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Resonances while surmounting a fluctuating barrier
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Electronic analog experiments on escape over a fluctuating potential barrier are performed for the case when
the fluctuations are caused by Ornstein-Uhlenbeck noise~OUN!. In its dependence on the relation between the
two OUN parameters~the correlation timet and noise strengthQ! the nonmonotonic variation of the mean
escape timeT as a function oft can exhibit either a minimum~resonant activation!, or a maximum~inhibition
of activation!, or both these effects. The possible resonant nature of these features is discussed. We claim that
T is not a good quantity to describe the resonancelike character of the problem. Independently of the specific
relation between the OUN parameters, the resonance manifests itself as a maximal lowering of the potential
barrier during the escape event, and it appears fort of the order of the relaxation time toward the metastable
state.

PACS number~s!: 05.40.2a, 82.20.Mj, 02.50.Ey
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I. INTRODUCTION

In classical systems the escape of a particle from a lo
potential minimum over a potential barrier is possible due
interaction with a thermal bath. Independently of the spec
measure used to characterize the duration of the escape
cess, the average timeT spent waiting for a successful jum
depends on the height of the barrierDU and the temperature
T of the bath through the Arrhenius formula:T
;exp(DU/kT). Lately, it has been shown that this time m
be significantly reduced or prolonged by correlated stoch
tic perturbation of the barrier. In the context of recent inter
in resonancelike phenomena in noisy dynamics, it is nat
to look for a relationship betweenT and the characteristic
time of the perturbation given by its correlation timet. In
1992, studying a triangle barrier switched randomly betwe
the two possible configurations, Doering and Gadoua@1# dis-
covered thatT~t! may exhibit a minimum fort of the order
of the escape time over the lower possible configuration
the barrier. They therefore called this effectresonant activa-
tion ~RA!. Later it was shown@2–5# that this resonant rela
tion between the time scales of the system is characterist
those cases where the potential barrier is disturbed by
chotomic noise~DN!. If a Gaussian correlated noise, i.e.,
Ornstein-Uhlenbeck noise~OUN!, is applied the resonan
minimum ofT occurs whent is of the order of the relaxation
time toward the metastable state@6,3–5,7#.

In @8# one of the present authors concluded that the op
site effect—the occurrence of a maximum in thet depen-
dence ofT—can be observed, too~see also@9#!, although its
possible resonance origin remained unknown. This w
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called inhibition of activation ~IA !. Moreover, considering
the exact formulas for the mean first passage time~MFPT!
over a barrier disturbed by OUN, it was inferred that a no
monotonic form forT~t! is generic and conditioned by th
relationship betweent and the intensity of the noiseQ. In
particular, RA occurs ifQ is a linear function oft, i.e., if the
variation of the noise is constant. On the other hand, ifQ is
t independent one could expect IA to occur. These conc
sions agree with the theoretical@10,6,4,7#, numerical@4,7#,
and experimental@6,5# findings of other authors.

In @8# a more general class of noises, withQ being a more
complicated function oft, was also considered and som
universal criteria for the appearance of RA and IA we
found. In order to verify them we have performed expe
ments on analog electronic circuits, the results of which
presented and discussed below~Sec. IV!. The conclusions of
this study allow us to verify the reason for the appearance
the extremes ofT~t! and, if they are of a resonance natur
which quantities are in resonance~Sec. V!. But we start~Sec.
II ! by presenting a brief resume of the previous findings@8#
and then~Sec. III! specifying the model investigated an
discussing some experimental details.

II. THEORETICAL PREDICTIONS

Let us consider the overdamped one-dimensional mo
of a particle in a bistable potentialU(x) in the presence of a
heat bath. In our study the potential is also modulated in ti
by a stochastic perturbation which, for simplicity, does n
alter the positions of extremes of the total potential. T
dynamics of the particle is governed by the following Lang
vin equation:

dx

dt
52U8~x!2V8~x!z~ t !1j~ t !, ~1!

where thermal fluctuations are represented by Gaus
white noisej(t) of zero mean and correlation function

^j~ t !j~ t8!&52qd~ t2t8!. ~2!

ic
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The intensityq of the noise is linearly proportional to th
bath temperature. The fluctuating part of the potentia
driven by OUN,

dz

dt
52

1

t
z1

A2Q

t
h~ t !, ~3!

whereh(t) is another Gaussian white noise independen
j(t), of zero mean and correlation function̂h(t)h(t8)&
5d(t2t8). The relation between the two parameters of t
noise, namely, its strengthQ and its correlation timet, ap-
pears to be crucial for the appearance of RA or IA, so,
general,Q should be considered as a function oft. As was
shown in @8#, the general tendencies in the dependence
MFPT on t can be found by analyzing the problem in th
limits of very fast~t→0! and very slow~t→`! barrier fluc-
tuations, only. We do not consider here the general form
Q(t) treated in@8#. To discuss all the main features of th
escape problem it is enough to assume that for anyt the
noise strengthQ has the following form:

Q~t!5Q0ta, 0,Q0,`, 0<a<1. ~4!

In the limit t→0 for a50 the noisez(t) becomes white,
while for a.0 the noise intensityQ goes to zero, soz(t)
vanishes. The opposite limitt→` can be discussed in a sim
lar way. However, a better quantity to use in the discuss
below is the noise varianceD given as

D5Q/t. ~5!

Thus, if a,1 the noisez(t) disappears sinceD→0. How-
ever, if a51 then D→Q0, so we acquire an ensemble
static potentials spread according to a Gaussian distribu
with the varianceD. Let us mention that the cases ofa50
anda51 are the commonly used variants of OUN: consta
strength noise~CSN! @Q(t)5Q0# and constant-varianc
noise~CVN! @Q(t)5tQ0#, respectively.

The main conclusions of@8# were as follows. First, inde
pendently of the specific form ofQ, we have

T0<Ts<T` , ~6!

where the indices 0 and̀ refer to the appropriate limit oft,
andTs is the MFPT for an unperturbed~static! barrier. It is
obvious that the equalities relate to the cases of vanish
noise mentioned above. The analysis of the leading o
corrections ofT for finite t shows that the inequalities~6! are
also fulfilled in some proximity of these limits. Thus fo
small t whena.0 the escape timeT always decreases wit
increasingt, while for large t and a,1 a decrease oft
causes an increase ofT. This assures that a minimum or
maximum appears, respectively. The explanation of such
havior is very simple: ifz(t) vanishes in a given limit then
for a finite value oft, it does exist and causes an effe
similar to that of a nonvanishing noise. Whenz(t) does not
vanish, if we do not deal with certain specific forms ofU(x)
and V(x), then the escape timeT always increases in th
region of smallt, and so RA does not appear. On the oth
hand, since in this casea50, IA should be observed. A
similar argument applies to the case of CVN~a51!. The
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existence of RA is a generic property, while in the larget
regionT grows monotonically and IA is absent.

III. SYSTEM

The utility of the electronic analog technique for mode
ing stochastic dynamics has been demonstrated in m
cases~e.g., see the recent review@11#!. However, the prob-
lem of escape over a fluctuating barrier seems to have b
investigated in this way only in experiments of the Perug
Camerino group@6,5#. The authors considered two kinds o
colored noises: DN and OUN, both in two variants: CSN a
CVN. In our research we do not deal with DN; however, w
consider a much wider class of OUN’s. On the other ha
the potentialV(x) used in@6,5# was a simple parabolic one
so it caused a permanent variation of the position of poten
minima, leading even to the disappearance of the bista
character of the total potential. Here we use another form
V(x) that avoids these inconsistencies.

The circuit used in our experiments has been based o
standard electronic system simulating Langevin equa
with a quartic potential,

U~x!5
1

4
x42

1

2
x2, ~7!

with a maximum atx50 and two minima at61. The per-
turbation has the form

V~x!5 HU~x! for uxu<1
0 for uxu.1, ~8!

so it does not alter the positions of potential extremes and
fluctuations affect only the barrier itself.

The system was prepared at random in one of the po
tial minima (x561). The time of its first appearance a
the top of the barriert top was then measured. We observ
also the value of the colored noise at this mome
ztop[2z(t top), where minus is used for later convenience.
least 2000 jumps from each well were recorded. The sy
metry of the system was checked very carefully, so in f
we dealt with the statistics of at leastN54000 events. From
the data collected, we calculated the MFPTT and its stan-
dard deviationDT, as well as the mean valueZ of ztop and its
standard deviationDZ.

The control parameter of the problem, the correlation ti
of the OUN, was varied within the interval 1022,t,103.
The measurements were repeated for five different relat
betweenQ and t with a50, 0.25, 0.50, 0.75, and 1.0. Th
other parameters were kept constant:q50.067 and Q0
50.73. In what follows we use scaled quantities in order
ensure a simple form~1! of the Langevin equation with the
potential~7!. The time unit of this paper corresponds to 1.
ms of real time, so the measured value 110 ms of the MF
over an unperturbed barrier givesTs5107. Finally, the cor-
relation times of the noise generators were of the order o
few ms, so effectively we are dealing with white noises.
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IV. EXPERIMENTAL RESULTS

A. Escape time

The results of the experiments, collected fora50, 0.25,
0.50, 0.75, and 1.0, are summarized in Figs. 1–5, respe

tively. In the ~a! parts of the figures the MFPT and its sta
dard deviation are displayed. In accordance with the theo

FIG. 1. Experimental data measured for an analog electro
model of Eqs.~1!, ~3!, ~4!, ~7!, and~8! vs decimal logarithm oft.
~a! Relative MFPTT(t)/Ts and its standard deviationDT(t)/Ts for
a50.0. For reference the dotted line indicates the relative MFPT
a static barrier. The values of the other parameters areq50.0674
andQ050.734.~b! The mean valueZ(t) of the colored noise and
its standard deviationDZ(t) as measured at the moment of crossi
the top of the barrier. For comparison thet dependence of the nois
standard deviation,SD5@Q(t)/t#1/2, is also displayed~dotted line!.
In all figures the lines that connect the experimental points
drawn to guide the eye, only.

FIG. 2. The same as Fig. 1 but fora50.25.
t-

ical predictions fora.0, the escape timeT~t! develops a
minimum on the small-t side. Only for CSN doesT~t! in-
crease monotonically in this region. Similarly, fora,1, a
maximum exists as expected on the large-t side of the figure;
but a monotonic increase characterizes the case with C
We notice, however, that the minima are more clearly
fined than the maxima.

The position of the minimumtmin depends strongly ona.
As a decreases the minimum shifts significantly towa
smaller values oft, e.g.,tmin for a50.25 is about ten times
smaller than fora51. Simultaneously, the minimal values o
the MFPTTmin change only slightly, while the width of the
minimum increases. These properties ofT~t! result simply
from thet dependence ofQ. If a.0 the OUNz(t) vanishes
ast→0 andT(0)5Ts @8#. On the other hand, asa decreases
colored noise approaches CSN, which does not disappe

ic
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FIG. 3. The same as Fig. 1 but fora50.5.

FIG. 4. The same as Fig. 1 but fora50.75.
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this limit, and for whichT(0),Ts . Thus the nonmonotonic
curve T~t! for a.0 converges to the monotonic one wi
a50, which means thattmin shifts toward zero. Since th
position of the minimum depends on the rate of variation
Q with t and may be located within an infinite~on a loga-
rithmic scale! interval, we cannot treat the appearance o
minimum of T(0)5Ts as the signature of a resonance b
tween the noisez(t) and any characteristic time of the sy
tem.

Although the maxima are not so clear as the minima, o
can notice a very similar relationship between the value oa
and the location of a maximumtmax: as a increasestmax
also increases. This is a consequence of the vanishing ofz(t)
in the limit t→` for a,1, while the CVN witha51 sur-
vives. Consequently, the existence of a maximum inT~t!
results from the specific relation betweenQ andt and also is
not of a resonance nature.

Very similar features are seen in the graphs of the s
dard deviation of the escape timeDT. For given a the
minima and maxima appear in the same places as forT~t!.
Furthermore, the maxima are much more distinct here. C
paring the whole curvesT~t! andDT~t! one can distinguish
two regions. Fort smaller than 10 for any givena the curve
DT~t! follows T~t! almost exactly. Thus in this region th
rate concept applies and the escape process can be char
ized by a decay rate equal to the inverse ofT~t! @4#. For
greatert, however,DT~t! exceedsT~t!. Since for largera
the noisez(t) vanishes more gradually ast→`, the largera
is, the greater becomes the difference betweenDT~t! and
T~t!. This reflects the fact that for larget, especially when it
is much larger than the MFPT, the potential remains alm
static during any escape attempt and the problem may
treated as an escape over an ensemble of static barriers
randomly distributed heights~the adiabatic approximation!.
The exponential dependence of the escape time onDU
causes higher barriers to dominate in the averaged exp
sions. Consequently, the MFPT is greater than for the st
barrier @8#. Also, DT exceedsT and, if a maximum exists, i
is better seen forDT~t! than forT~t!.

FIG. 5. The same as Fig. 1 but fora51.0.
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B. Position of the barrier

Parts~b! of Figs. 1–5 show the results of measureme
of ztop, i.e., the value of the colored noise2z(t) at the
moment when the system variablex(t) crosses the top of the
barrier. This relates to the configuration of the potential d
ing the escape event. In the figures we display its mean v
Z(t) @12# as well as its standard deviationDZ(t). For com-
parison, the standard deviationSD5AD of z(t) is also
shown.

The most important observation is that in any case,
CSN also,Z(t) exhibits a maximum. It is located in th
region betweent'0.3 for a50 andt'5 for a51.0, i.e., for
t;O~1!. These maxima mean that, regardless of the type
noise, fort of the order of unity the system prefers to esca
when the barrier is in its lower position. For smaller or larg
values oft escape events over higher barriers are relativ
more probable. The region oft for the occurrence of this
maximum is limited so one can ask whether this effect is
a resonance nature. We will return to this question short

Quite different is the dependence ofDZ on t. For any
value ofa it almost equalsSD . A small deviation from this
rule is noticeable only for larget whereDZ(t) falls slightly
below SD . Thus, ztop is a random variable with the sam
standard deviation as that of the processz(t), but with a
nonzero meanZ(t).

For CSN the maximum ofZ(t) lies under the lineSD(t).
With increasinga, the maximum moves toward this line
eventually just crossing it for the CVN case. In order
explain this distribution, note that fort51 ~the maximum
appears fort of the order of unity! the standard deviation o
z(t) has the same valueAQ0 for any a. Thus if t is slightly
smaller the amplitude of the fluctuations for smallera is
larger. In contrast, fort.1 the largera becomes the larger is
the amplitude of the fluctuations.

The different rate of increase or decrease of the fluct
tion amplitude with variation oft for different a blurs the
essence of this effect, however. In order to eliminate it
must consider the relative rather than the absolute heigh
the lowered barrier. The word ‘‘relative’’ means with respe
to the actual possibilities, i.e., with respect to the amplitu
of the barrier fluctuations for a givent. Such an approach
seems obvious on looking, e.g., at Fig. 1~b!. At t'2, where
Z(t)'AQ/t, in order to escape over the barrier the syst
exploits much more the modulation of the barrier caused
the colored noise than it does att'0.3, where, although the
maximum ofZ(t) appears, the possibilities are greater@Z(t)
is only about (1/2)SD]. In Fig. 6 we display the relative
mean value ofztop defined as follows:

Z̃~t!5Z~t!/AQ/t. ~9!

The plots for differenta differ only slightly. The maxima are
distributed within a very small interval, 2–4.6. Their heigh
are almost the same and of the order of unity. The plots
shifted slightly toward the right asa increases.

After thus reducing the influence of thet dependence of
the SD of the OUN on the barrier fluctuation amplitude, w
may suppose that the occurrence of a maximum ofZ̃(t) is of
resonance origin only. It appears fort of the order of a few
units and this is the time scale of relaxation in the system.
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understand this relation, let us recall that for a small noise
the standard~static! Kramers problem the system fluctuat
for a very long time at the bottom of the well, waiting for
large enough fluctuation of the white noisej(t) to kick it
over the top of the barrier. Becausej(t) is a Gaussian pro
cess, the waiting time depends exponentially on the heigh
the barrier, and hence a lower barrier is greatly to be p
ferred. When this large fluctuation ultimately happens,
should persist for a duration at least of the order of the
laxation timet r of the system@13,11,4,5#, which assures tha
the system has a long enough time to cross to the other
of the barrier. If the barrier rises during this stage, the sys
may return back to its initial well, thus increasing the waiti
time. This explains why, in order to ensure the minimal
cape time, the variation of the barrier, measured by the va
of the correlation timet, should occur on a time scale long
than t r . However, whent becomes too long, there will als
be enough time for a successful escape attempt over hi
barrier configurations. This results in an increase of the m
height of the barrier at the moment of escape. Conseque
for t;t r a minimum appears inz(t).

Following this discussion we may explain also the dep
dence ona of the plots in Fig. 6: asa decreases the ampl
tude of the barrier fluctuations increases, and so lower ba
ers can appear. This implies that a shorter time, albeit sti
the order oft r , will be required to cross to the other side
the barrier. Thus the resonant value oft decreases.

V. CONCLUSIONS

In this paper we have reported the results of our electro
analog experiments on the problem of an escape over a
tuating barrier of potential. The potential fluctuation we

FIG. 6. Relative lowering of the barrierZ̃(t) @Eq. ~9!# at the
moment of crossing over the top of the barrier fora50, 0.25, 0.50,
0.75, and 1.0. The other parameters as in Fig. 1.
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caused by a few types of OUN with different relationshi
between the two parameterst and Q. We measured the
MFPT T and its standard deviationDT for the threshold lo-
cated at the top of the barrier. We also collected the m
value Z and standard deviationDZ of the value of colored
noisez(t) at the moment of crossing the threshold.

Our main conclusion is that the resonance in the prob
does not relate to the duration of correlationt of the barrier
noise and the escape time, as often believed when cons
ing resonant activation problems. The resonance occurs
tweent and the small part of the escape time during wh
the system jumps from the region of the potential well to t
other side of the barrier. Since this time is of the order of
relaxation time of the systemt r the resonance condition
briefly reads

t;t r . ~10!

In the resonance the system maximally exploits the stoch
tic lowering of the barrier byz(t)—an escape event typicall
happens through a relatively lower barrier.

This resonance may give rise to a minimum inT~t!,
known as resonant activation. But the resonance identified
us occurs also for CSN. In this caseT~t! does not hit any
minimum, implying that there is apparently no resonance
this noise. However, as we have shown, the dependenc
the MFPT ont arises because of the dependence ont of two
factors: the mean relative height of the barrierZ̃ during the
escape event, and the standard deviationSD of the barrier
noise. For CSN the decrease ofSD is stronger than the in-
crease ofZ̃ and consequentlyT~t! increases monotonically
beyond the resonant region Eq.~10!.

In the region of larget a maximum ofT~t! can appear,
known as an inhibition of activation@8#. Since the nature of
this feature was not clearly identified it was not referred to
a resonance in@8#. According to the present analysis, an
exploiting similarities between the two limits oft ~t→0 and
t→`! discussed in@8#, we can state that the appearance
this maximum is not, in fact, of a resonance character.
have not identified a corresponding time scale in the syst
Thus the inhibition of activation appears only as a con
quence of the dependence ofQ on t.

We believe that our findings are general in the sense
they do not depend on a specific definition of the esc
time. Here we characterize it by means of the MFPT;
note that other possibilities exist, e.g., the Kramers flu
over-population rate@14# or the lowest nonzero eigenvalu
@15#. Our conviction is especially supported by the very r
cent paper of Reimannet al. @16# proving the equivalence o
the flux-over-population rate with the inverse of the MFP
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