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Ratchet driven by quasimonochromatic noise
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The currents generated by noise-induced activation processes in a periodic potential are investigated ana-
lytically, by digital simulation and by performing analog experiments. The noise is taken to be quasimono-
chromatic and the potential to be a smoothed sawtooth. Two analytic approaches are studied. The first involves
a perturbative expansion in inverse powers of the frequency characterizing quasimonochromatic noise and the
second is a direct numerical integration of the deterministic differential equations obtained in the limit of weak
noise. These results, together with the digital and analog experiments, show that the system does indeed give
rise, in general, to a net transport of particles. All techniques also show that a current reversal exists for a
particular value of the noise parameters.

PACS number~s!: 05.40.Ca, 05.10.Gg, 02.50.Ey
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I. INTRODUCTION

The nature of microscopic engines, such as molecular
tors, has been the subject of much research over the las
or six years. This recent activity was stimulated by the p
sibility of noise-induced currents@1–4#, and was motivated
to a large extent by the desire to model protein motors. Th
are proteins which are connected to a biopolymer and c
lyze the conversion of adenosine triphosphate~ATP! to ad-
enosine diphosphate~ADP!. The energy released by this pro
cess is used by the motor protein to generate motion a
the biopolymer in one particular direction. This is modell
as a microscopic object moving unidirectionally along a o
dimensional periodic structure@5#. It is this problem of rec-
tifying processes at small scales that has stimulated mo
the theoretical work in this area. A key ingredient is t
presence of random Brownian forces. As a consequence
natural to describe these stochastic ratchets, as they are
quently called, as a particle moving in a periodic poten
subject to noise and to formulate this mathematically a
Langevin equation

mẍ1a ẋ1]xV~x,t !5j~ t !, ~1!

wherex(t) is the coordinate of the particle,a is a friction
constant,V(x,t) is a periodic asymmetric potential andj(t)
is the noise.

Before discussing Eq.~1! in more detail, we should poin
out that there are at least three other reasons for the rene
interest in such systems. The first is a new generation
experiments that can be performed in vitro@5#, which has led
to the increased sophistication of the models now stud
The second is the application of these ideas to nonbiolog
situations at small scales—the realm of nanotechnology.
nally, this problem throws up fundamental questions c
cerning irreversibility and the second law of thermodyna
ics. These issues are discussed extensively elsewhere@5#, so
we will just make the essential point that it is only if detaile
PRE 611063-651X/2000/61~1!/139~8!/$15.00
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balance holds that we can use considerations based on
second law to decide that no coherent unidirectional mot
is possible@6#.

The classification of different types of ratchets is in fa
most easily carried out with reference to Eq.~1!, since the
terminology used to describe ratchets~correlation, flashing!
is not always applied consistently. Nearly all studies negl
the inertial term in Eq.~1! and scale time bya, so that the
coefficient of theẋ term is unity. Most studies have focusse
on the cases~i! V(x,t)5V(x) is deterministic andj(t) is
nonwhite-noise~so that detailed balance does not hold!, ~ii !
V(x,t)5V(x)f(t) wheref(t) may be deterministic or ran
dom @7# andj(t) is white noise. Since the main prerequisi
for any ratchet is that the system does not obey deta
balance and, since detailed balance may be violated in m
different ways, it is clear that many other forms are possib

In this paper we will study a ratchet of the type~i! dis-
cussed above, sometimes called a correlation ratchet. In
II the model is described in more detail: the potential
specified as is the type of noise—quasimonochromatic n
~QMN! @8#, whose application to ratchets was first discuss
in Ref. @2#. We study the model using analytic techniques
Secs. III and IV and by the digital and analog simulatio
which are discussed in Sec. V. We end with an analysis
results and conclusions. Some of our preliminary work h
already been reported@9#.

II. MODEL

In this section we will write down an explicit represent
tion for a correlation ratchet acted upon by quasimonoch
matic noise. Having said this, it only remains to specify t
potentialV(x). We have already indicated that this functio
should be periodic and asymmetric. A natural choice wo
therefore be a sawtooth potential: as shown in Ref.@2#, a
sawtooth potential is the one which maximizes the curre
However, in order to carry out analog experiments we ta
the first few Fourier modes of such a potential leading to
form
139 ©2000 The American Physical Society
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V~x!52 cosx1sinx1
1

3
cos~2x!1

1

10
cos~3x!. ~2!

The sawtooth and the approximation to it, Eq.~2!, are both
shown in Fig. 1, where we can see that we are modelling
sawtooth potential by rounding the corners. This not o
makes it easier to reproduce in an analog experiment, b
also removes possible singularities in the theoretical tr
ment: the ‘‘sharp corners’’ at the top and bottom of the p
tential would mean that the force that the particle would f
would be not well defined.

Therefore the model is defined by the Langevin equat

ẋ1V8~x!5j~ t !, ~3!

whereV(x) is given by Eq.~2! and the noisej(t) is taken to
be Gaussian with zero mean and correlation function

^j~v!j~v8!&52D 2p C~v!d~v1v8!. ~4!

We choosej to be quasimonochromatic noise~QMN! since
it exactly suits our purposes: the noise cannot be white,
reasons described in the last section and it has the physi
appealing feature of having a peak at a nonzero frequenc
its power spectrum~hence the name@8# QMN!, while being
simple enough to allow analytic progress to be made. S
cifically, the noise is defined by

C21~v!5~v22v0
2!214G2v2. ~5!

C(v) is sharply peaked at the frequency (v0
222G2)1/2'v0

in the limit G!v0, and so we will frequently be working in
this regime. This type of noise can also be viewed as
result of passing white noise through a harmonic oscilla
filter:

j̈12Gj̇1v0
2j5h ~6!

~hence the name ‘‘harmonic’’@10,11#, which is also often
used! where the white noiseh has strengthD.

We shall be mounting a three-pronged attack on the pr
lem posed above: an analytic treatment based a smallD ap-
proximation, direct digital simulation of the Langevin equ
tion, to be discussed in Sec. V, and an analog simulation

FIG. 1. ~a! Sawtooth potential.~b! ‘‘Smoothed sawtooth’’
potential.
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to be discussed in Sec. V. In the case of the analog sim
tion, the first task, before simulating the Langevin equat
itself, is to check the quality of the QMN produced by th
analogue circuit. In order to accomplish this, we examine
QMN spectrum simulated by~6!. Two examples are shown
in Figs. 2 and 3.

It is evident that there is good agreement between
noise generated in the simulations and the theoretical re
given by Eq.~5!. It is also clear from these figures that th
shape of the spectrum changes considerably dependin
the values of the parametersG andv. In fact, these figures
illustrate the two regimes for QMN noise. The first~Fig. 2! is
an example of the casev0

2.2G2. The spectrum has a loca
minimum at v50, rising to a maximum value atv25v0

2

22G2, and then falling off to zero asv→`. As we have
remarked already, in the limitv0

2@2G2 the peak becomes
narrower and better defined. Moreover, for values ofv such
thatv!v0, the spectrum is essentially flat and approxima
well white noise. On the other hand Fig. 3 illustrates the c
v0

2,2G2, where the spectrum has a local maximum atv
50 and falls away to zero asv→`. So, in summary, if the
damping parameterG is small enough, the power spectru
has a peak at nonzero frequency. AsG increases, the pea
broadens and moves towards zero frequency. ForG greater
than a critical value ofv0 /A2 the maximum of the powe
spectrum is at zero frequency. Our aim is to see how
current changes as the noise parametersG andv0 vary.

FIG. 2. Noise power spectrum forv0531.6, G516.7. The
jagged line is from experiment, and the smooth one from theo
The frequencyf 5v/2p.

FIG. 3. Noise power spectrum forv0531.6, G533.3. The
jagged line is from experiment, and the smooth one from theo
The frequencyf 5v/2p.
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III. GENERAL FORMALISM

In this section we discuss the approach we will use
explore analytically the generation of noise-induced curre
in the correlation ratchet introduced in the previous secti
The method will involve an asymptotic analysis in the lim
where the noise strengthD tends to zero. To construct th
asymptotic expansion it is first necessary to formulate
problem defined by the Langevin equation~3! in a different
form. There are at least two different ways to proceed. On
to write down an equivalent Fokker-Planck equation. Sin
the noisej(t) in Eq. ~3! is not white, it is first necessary t
convert the process into an equivalent Markovian one w
three degrees of freedom, (x,j,j̇), say. Thus the Fokker
Planck equation will have the form of time-dependent par
differential equation in three dimensions. We shall not p
sue this method here, instead we will use the approac
expressing the conditional probability^d„x2x(t)…& IC as an
average over all possible paths~or realizations of the pro-
cess! with given initial conditions, denoted here by IC. The
initial conditions specify not only the initial values ofx(t),
but also ofj(t) and ofj̇(t) at t5t0. The explicit form for the
path-integral is@12#

P~x,tuIC,t0!5^d„x2x~ t !…& IC5E
IC

DxP@x#d„x2x~ t !…,

~7!

where Dx is the appropriate measure defined so thatP is
correctly normalized and

P@x#5J@x#exp2S@x#/D. ~8!

HereS@x# is the action functional, which will be discussed
more detail below, andJ@x# is the Jacobian of the transfo
mation fromh(t) to x(t), for which we will not require an
explicit form.

The method for findingS@x# is discussed in some detail i
Ref. @13#, but we can obtain it relatively quickly from Eqs
~3! and ~6! by first writing

@ ẋ1V8~x!#1
2G

v0
2 @ ẍ1 ẋV9~x!#

1
1

v0
2 @ x̂1 ẍV9~x!1 ẋ2V-~x!#

5v0
22h~ t !. ~9!

Since the noiseh is Gaussian, white, with strengthD, and
has zero mean, the probability functionalP@h# has the form
exp2(1/4D)*dt h2(t). A naive substitution of Eq.~9! into
this expression is sufficient to give the correct function
form for P@x# to leading order inD, namely,

P@x#5J@x#exp2A@x#/D, ~10!

where

A@x#5S@x#/v0
4 , D5D/v0

4 ~11!

and
o
ts
.

e

is
e

h

l
-
of

l

A@x#5
1

4E2`

`

dtH @ ẋ1V8~x!#

1
2G

v0
2 @ ẍ1 ẋV9~x!#

1

v0
2 @ x̂1 ẍV9~x!1 ẋ2V-~x!#J 2

.

~12!

Having discussed the reformulation of the problem expres
as the Langevin equation~3! as a Fokker-Planck equation o
as a path integral, we are now in a position to discuss
D→0 asymptotics. In the case of the Fokker-Planck eq
tion one may perform a WKB-like analysis, while in the ca
of the path-integral one may evaluate Eq.~7! by steepest
descents, the paths which dominate the integral being th
for which

dA@x#

dx
50. ~13!

From Eq. ~12! it can be seen that a sixth-order nonline
differential equation is obtained. The solutions of this equ
tion, subject to the appropriate boundary conditions are
instantons or optimal pathsxc(t) of the model. Substituting
this solution back into the action gives anumber S[S@xc#
5v0

4A@xc#. In either case, the WKB treatment or the stee
est descent evaluation of the path integral, an analysis of
conditional probability~7! leads to a rate of escape from on
potential well to another which has the characteristic fo
N exp2S/D, whereN will be termed the prefactor. In the
ratchet we are interested in the currentj which is propor-
tional to the difference between the rates of escape fro
particular potential well to the neighboring wells on the rig
and on the left. It is therefore reasonable that it should h
the form @2#

j 5l@N1exp~2S1 /D !2N2exp~2S2/D !#, ~14!

where the plus and minus symbols denote right and leftw
transitions respectively andl is the well spacing.

In the next section we will calculate the actions in E
~14!, by solving the sixth order equation obtained from E
~13!, numerically. However, in order to get some intuitio
for what may happen we will end this section by assum
thatv0 is large~compared to the scale set by the curvature
the potential at the bottom of the wells! and obtaining the
action as a power series inv0

22. In order to do this, we first
rewrite the noise correlator~5! in the generic form

C21~v!5v0
4@11k1t2v21k2t4v4#, ~15!

where

t5v0
21 , k1522S 12

2G2

v0
2 D , k251. ~16!

With the form ~15!, the action for a path, starting at th
bottom of a well atx5a and ending at the top of an adjace
barrier atx5b, is given by@14#
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A[A@xc#5E
a

b

dx V81k1t2E
a

b

dx V8~V9!2

1k2t4E
a

b

dx V8@~V9!21V8V-#2

2k1
2t4E

a

b

dx~V8!3~V-!21O~t6!. ~17!

TheO(t6) terms are also known, they are given in Ref.@14#,
and are proportional tok1

3 andk1k2.
First of all, suppose that the spectrum is sharply peak

v0
2@2G2, then bothk1 and k2 have magnitudes of orde

one. In this case the expansion~17! is simply one in powers
of t25v0

22. TheO(t2) corrections are necessary, otherwi
A simply depends on the height of the barrierDV
5*a

bdxV8(x) and the asymmetry of the potential does n
manifest itself. An interesting special case is whenv0 is
large, butv0

252G2. Then k1 is zero, and the second an
fourth terms on the right hand side of Eq.~17! vanish, as do
all of the O(t6) terms. So in this case

A5DV1t4E
a

b

dx V8@~V9!21V8V-#2

1O~t8! @ for v0
252G2#. ~18!

If there were noO(t4) terms, it would be the case that whe
v0

252G2, the action only depended on the barrier height, a
so if the height of the barrier was the same to the right o
the left, we should not expect any net current. Moreover
we plot the spectrum of the noise, for the particular value
v0

252G2, we can see that it is very flat: the particle effe
tively is feeling a white noise which gives no ratchet effect
all. Since there areO(t4) corrections in Eq.~18!, this is not
quite so however. In order to investigate this point in a lit
more detail, we have calculated the integrals in Eq.~17! @and
Eq. ~18!# usingV(x) given in Eq.~2!. We find

A65a6
(1)1a6

(2)k1t21a6
(3)k2t42a6

(4)k1
2t41O~t6!,

~19!

where the coefficientsa6
( i ) are given in Table I.

Let us focus on the particular valuesv0510.5 andv0
531.6 which we will use later. A short calculation using E
~19! and the values ofa6

( i ) given in Table I above shows, tha
to O(t6), A15A2 when G56.84 ~for v0510.5) andG
522.13~for v0531.6). If we had used the resultv0

252G2

— valid for small t as indicated by Eq.~18! — the corre-
sponding values ofG would have been 7.42 and 22.34, r

TABLE I. Numerical values of the integrals in Eq.~17! for the
potential~2!.

a(1) a(2) a(3) a(4)

1 4.62 22.58 681.41 751.48

2 4.62 5.61 59.06 70.15
d,

t

d
o
if
f

t

.

spectively. So we see thatG5v0 /A2 is a reasonable esti
mate for the value at whichA1 andA2 become equal when
v0 has the larger value~31.6!, but it is considerably different
in the case whenv0 is smaller:v0510.5. We shall discuss
the interpretation of the point where the actions for the le
and right-moving transitions become equal in more detai
the concluding section.

IV. CALCULATION OF LEADING CONTRIBUTION

In this section we calculate the leading smallD contribu-
tions S6 ~or alternatively the leading smallD contributions
A6) to the currentj in Eq. ~7! for the case of the potentia
~2!. In the preceding section we illustrated the general id
by evaluating these actions for largev0, but a general ana
lytic treatment is not possible and we will have to resort to
numerical calculation of their values. From Eq.~12!, the gen-
eral form of the action functional is

A@x#5E
t0

t

dt L~ ẋ,ẍ, x̂;t !. ~20!

The variation~13! leads to an Euler-Lagrange equation
sixth order

(
j 50

3

~21! j
dj

dtj S ]L

]x( j )D 50, ~21!

wherex( j )[djx/dtj . A numerical solution will involve the
decomposition of this equation into six first-order different
equations. A systematic procedure for achieving this is p
vided by the Hamiltonian formulation for the generalize
mechanics given by Eqs.~20! and ~21! @15#.

If we carry out this procedure starting from the Lagran
ian given by

L~x,ẋ,ẍ, x̂ !5
1

4 H @ ẋ1V8~x!#1
2G

v0
2 @ ẍ1 ẋV9~x!#

1
1

v0
2 @ x̂1 ẍV9~x!1 ẋ2V-~x!#J 2

, ~22!

we find the following Hamiltonian:

H~xW ,pW !5p1x21p2x31v0
4p3

22p3$v0
2~x21V8!12G~x3

1x2V9!1x3V91x2
2V-%, ~23!

wherexW5(x1 ,x2 ,x3) and pW 5(p1 ,p2 ,p3). The action turns
out to be@15#

A5E
2`

`

p3
2dt. ~24!

Hamilton’s equations have their usual form:

ẋi5
]H

]pi
, ṗi52

]H

]xi
, i 51, . . . ,3; ~25!
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they are, by construction, equivalent to the Euler-Lagra
equations~21!. Using the Hamiltonian~23!, the six equations
~25! yield

ẋ15x2 , ~26!

ẋ25x3 , ~27!

ẋ352v0
4p32$v0

2@x21V8~x1!#12G@x31x2V9~x1!#

1x3V9~x1!1x2
2V-~x1!%, ~28!

ṗ15p3$v0
2V9~x1!12Gx2V-~x1!1x3V-~x1!1x2

2V-8~x1!%,
~29!

ṗ252p11p3$v0
212GV9~x1!12x2V-~x1!%, ~30!

ṗ352p21p3$2G1V9~x1!%. ~31!

For an escape problem, we are searching for solutions
provide the minimum of the action. Imposing the conditi
that the variation with time of the action is zero, as befo
H50, and following previous work@15#, we choose as
boundary conditions for the ‘‘uphill’’ solution~going from
the bottom to the top of the potential!

x1~2`!5xmin ,x1~`!5xmax,

x2~6`!50, ~32!

x3~6`!50.

In order to solve Eqs.~26!–~31! in practice we have to trun
cate them to a large, but finite, time interval and use
boundary conditions

x1~2T!5xmin ,x1~0!5xmax,

x2~2T!50,x2~0!50, ~33!

x3~2T!50,x3~0!50,

where we have used the time translation invariance of
equations.

The TWPBVP subroutines developed for solving two-poi
boundary value problem were used@16#. In order to get con-
vergence we used the following procedures. We lineari
Eqs.~26!-~31! at the initial point, and changed the bounda
conditions at that point, perturbing them in the direction
the unstable manifold given by eigenvectors with eigenv
ues having positive real part. We took as an initial gues
straight line joining the boundary points, and the solution
this modified problem was used as initial guess to the or
nal problem, leading to a solution for the optimal path.

Having found this solution, the action

A5E
2T

0

p3
2dt ~34!

was calculated, and to minimize the effect of the cutoff eff
we added the correction from integrating the linear expr
e

at

,

e

e

d

f
l-
a
f
i-

t
-

sions on the boundaries from2` to 2T and from 0 to`.
WhenT is chosen to be large enough, the result is indep
dent of its value.

The results of this calculation will be discussed in Sec.
where they will be compared to the simulations that we ha
also carried out on this problem. We now turn to a discuss
of these simulations.

V. ANALOG AND NUMERICAL SIMULATIONS

In this section we study our correlation ratchet using a
log and digital simulations. We have measured the variat
of the current withG in two ways: analog simulation exper
ments on an electronic circuit and Monte-Carlo simulatio
on a digital computer.

The first of these techniques@17–19# involves the build-
ing of an electronic circuit to model the system under stu
the application of appropriate forces, and analysis of the
sponse by means of a digital computer. The absence of t
cation errors makes analog simulations especially valua
for use, e.g., with fast oscillating systems where the integ
tion time ~the time over which data are accumulated a
perhaps ensemble-averaged! substantially exceeds the vibra
tion period, as occurs with QMN. Digital techniques have t
advantage that they can alwaysin principle be made more
accurate than analog methods, which typically achie
2–3 % accuracy, but the relative simplicity of analog sim
lations and their realism~being much closer to a real exper
ment than a digital simulation! represent significant advan
tages.

The electronic circuit used to model~3! and~6! is shown
as a block diagram in Fig. 4. The lower section is the h
monic oscillator used as a ‘‘filter’’ to convert@8# quasiwhite
noise from a feedback shift-register noise generator@20,19#
into QMN. The QMN is then applied to the input of th
upper part of the circuit, which models the ratchet poten
itself. Although the basis of the circuit is standard@19#, sev-
eral points of detail deserve amplification. The force cor
sponding to the trigonometric potential of Eq.~2! is created
using trigonometric identities to write it as

V8~x!52
29

10
sinx1cosx2

4

3
sinx cosx1

6

5
sin3x, ~35!

so we can build the force using only two AD639 ICs@21#.
An inherent limitation of the AD639 IC is that it can onl
treat a restricted range of angles (6500°). To prevent its
input from straying outside this range, provision is made
resetting the circuit using DG303AC@22# switches ~they
have not been plotted in the block diagram! @17–19#. The
voltage in the circuit corresponding to coordinatex was digi-
tized with a 12-bit Microstar ADC@23#, model DAP 3200a/
415. Data analysis exploited the on-board 100 MHz In
486DX coprocessor, which was operated within a MatLa
based PC software system developed by Kaufman@24#.

The digital simulations were done using a specialized
gorithm, described in Ref.@8#, which we will briefly recall
here. The particular structure of Eqs.~3! and ~6! poses, in
principle, a problem if a simple minded algorithm is used
the integration: Eq.~6! is characterized by two time scale
(v0 andG) and the integration time step~call it h) used in
the
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FIG. 4. Experimental analog circuit.
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digital simulations would be chosen in such a way that b
v0h!1 andGh!1. Also, if t r is the typical relaxation time
in Eq. ~3!, we should also satisfyh/t r!1. This latter in-
equality, for the typical parameters which are of physi
interest, is normally satisfied as soon as the former one is
other words, in a simple minded algorithm the constraint
the integration time step comes from Eq.~6! rather than from
Eq. ~3!, because the time scales involved byv0 and G are
~much! smaller thant r . From the point of view of the prob
lem we are trying to solve, however, this would not be ve
efficient: we would be using most of the CPU time integr
ing the noise equation~6! rather than integrating the dynam
cal equation representing the model under study.

The particular structure of Eqs.~3! and~6! suggests that a
specialized algorithm could be more efficient: the point
that Eq.~6! is a linear filtering of an uncorrelated Gaussi
noise. This means that the output of this equation~the vari-
able j) is itself a Gaussian variable, of unknown intens
and correlation: hence, it may be possible to integrate Eq~3!
directly, working out the appropriate integration algorith
using the statistical properties of the Gaussian variablej.
The algorithm used to integrate Eq.~3! is the Heun algorithm
@25# which prescribes that we integrate Eq.~3! with a couple
of elementary steps, namely we first predict

x̃~h!5x~0!1h@2V8„x~0!…#1r ~h!, ~36!

and then correct as

x~h!5$x̃~h!1x~0!1h@2V8„x̃~h!…#1r ~h!%/2. ~37!

In the expression above, we need to evaluate the qua
r (h)[*0

hj(s)ds, which can be written@8# as

r ~h!5A31j~0!1A32j̇~0!1w3 , ~38!
h

l
in
n

-

,

ity

where

w35B31z11B32z21B33z3 , ~39!

and wherezi are uncorrelated Gaussian deviates of aver
zero and standard deviation one. Note that the quantityr (h)
turns out to be a linear combination of Gaussian variables
expected. DefiningV2[v0

22G2 and l6[2G6AG22v0
2,

we have

A315
i

2V H l2

l1
~ehl121!2

l1

l2
~ehl221!J , ~40!

A325
i

2V H ehl221

l2
2

ehl121

l1
J . ~41!

The expressions forBi j are very cumbersome, and we ref
the reader to Ref.@8#: note that Ref.@8# contains a misprint,
the quantity 4pT/2V2 on the right hand side of Eq.~A14!
should readGT/V2.

A warning is in order concerning the random noise ge
erator. The noise intensities of interest are fairly small co
pared to the barrier that the Brownian particle has to ov
come to diffuse and generate a net current. It is then of g
importance to make sure that the rare activation events
correctly generated, which implies that the noise genera
should be particularly accurate in generating the tails of
distribution. The generator used works by generating
Gaussian random variable, using the Ziggurath algorit
@26#, from flat random distributions obtained with a subtra
and carry algorithm@27,28#.

The actionsA6 were calculated from the slope of plottin
the logarithm of the mean escape time, calculated as the
time of observation divided by the number of transitions
the left or right, versus 1/D. The current in the experiments i
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easily obtained by keeping track of the distance moved
the random walker and dividing it by the total simulatio
time. These results can be observed in the figures.

VI. ANALYSIS OF RESULTS AND CONCLUSIONS

In this section we wish to compare the theoretical pred
tions of Sec. III, IV with the experiments. Our main aim is
understand the structure of the current~14!. This is made up
of actionsS6 and prefactorsN6 . For smallD, the action
dominates, so we begin by comparing the actions calcula
from Eq. ~17! with the numerical method discussed in Se
IV. For a typical value ofv0510.5, the results are shown i
Fig. 5. This shows reasonable agreement between analy
and numerical results of solving the full set of equations
Sec. IV. This fully justifies the approximation of Sec. II
which is very useful given the difficulty of carrying out th
numerical integrations in the method of Sec. IV.

Now we are in a position to compare the theoretical p
dictions with the digital simulation of Sec. V. This is show
in Fig. 6. The digital simulation shows the same trends as

TABLE II. Analog ( j A) and digital (j D) currents forv0510.5.

G D j A j D

0.938 0.564 2.1731024 1.5331023

1.346 0.591 2.3131024 1.2631023

2.386 0.617 2.1431024 8.1031024

5.250 0.654 1.2031024 1.7431024

6.402 0.670 4.3231025 1.0331025

7.721 0.673 21.2931025 21.7831024

9.375 0.681 21.2531025 23.1531024

11.170 0.693 23.8431025 24.6431024

13.462 0.713 21.2031024 26.5431024

17.500 0.737 22.1331024 27.7831024

21.000 0.796 23.6031024 21.1231023

26.250 0.832 24.3331024 21.2831023

29.167 0.863 25.4431024 21.4231023

FIG. 5. Analytic~small t) versus numerical~generalt) actions
for v0510.5. Squares are for escapes to the left, triangles to
right. Symbols are from numerical integration, solid lines from a
lytic calculations.
y
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ed
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-
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analytical results, but there is a large amount of scatter. N
ertheless, the value ofG at the point whereA15A2 pre-
dicted by the digital simulations is in reasonable agreem
with the theoretical value.

The prefactors are, unfortunately, difficult to calculate.
fact, a calculation for QMN has not yet been carried out. T
prefactors are, however, known for white noise and expon
tially correlated noise~for small noise correlation time@29#!,
and we use these in the expectation that they are a reaso
approximation to the true result. In Fig. 7, the current calc
lated from Eq.~14! using these prefactors together with a
action calculated as in Sec. IV, is plotted with the data fro
the digital simulation. A possible interpretation of the dev
tion of the theoretical from the experimental results could
the approximate prefactor. However, it is clear that the
ponentially correlated prefactor is an improvement over
white noise one, and this suggests that the correct Q
prefactor might give even better agreement. In any case,
clearly demonstrated that a ratchet consisting of an asymm
ric periodic potential plus quasimonochromatic noise forc
can indeed give rise to a net transport of particles.

Table II displays the current obtained forv0510.5 in
both the analog experiment and the digital simulation. In t

FIG. 7. Current forv0531.6 andD5D/v0
450.87. The squares

are from digital simulation; the circles represent theory for a wh
noise prefactor; the triangles represent theory with the impro
prefactor.

e
-

FIG. 6. Digital simulations and theoretical actions, forv0

531.6. Squares denotes escapes to the left, triangles to the
Symbols are simulations, curves theory.
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case, although actions can be calculated analytically, the
rameter in the expansion for the prefactor is no longer sm
and one is unable to obtain an analytic expression for
current. The valuesv0510.5 andv0531.6 were chosen fo
technical reasons connected with carrying out the analog
periment.

There is no reason to assume that the current reversj
50) necessarily occurs whenA15A2 , because the prefac
tors may cause some deviation from this leading order res
However, from Fig. 7 and Table II it seems that they do
fact occur at the same point — even though the magnitud
the analog current is consistently less than that of the dig
current. This may be because, asD→0, the action com-
pletely dominates or because the prefactors happen to
approximately equal at this point.

In the literature, this problem has been already discus
in Refs. @2# and @30#. In Ref. @2# it was found that there is
indeed a net current in the system, and, working in the li
of smallG/v0, the authors were able to show that the sign
the current changes as the curvature atv50 @i.e., C9(0)]
changes with varyingG. In Ref. @30# the authors considere
a model of the form~3!, but with an additional white noise
However, as we have seen, there is no need to introduc
additional noise of this type in order to see a current rever
et

,

,
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The authors found that the current should change sign fo
least two different values ofG.

Our aim has been to study how the current changed as
noise parametersG andv0 varied, for finiteG/v0. We found
that that the change in the spectral density curvature av
50 mentioned above is still the main effect in determini
the current direction, in agreement with Ref.@2#. We have
included in the theoretical treatment higher order terms
G/v0: our result coincides with the result of Ref.@2# in the
appropriate limit, with a small shift in the transition point
G/v0 is finite. The simulations which were carried out su
port the theoretical conclusions. We have not observed m
than one current reversal experimentally~with fixed v0 and
varying G), but examination of Eq.~19! shows that there is
another solution@to O(t4)] for which A15A2 . It would be
interesting to explore this regime in more detail experime
tally.
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