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Symmetry Breaking of Fluctuation Dynamics by Noise Color
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Activated escape is investigated for systems that are driven by noise whose power spectrum peaks at
a finite frequency. Analytic theory and analog and digital experiments show that the system dynamics
during escape exhibit a symmetry-breaking transition as the width of the fluctuational spectral peak is
varied. For double-well potentials, even a small asymmetry may result in a parametrically large difference
of the activation energies for escape from different wells.
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The problem of diffusion and activated escape in sys-
tems away from thermal equilibrium is attracting increas-
ing attention in diverse contexts, from crystal growth [1]
to switching of current in microstructures [2], modes in
lasers [3], and biological systems [4]. In many cases the
system of interest is nonequilibrium because it is driven
by nonthermal noise. Such noise can give rise to new and
interesting phenomena, e.g., the onset of directed diffusion
in a spatially periodic potential (ratchet) [5], in which case
the diffusion rate and direction depend on the shape of the
noise power spectrum F�v� [6,7].

One would expect the escape probabilities to be deter-
mined by F�v� for v & t21

r , vy where tr and vy are the
characteristic relaxation time and vibrational frequency of
the system. However, the situation is more complicated in
the important case of quasimonochromatic noise (QMN)
where F�v� has a peak at a comparatively high frequency
v0 ¿ t21

r , vy [8–10]. Here, the optimal fluctuation for
escape may correspond to “fluctuational preparation of the
barrier,” analogous to phonon-induced barrier preparation
in solids [11]. The system is forced by the noise to fluc-
tuate at frequency �v0. As the amplitude of such random
vibrations increases, the shape of the effective potential for
their center of motion qc alters, as illustrated for the case
of a bistable potential in Fig. 1. For a large enough am-
plitude, the initially occupied metastable potential well for
qc may disappear, so that the system then escapes from
it. Such an adiabatic escape scenario, during which the
system is most likely to move along an oscillating path,
was predicted [8] and observed [9] for the case where the
half-width of the peak in the noise spectrum G ø t21

r . Re-
cent numerical analysis indicates [10] that, as G increases
to �t21

r , the most probable escape path (MPEP) becomes
smooth.

In this Letter we show that the transition with changing
noise spectrum between different types of MPEPs, and thus
between escape scenarios, is a symmetry-breaking transi-
tion. The symmetry is broken in time: it corresponds to
the onset of fast oscillations of the MPEP, with an arbitrary
initial phase, to leading order. We find the location of this
0031-9007�00�84(24)�5470(4)$15.00
transition and show that, at the transition, the activation en-
ergy of escape displays a nonanalytic dependence on the
noise color parameter.

The second effect that we discuss occurs when there is
an asymmetry in the potential. Even a small asymmetry
may lead to a parametrically large difference in the activa-
tion energies of interwell transitions in opposite directions,
giving rise to a dc current in a periodic potential or to strong
effective localization in one of the wells of a double-well
potential.

We will consider such effects for an overdamped system
fluctuating in a double-well potential U�q� (cf. Fig. 1),
with equation of motion

�q � 2U 0�q� 1 f�t� . (1)

Here, f�t� is a quasimonochromatic noise. An example of
QMN is provided by Brownian motion of an underdamped
harmonic oscillator, which is described by the equation

FIG. 1. The average potential V (7) for motion of the vibration
center qc as a function of the vibration amplitude jq2j � jq1j.
The initial double-well potential U�q� is given by V �q, 0, 0�.
For an asymmetric U�q�, only one of the wells disappears
with increasing jq6j. The plot refers to a double-well po-
tential U�q� � V �q, q6 � 0� � 2q2�2 1 q4�4 2 0.15q. The
bold curves show most probable escape paths for G � 0.3.
© 2000 The American Physical Society
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M̂f�t� � j�t�, M̂ �
d2

dt2 1 2G
d
dt

1 v2
0 , (2)

where v0 and G are the oscillator frequency and damp-
ing, respectively, j�t� is Gaussian white noise, and
�j�t�j�t0�� � 2D̃d�t 2 t0� (for thermal noise, the char-
acteristic intensity D̃ � 2GkBT ). For small G�v0, the
power spectrum F�v� of the noise f�t� has a narrow
Lorentzian peak at v0, of half-width G. The probability
density of realizations of f�t� is ~ exp�2R0	f
�D̃� [12],
with

R0	f
 �
1
4

Z `

2`
dt 	M̂f�t�
2. (3)

The probabilities Wnm of fluctuational transitions be-
tween the potential wells n � 1, 2 of U�q� can be obtained
[8,13] (see also [14]) using Feynman’s idea [12] that the
trajectory of the system q�t� is uniquely determined by
the force f�t�. Different realizations of f�t� can lead to
a transition, but for small noise intensity D̃, their proba-
bility densities are exponentially different. To logarithmic
accuracy, Wnm is determined by the probability density of
the most probable realization, i.e., the one that minimizes
R0	f
 subject to the constraint (1). In such an optimal
fluctuation, the system is driven along an instantonlike op-
timal path q�t� from the bottom qn of the nth well, which
is occupied for t ! 2`, to the top of the potential barrier
qb between the wells for t ! `, and the driving optimal
force f�t� ! 0 for t ! 6` [8]. The optimal trajectories
q�t�, f�t� provide a minimum to the functional

R	f, q
 � R0	f
 1
Z `

2`
dt l�t� 	 �q 1 U 0 2 f�t�
 ,

(4)

where l�t� is a Lagrange multiplier. The escape rate

W ~ exp�2R�D̃�, R � minR	f, q
 . (5)

We will investigate QMN-activated escape in the
most interesting case where Gtr can be arbitrary, but
the characteristic noise frequency v0 ¿ G, 1�tr [tr �
maxn	1�U 00�qn�
 is the relaxation time of the system]. In
this case the Euler equations for the functional (4) can
be analyzed [8] using a standard averaging method. The
motion of the system is a superposition of fast vibrations
at frequency v0 and slow motion of the vibration center
qc,

q�t� � qc�t� 1
X

a�6

qa exp�iav0t� . (6)

The two motions are mixed by the nonlinearity of the po-
tential U�q�. The time evolution of qc and of q1 � q�

2

occurs on the scale 1�G, tr and is determined by the time-
averaged potential V �qc, q1, q2�,

V �
1

2p

Z 2p

0
df U�qc 1 q1eif 1 q2e2if� . (7)
To lowest order in G�v0, 1�v0tr , the variational prob-
lem (4) can be reduced [15] to a much simpler one, R �
minR̄	qc, q6
, with

R̄	qc, q6
 �
1
2

v4
0

Z
dt L� �qc, qc; �q6, q6� ,

L �
1
2

� �qc 1 V 0
c�2 1 4� �q1 �q2 1 G2q1q2� ,

(8)

where V 0
c � ≠V�≠qc. The functional R̄ takes the form

of a classical action for a particle with coordinates qc, q6

and a Lagrangian L. Escape is determined by the extreme
trajectory which starts from qc � qn, q6 � 0 for t ! 2`

and approaches qc � qb , q6 � 0 as t ! `.
From (8), the equation for q6 is of the form

2q̈a 1
1
4

� �qc 1 V 0
c�V 00

c,2a 1 G2qa � 0, a � 6 ,

(9)

where V 00
c,a � ≠2V�≠qc≠qa . The potential V (7) depends

on q1, q2 only in terms of the product q1q2. Therefore
the phase argq1 � 2 argq2 is a cyclic variable. From (8),
R̄ is minimal for �d�dt� argq1 � 0, and so by choosing
the time origin in (6) one can make q1�t� � q2�t�. An-
other important consequence is that Eq. (9) has a trivial
solution q6�t� � 0. It corresponds to a smooth (nonoscil-
lating) optimal path q�t�, with

�qc�t� � �q�t� � V 0
c�qc, 0, 0� � U 0�q� . (10)

The path �q � U 0�q� is the well-known solution for the
MPEP in an overdamped system in thermal equilibrium.
Such a system is described by (1) with f�t� being white
noise with a flat power spectrum of height 2kBT . In the
present case the solution (10) arises because the noise spec-
trum F�v� has a broad low-frequency plateau, of width
v0 which is parametrically larger than the relaxation rate
of the system, and of height 2D̃�v

4
0 . Correspondingly,

R � v
4
0DU [DU � U�qb� 2 U�qn�], and the escape rate

W ~ exp�2v
4
0DU�D̃�.

The smooth optimal path (10) provides a minimum to
the functional R̄ if the eigenvalue problem

Z
dt0

X
j

	d2R̄�dqi�t�dqj�t0�
cnj�t0� � lncni�t� (11)

has only non-negative eigenvalues ln [here, i, j � c, 6,
and the derivatives are calculated for the path (10),
cni�6`� � 0]. The matrix d2R̄�dqidqj � 0 for i � c,
j � 6 or i � j � 6. Using standard arguments [16]
one can show that all eigenvalues of d2R̄�dqcdqc are
positive except for the trivial zero eigenvalue with the
eigenfunction ~ �qc.

Of special interest in (11) is the equation for cn1 �
cn2,

2c̈n6 1
1
2

�V 0
cV 000

c,2,1 1 2G2�cn6 � lncn6 . (12)
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Since jV 0
cj, jV

000
c,2,1j � 1�tr , the eigenvalues are always

positive for large Gtr . The smooth path (10) is indeed
the optimal escape path in this case.

As Gtr decreases, the lowest eigenvalue of (12) l0 may
become equal to zero. This signals instability of the solu-
tion (10) and defines the critical Gcr where it occurs. For
still smaller G the minimum of R̄ is provided by the solu-
tion with finite q6. From (6), such a solution oscillates in
time, with an arbitrary phase in the approximation (8), i.e.,
the time symmetry of the MPEP is spontaneously broken.

The activation energy R is a nonanalytic function of G

for G � Gcr . The situation is similar to a second order
phase transition, with R̄ and c06�t� playing the roles of
the free energy functional and the soft mode. Indeed, for
small jG 2 Gcr j, one can expand the functional R̄	qc, q6

(8) in deviations dqi �

P
cncni of the actual trajectory

from the extreme path (10), with cni being the normal-
ized eigenfunctions of (11) for G � Gcr . The coefficient
of jc0j

2 in dR̄�v
4
0 is 2�G2 2 G2

cr �. Therefore c0 plays
the role of an order parameter. For G . Gcr the mini-
mum of R̄ is reached for c0 � 0. For G , Gcr , it is
reached for finite jc0j determined by higher-order terms
in the expansion of R̄. The nontrivial part of dR̄�v

4
0 ,

after appropriate renormalization, takes the familiar form
ajc0j

4 1 2�G2 2 G2
cr � jc0j

2, with a being a G-independent
constant. Therefore R�v

4
0 � DU 2 �G2 2 G2

cr �2�a for
G , Gcr , and d2R�dG2 is discontinuous for G � Gcr .

Away from Gcr , the prefactor in the escape rate is deter-
mined by the eigenvalues ln (cf. [16]). It blows up as G

approaches Gcr .
We note an interesting similarity between the above

time-symmetry-breaking transition and breaking of
the spatial symmetry of the MPEP in two-variable
white-noise-driven systems that was first found and inves-
tigated by Maier and Stein [17]. As in (8), the Lagrangian
for the optimal fluctuational paths analyzed in Ref. [17]
was even in one of the variables. In a way, a one-variable
QMN-driven system provides a natural realization of the
model [17].

A solution of the variational problem (8) that is quali-
tatively different from (10) can be obtained in the limit
of small Gtr [8]. It has the form q6�t� � q

�0�
1 exp�2Gjtj�

for jtj�tr ¿ �Gtr �21�2, with V 0
c�qc, q6� � 0. This solu-

tion corresponds to the vibration center qc following the
increase of q6 adiabatically and staying at the minimum
of the average potential V for given q6 until this minimum
merges with the barrier top (see Fig. 1). This occurs for
some q1 � q2 � q�0�

1
such that V 0

c � V 00
cc � 0. From (8)

R � 4v4
0Gjq�0�

1
j2. (13)

The above solution corresponds to the “barrier prepa-
ration” for the vibration center qc by the slowly varying
vibration amplitude q6 [8] and gives an activation energy
proportional to the small parameter G. However, it applies
only if the potential minimum of V from which the system
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escapes merges with the barrier top with increasing q6.
It is clear from Fig. 1 that, in the case of an asymmetric
double-well potential, this only happens for one of the
wells. For the other well, the barrier for qc remains fi-
nite for all q6. Therefore the value of R, although less
than v

4
0DU, is not proportional to G. This means that,

even for a weakly asymmetric potential, activation en-
ergies of escape from different wells are parametrically
different. Similarly, for a periodic potential of the ratchet
type (see [5]), the activation energies for diffusion in oppo-
site directions differ, leading to strongly directed diffusion
for low noise intensities [15].

To test these predictions, we have performed analog
and digital simulations of a QMN-driven system. The
techniques are described in [18]. The activation energies
were extracted from measured escape rates as functions of
noise intensity. We chose the simplest system: a biased
double-well Duffing oscillator, with potential

U�q� � 2
1
2

q2 1
1
4

q4 2 Aq . (14)

For A � 0 the two wells are symmetrical. The relaxation
time tr � 1�2. For large Gtr , when (10) applies, the
escape activation energy R�v

4
0 � 1�4 whereas, from

(13), R�v
4
0 � 2G�3 for Gtr ø 1. The critical value Gcr ,

where time symmetry of the MPEP (10) breaks down, can
be obtained from Eq. (12) using the explicit form of the
optimal path (10) qc�t� � 7 exp�2t�2� �2 cosht�21�2 [the
signs 7 correspond to escape from the left and right
wells of U�q�, respectively]. The soft mode c06�t� �
C�cosht�21�2, and Gcr � 1�2.

A sharp change of R as a function of G for G � 1�2 is
observed in the experimental data (plusses) in Fig. 2. As
expected for a symmetry-breaking transition, R � const
for G . 1�2, whereas dR ~ �G 2 Gcr �2 for small posi-
tive Gcr 2 G. The data are in excellent agreement with
the results (crosses) obtained by solving the Euler equa-
tions for the reduced functional R̄ (8). They are also close
to results (squares) obtained from the Euler equations for
the functional R (4) [8] using the numerical method of
Einchcomb and McKane [10(b)]. At criticality the ex-
treme paths of R̄, which emanate from �jqcj � 1, q6 �
0�, are focused at the barrier top q6 � qc � 0 (see inset
of Fig. 2), which gives rise to blowing up of the prefac-
tor in the escape rate. Similar focusing was observed and
carefully analyzed at a spatial symmetry-breaking transi-
tion in a white-noise-driven system [17].

For A fi 0 the potential (14) is asymmetric. Break-
ing of the time symmetry of the MPEP occurs in both
wells, but for different G. For the well at positive q
in Fig. 1 (well 1), Gcr 2 1�2 � 2A�p , to first order
in A. This well is deeper for A . 0 [clearly, the es-
cape activation energy R1�A� � R2�2A�]. This means
that the fluctuational barrier preparation in the deeper
well starts for larger G. Therefore, unexpectedly, the
ratio r � R1�R2 is a nonmonotonic function of G.
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FIG. 2. The activation energy of escape R for a symmet-
ric Duffing oscillator as a function of the noise bandwidth G,
showing discontinuity of d2R�dG2 at the symmetry-breaking
transition for Gcr � 0.5. Analog experimental data (1) for
v0 � 10 are compared to numerical results (3) for the re-
duced Lagrangian (8) and appropriately extended numerical re-
sults (squares) [10(b)] for the full variational problem. Lines
show the asymptotics. Inset: Trajectories for the Lagrangian
(8) that start from qc � 21, q1 � q2 � 0 for t ! 2` and are
focused into the barrier top qc � q6 � 0 for G � Gcr .

For large G both R1 and R2 are independent of G,
and r � const . 1 for A . 0. As G decreases, R1
starts decreasing first, and r decreases. However, with
further decrease in G, r starts sharply increasing, as seen
in Fig. 3. This happens because, for small G, it is only for
the shallow well that the barrier of the average potential
V can disappear, as seen in Fig. 1. Therefore R2 ~ G

for small G, and r becomes large; see Fig. 3. It is
seen from Fig. 1 that the MPEPs in different wells have
already become very different even when G has fallen
only slightly below Gcr .

FIG. 3. The ratio of the activation energies of escape r �
R1�R2 from the wells 1 and 2 of the biased Duffing oscilla-
tor (14).
In conclusion, for bistable systems driven by a quasi-
monochromatic noise the activation energies of escape
from different wells are parametrically different, as are
also the activation energies for diffusion in opposite di-
rections in a periodic potential. This allows the use of
QMN for highly selective species separation. The tran-
sition from most probable escape along a smooth path, to
that along an oscillating path, is a symmetry-breaking tran-
sition. The second derivative of the activation energy with
respect to the bandwidth of the noise is discontinuous at the
transition.
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