second stages; whereas the second term, corresponding to
indirect escapes, dominates in the third stage. The asymptotic part of this latter
flux, a g 5 exp(— t / t q s ) , is called the quasi-stationary flux.

Although the coefficients ai2, a2i, aqs can readily be obtained from the Kramers-
Melnikov theory [3] 2, ai3,a23 cannot be found [3] in this way. One of us [5] has
developed a theory of ai3, a2s based on the concept of optimal fluctuation. The
latter suggests seeking the escape rate, e.g. ais, in the form

(4)

Here the action S does not depend on T, whereas the prefactor P depends relatively
weakly both on T and on other parameters.

-1) For the sake of brevity, we refer to region 3 as an "attractor" too.
2) Note that they (as well as a quasi-stationary flux) depend on friction weakly.
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FIGURE 3. Dependence of the action for the transition 82 —>• Si on the damping constant F,
at time-scales t ^> <opt, in the system (1) (see U(q) in Fig. l(b)). The solid line is calculated
numerically from the theory [5]. The horizontal and vertical dashed lines indicate respectively the
upper limit for Ss2->-Si and the value of F at which the cutoff of direct transitions 82 —> Si and
escapes 1—^82 occurs. The crosses and squares represent digital and analogue simulation data
respectively. The inset shows an expanded plot of the region of small damping.

The physics and theory of the direct escape process are essentially different on
time scales t ^> £opt, t ~ topi and t <C topi . We consider these in turn.

Long time-scale: t ^> topt. On this time-scale, ai3 does not depend on time, but
its dependence on friction is exponentially strong at sufficiently small temperatures
(c.f. Fig. 3). Moreover, it undergoes oscillations3 in the underdamped range, and
can have a cutoff at certain friction F0 from the moderate-to-high friction range
(i.e. ais = 0 at F > TO). The oscillations are related to an alternation between
ranges of friction in which a noise-free trajectory from the external saddle 82 goes
into either well-1 or well-2. The cutoff at large F is related to the absence of turning
points in the noise-free trajectories 82 ^4 2, Si ^4 2. Our experimental technique
enables a 13 to be measured with sufficient accuracy to observe these interesting
features, and experiment and theory are (Fig. 3) in satisfactory agreement.

Medium time-scale: t ~ topt. The escape flux then becomes non-stationary
because the most probable escape path (MPEP) now depends on a given escape
time t which it should provide, so that action along the MPEP becomes dependant
on t, thus, leading to a strong (but smooth) drop of J(t) as t decreases. This is
equally relevant both to single-well and multi-well metastable potentials, and to
inter-attractor transition rates in multi-well stable potentials. In earlier studies, an
analytic solution was presented [6] for the overdamped regime in a piece-wise linear
potential; and an asymptotic theory was developed [7] for an arbitrary single-well
potential in the strongly underdamped and overdamped regimes.

Short time-scales: t <C topi. Apart from its intrinsic interest and fundamen-

3) Typically, the scale of oscillation of S is small in comparison with C/s2 — U\ (the latter corre-
sponds to the Arrhenius dependence of a conventional quasi-stationary flux on T [1]- [3]) but, in
some cases, it can be equal or even greatly exceed U$2 — U\ [5].
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FIGURE 4. Calculated dependence (solid line) of the action S on the time t of escape from the
bottom of the (inset) potential well U(q) = {q^ ^ q<^j (T = 0.05). The dashed line in the
main figure shows the large-time asymptote level, equal to the barrier height Af7.

tal significance, this limit is also highly topical given the advent of experimental
techniques that allow one to study processes related to fluctuations on exceedingly
short time-scales: see e.g. [8] in which the dynamics of a chemical reaction is stud-
ied on a femtosecond time-scale. We have found explicitly the MPEP and action
for a particular model (see inset of Fig. 4). Fig. 4 shows how the action depends on
the escape time from the bottom of the well (i.e. from the stable stationary state of
the noise-free system) to beyond the barrier. It indicates that the flux should grow
with time in a step-wise manner (exponentially sharply) until a quasi-stationary
value is reached at t ^> topi. The higher a step is, the larger the number of turning
points in the MPEP (at large £, the MPEP coincides with the noise-free trajectory
relaxing from the saddle into the well, but reversed in time). The physical origin
of the steps lies in the oscillatory character of noise-free trajectories at small and
moderate friction. Thus, we expect it to be a general phenomenon, arising in both
single-well and multi-well potentials. It is interesting to note also that, in the more
formal problem of a transition for a given time between two given states, neither
of which is stable, the transition flux J(i) generally undergoes exponentially strong
oscillations at t <C topt .

CONCLUSIONS AND OPEN PROBLEMS

Escape from a metastable potential differs markedly after and before the forma-
tion of quasi-equilibrium within the metastable part of the potential. The formation
process is essentially different for single-well and multi-well metastable potentials.
In the former case (Fig. l(a)), the formation time is relatively short, namely of the
order of an optimal fluctuation duration, whereas it is exponentially longer in the
latter case (Fig. l(b)).

Escape on this latter time-scale has been studied in our work for the first time,
both theoretically and experimentally: unlike the conventional quasi-stationary
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flux, the escape flux on this time-scale depends on friction exponentially sharply,
moreover, it can undergo oscillations in the underdamped range and a cutoff in the
overdamped range. (Fig. 3).

For t <C topt, we have demonstrated theoretically for the first time that the
escape flux depends exponentially strongly on both friction and time; moreover, if
the friction is small or moderate, it grows with time in a step-wise manner (Fig. 4).

Open problems yet to be addressed include -

• To study theoretically and experimentally the dependence of the pre-
exponential factor in the escape probability from a multi-well metastable po-
tential on F, T and U(q): it is as fundamental a problem as that for the
single-well case [1]- [3], but more difficult.

• To test experimentally the prediction that, for small to moderate friction, the
escape flux may grow in a step-wise manner for t <C £opt, and to study the
problem in a more general context, including an arbitrary potential, a pre-
exponential factor, inter-attractor transitions in multi-well stable potentials.
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