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Abstract

The dynamical response of an underdamped Duffing oscillator to a quasiperiodic

force is investigated in the presence and absence of very weak additive noise. Par-

ticular attention is focused on the effect of noise on the characteristics of strange

nonchaotic attractors (SNAs). It is concluded that even extremely weak noise is

sufficient to induce dynamical complexity in an SNA.
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1. Introduction

The defining property of chaotic motion is conventionally taken to be an exponential

divergence of nearby trajectories, i.e. a sensitive dependence on initial conditions [1, 2].

Usually, it is also characterized by a strange attractor, with a complex fractal structure

in phase space. Until recently the terms strange attractor and chaotic attractor were

taken to be synonymous, although the two notions refer to quite different properties of

the attractor: chaotic reflects its dynamical properties, i.e. the presence of exponential

divergence of the trajectories, whereas strange implies the complexity of its structure, i.e.

relates to geometrical properties.
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It is now well established that, not only can an attractor can be strange/chaotic

and nonstrange/nonchaotic (i.e. regular), but it can also be strange/nonchaotic [2, 3] and

nonstrange/chaotic [4, 5, 6]. Because of the seeming oddity of the latter two combinations

of features, these attractors have evoked much interest and attention. Many papers are

devoted to the study of the strange nonchaotic attractor (SNA), an object that typically

arises in quasiperiodically driven systems as an intermediate link between regular and

chaotic attractors [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

An SNA has a geometrically complex structure (the attractor is not a finite set of

points, and it is not piecewise differentiable), but it exhibits no sensitivity to initial

conditions. SNAs have been studied extensively, both theoretically and experimentally.

Most papers consider the process by which an SNA can be created from a regular attractor;

or its disappearance in the transition to a strange chaotic attractor [9, 10, 11, 12, 13, 14,

15, 16, 17]. It was found that a typical SNA trajectory is characterized by a fluctuation

of its finite-time Lyapunov exponents between negative and positive values [10, 12] but

that, asymptotically as t → ∞, the Lyapunov exponent is negative. Lai et al. [13, 14]

compared the properties of an SNA with a chaotic attractor, and they showed that the

difference relates solely to the sign of the LLE. Shuai and Wong [16] investigated a map

with periodically fluctuating finite-time Lyapunov exponents. They described a different

route to the creation of an SNA in this map, and discussed the effect of truncation errors

on the dynamics.

In all these papers, both experimental and theoretical, it was the sign of the LLE that

was used to establish the nonchaotic character of the SNA, and thus to distinguish the

SNA from a chaotic attractor. At first sight, this is entirely rerasonable because a positive

LLE implies that an infinitely-small perturbation will grow exponentially, indicating a

sensitivity to initial conditions leading to unpredictability of the motion, mixing, and

thus chaos. A negative LLE implies that an infinitely-small perturbation tends to zero

as t → ∞. The LLE is also used to demonstrate the robustness of the SNA to weak

noise: it has been shown that weak noise does not change the sign of LLE. However it

is well known [24] that, for a noisy system, the LLE is not good indicator of complexity

and predictability of the motion and, in [24] another approach was offered. It examines

the predictability (complexity) of the trajectory on a strong nonuniform attractor: if,
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following a period of relaxation, there are time intervals during which nearby trajectories

diverge exponentially and can be in any region of the attractor, then such an attractor is

described as complex, because during such time intervals it is impossible to predict the

trajectory’s behavior. Under such conditions, the attractor may have a negative LLE.

We will call the attractor complex, if the trajectory behavior is unpredictable in the

sense described above. To avoid misunderstandings, we emploiy the term chaotic (non-

chaotic) to imply a positive (negative) LLE. In other words, we will refer to the attractor

as chaotic (nonchaotic), if the divergence (convergence) of trajectories predominates on

average.

In this Letter we discuss the effect of noise on an SNA in an underdamped system and

we show that even extremely weak noise is sufficient to convert it to complex attractor.

We will consider the peculiarities of time evolution from nearby initial conditions in an

underdamped system driven by a quasiperiodic signal. As an example, we consider the

quasiperiodically driven Duffing oscillator:

ẍ+ αẋ+ β(x3 − x) = A(sinω1t+ sinω2t) +
√
Dξ(t). (1)

Here α and β govern the dynamics of the system: we choose α = 0.632, β = 4. The

quantities A, ω1 and ω2 are respectively the amplitude and frequencies of the external

two-frequency forcing; ξ(t) is a Gaussian white noise of intensity D. We examine the

case of an irrational ratio between the frequencies: ω1 = 2.1235, ω2 =
√
5. As a control

parameter we choose the amplitude A of the quasiperiodic forcing.

2. Dynamics in the absence of noise

We first analyze the behavior of the oscillator in the absence of noise. We calculate

the LLE over a time 10000 2π/ω1 by use of a standard algorithm [18]. Fig. 1(a) shows

that, with increasing signal amplitude, the LLE also grows and that it changes sign at

A ≈ 0.7875. Consequently at this moment a chaotic attractor appears. To distinguish the

SNA from the quasiperiodic attractor it is necessary to use other characteristics [7, 9]: we

construct the stroboscopic section in coordinates (x(tn),Θn), where Θn = (nω2

ω1

)(mod 1),

tn = n2π/ω1; then choose a point on section (x(tn′),Θn′), and its nearest calculated

neighbor in the Θ coordinate (x(tn′′),Θn′′), such that |Θn′ −Θn′′ | and |x(tn′)−x(tn′′)| are
small; finally, we monitor the evolution of the distance between the coordinates |x(tn′+m)−
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x(tn′′+m)|, with the distance in the Θ direction remaining constant. If the distance between

points varies erratically with time and exhibits sharp and short-lived bursts, then it implies

the presence of discontinuities on the attractor, thereby indicating its fractal structure

or strangeness. Based on this method we have found that an SNA arises at A ≈ 0.519.

Thus we can observe three distinct regions: a quasiperiodic attractor for A < 0.519, an

SNA for 0.519 < A < 0.7875, and a chaotic attractor for A > 0.7875. We now consider

the dynamical properties of the attractor inside these regions.

Since the system (1) is passive, its dynamics is in the main formed by the external

forcing. The external force (dashed line of Fig. 2) can be considered as a periodic field with

a slowly-varying amplitude. Thus the motion can be either stable or unstable, depending

on the instantaneous amplitude, and it becomes unstable if the amplitude exceeds some

threshold. Thus, with the growth of amplitude, the proportion of unstable motion in the

total system dynamics will increase. We have calculated the local (finite-time) largest

Lyapunov exponents [12, 16, 19] as

Λ(t′, T ) =
1

T
ln

|∆(t′ + T )|
|∆(t′)| ,

where |∆(t)| =
√

δx2(t) + δẋ2(t), δx and δẋ are the solutions of equation variational to

(1), t′ is the time at which an amplitude minimum of the applied quasiperiodic force

occurs, and T = 2π/ω1. The finite-time LLE correspond the local LLE of stroboscopic

(Poincaré) map of system (1). Note that the LLE is obtained by taking the limit T → ∞.

It can clearly be seen in Fig. 2 that the system trajectory divides into alternating time

regions having positive and negative local exponents [10]. The same temporal behavior of

local LLEs is observed for all regimes: the torus, the SNA and the chaotic attractor [20].

However, their asymptotic behavior as t → ∞ differs: a torus and an SNA have negative

LLEs, whereas a chaotic attractor has a positive one.

The connection between chaos and a positive sign of the LLE has been strictly proven

only for hyperbolic and quasihyperbolic systems [21]. For the nonhyperbolic systems with

which we usually deal in practice, including the Duffing system (1), there is as yet no rig-

orous proof of such a connection. In many papers, therefore, in addition to calculating

the LLE, authors also explore sensitivity to initial conditions by use of a variety of more

direct methods [4, 9, 14, 22, 23]. For example, in [14, 23] the evolution of an ensem-

ble of initially near trajectories, characterized by the same phase of the external force,
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is considered. If the nearby trajectories diverge exponentially over the entire attractor

and, consequently, the distance between them reaches the size of the attractor, then it

testifies to an unpredictability of the trajectories’ behavior, i.e. temporal disorder, and

the attractor is therefore classified as complex [24]. In the opposite case the attractor is

non-complex (regular). In the absence of noise a complex attractor has a positive LLE,

i.e. it is chaotic. Following these remarks we consider the time evolution of an ensemble

of nearby trajectories, a so-called a snapshot of slices of the attractor [14, 23]: we choose

a set of points on the phase plane x − ẋ on a circle of radius 0.00001 around an attrac-

tor point, and monitor its time evolution. To describe the evolution of the trajectory

ensemble we have calculated the dispersion Sẋ(t) [14, 23], which is defined as:

S2

ẋ(t) =
1

N

N
∑

i=1

[ẋi(t)− 〈ẋi(t)〉]2 ,

where N = 500 is the number of points and “〈.〉” indicates an ensemble average.

Fig. 3(a) shows that, for the chaotic attractor, Sẋ(t) periodically increases and de-

creases at frequency ω2−ω1. In the time domain we can distinguish periodically alternat-

ing regions within which the size of the snapshot of slices of the attractor is qualitatively

different (Fig. 4): depending on the sign of the local LLEs, the points either diverge expo-

nentially over the entire attractor (positive sign) or they converge in very small regions of

the phase plane (negative sign). Thus, in the quasiperiodically driven Duffing oscillator

the chaotic spreading out of trajectories has a periodic alternating character. Note that

similar behavior is distinguished from typical evolutions of nearby trajectories for chaotic

attractor, e.g. in non-quasiperiodic systems, when the value S increases from initial value,

reaching certain maximum, but thereafter practically does not change [22].

For the SNA, the ensemble of trajectories converges to a single trajectory, i.e. the size

of the slice falls from its initial value to zero during a characteristic relaxation time (Fig.

3(b)), during which local trajectory spreading over the entire attractor occurs. It is clear

that if, after this relaxation period, the trajectory of the system was again perturbed,

further spreading would occur. Indeed, the sum of local LLEs over the regions with

positive sign can reach Λs ∼ 10 − 15. Consequently, any initial perturbation exceeding

the value |δx0| = SA exp(−Λs) ∼ 1.e− 6 must attain the size of the attractor SA in these

regions. Note, however, that this conclusion has a value-dependent character since, as
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shown in [25], the evolution of a finite-size perturbation differs from that of the infinitly-

small perturbation described by a local LLE. Hence conclusions about the evolution of

a finite-size perturbation cannot be reached without also considering the evolution of a

trajectory ensemble.

For the torus we also observe local trajectory spreading (not shown here), but the dis-

tance between trajectories does not attain the attractor size: we recall that perturbations

for the torus and SNA regimes tend to zero asymptotically as t → ∞.

3. Dynamics in the presence of noise

In reality, of course, we almost always deal with finite-size perturbations, because the

fluctuations in real systems occur continuously. In the presence of fluctuations the size of

the perturbation cannot be less than some value related to the noise intensity [24]. In other

words, when we take account of fluctuations, two initially close trajectories will always

differ from each other by some value; this is true even for the regular regime. Consequently,

for the torus, SNA and chaotic regimes, perturbations must evolve as follows: during

time intervals with positive local LLEs the perturbation increases exponentially, whether

mixing or not (depending on the noise intensity); and during the time intervals with

negative local LLEs the perturbation decreases to a non-zero value defined by the noise

intensity.

We now consider the behaviour of (1) in the presence of noise. For the sake of defi-

niteness, we choose a noise intensity comparable with that of the weak internal noise of

an analog electronic model of (1). Such noise originates in the analog components [26]

and is usually at least ∼ 1 µV [26] (and often much larger than this). For our numerical

simulation we choose D = 0.000001.

We first address the question: does this weak noise change the properties of the

attractors? To answer the question we have calculated (using the technique of [7]) the

information dimension di and scaling coefficient β of the spectral distribution function

N(σ) ∼ σ−β for different regimes of the attractor, both in the presence and in the absence

of noise. The results are shown in the Table 1. The dimension was calculated for the

Poincare section in coordinates (x(tn), θn = (nω2

ω1

)(mod 1)), tn = n2π/ω1. The coordinate

x(tn) was used for calculating the scaling of the spectral distribution. It can be seen in

the Table 1 that, for the noise-free case, there is no obvious qualitative difference between
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measures of the SNA (A = 0.6, A = 0.7) and measures of the chaotic attractor (A = 0.8,

A = 0.9). The behavior of the LLE (Fig. 1(a)) as a function of the forcing amplitude A in

the presence of noise is found to be practically coincident with that of the noise free case.

Because the presence of weak noise does not change these measures, we may infer that

it does not induce new regimes. Thus, the typical scenario is that: the fractal structure

is simply smoothed by the noise at small scales O(D), while remaining fractal on larger

scales; and the LLE differs from its unperturbated value a quantity O(D).

For the classification of attractor complexity we may again use the behavior of Sẋ(t):

an attractor can be described as complex if the fluctuations of Sẋ(t) with respect to the

zero level are comparable with the size of the attractor on the phase plane. To characterize

the attractor’s dynamical complexity as a function of A we consider the behavior of the

maximal dispersion Smax. It was calculated over a time interval of 500 2π/ω1, following a

relaxation time of 1500 2π/ω1. As shown in Fig. 1(b) for the noise-free case the maximal

value is distinguishable from zero only in the region where the sign of the LLE is positive.

Consequently, the behavior of Sẋ(t) fully correlates with the behavior of the LLE. In the

chaotic regime the fluctuations in Sẋ(t) are comparable in size with the attractor on the

phase plane x− ẋ; correspondingly, the attractor is dynamically complex. In the presence

of noise, however, Smax differs from zero for all values of forcing amplitude and becomes

comparable in size with the attractor for A > 0.519 (Fig. 1(b)), i.e. over the regions

of co-existence of the SNA and chaotic attractor in the noise-free case. Consequently,

for A > 0.519 in the presence of noise, the evolution of the ensemble of trajectories

is similar to the evolution of a chaotic attractor (Fig. 3(c)) and we observe a complex

and unpredictable behavior in (1). Note that for the noisy torus locally increasing and

decreasing values of S are also observed, but maximal value of S (which is determined by

the noise intensity) does not reach the size of attractor: see Fig. 1(a). Note also that we

do not observe a diffusive divergence of trajectories in the torus regime because we are

considering an ensemble of trajectories with the same phase of the eternal force.

4. Discussion

It is thus clear that, in the quasiperiodically driven Duffing oscillator, extremely weak

noise is sufficient to convert an SNA into an attractor that is strange in the sense of having

a fractal structure, and complex in the sense that there is unpredictability of trajectory
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behavior during some time intervals, but which has a negative LLE. This implies that

use of the LLE as an indicator of the velocity of perturbation growth yields misleading

information about the dynamical properties of the attractors. We have therefore also

calculated the complexity measure Kσ, which was introduced [24] for the analysis of

chaotic systems in the presence of fluctuations. It defines the velocity of divergence of

nearby trajectories and is calculated for two trajectories with different noisy realizations.

For regular motion, Kσ = 0, but Kσ differs from zero in the complex regime. In the

noise-free case the value of Kσ is positive for a chaotic attractor and zero for a regular

attractor. It can be seen (Fig. 5) that, for (1) the complexity differs from zero in the

regions where an SNA and chaos exist in the noise-free system, and that Kσ = 0 in the

region of torus. This reinforces our conclusion that, for A > 0.519 in the presence of noise,

the motion is complex.

We have evidence to show that this conclusion is not restricted to the Duffing sys-

tem (1): we have investigated [20] the effect of noise on the SNA-displaying nonlinear

oscillators and maps described in [8, 9, 13, 15]. The results have turned out to be quali-

tatively similar to those described above for (1). Thus, in each case, an extremely small

noise intensity is sufficient to convert the SNA into a complex attractor, but without

altering either its geometrical properties, or the scaling of the spectral function, or the

sign of the LLE. It is important to note that the role of noise here (in contrast to some

other well-known cases [27]) is trivial: the noise simply defines the finite (nonzero) size

of the perturbation or, in other words, the finite uncertainty in the definition of initial

conditions.

The same results for measures S and Kσ are obtained if we examine the deterministic

(without noise) behavior, just forbidding the distance between trajectories of ensemble to

be less then some value ǫ. Thus, the observed effects of noise are defined by the properties

of the SNA and are displayed only if the noise amplitude is larger then some threshold

value ǫ.

5. Conclusion

In summary, we are apparently driven to the conclusion that, in the presence of ex-

tremely weak noise, an SNA retains its negative LLE but exhibits complex unpredictable

behavior and a fractal structure – just like a chaotic attractor – even though weak noise
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changes neither the SNA structure nor the relationship between the regions with diver-

gence and convergence of trajectories. It is therefore impossible to classify the complexity

of signals from such systems usefully in terms of their time-averaged LLEs. Rather, it

is necessary to use local LLEs, a measure of complexity [24], or a direct method such as

maximal velocity dispersion of an ensemble of trajectories, in order to examine the un-

predictability of motion. Thus, one needs to know both the averaged LLE or distribution

of local LLEs [28], and the temporal behavior of local LLEs, to evaluate the region with

instability.

Finally, it is interesting to note that, in pioneering [4] and early papers on the subject,

the appearance of an SNA is attributed to unstable sets. Moreover, J. Stark [29] has shown

theoretically that an SNA has non-stable orbits, giving rise to its fractal structure. Non-

stable orbits must also cause unstable dynamical behavior. If we compare the dependences

on A of the fractal dimension DF and the measure of complexity Kσ (see Fig. 5), it is

evident that they are qualitatively similar. Thus we can suggest that the SNA appears to

have as much dynamical complexity in the presence of weak noise as it has strangeness in

the noise-free case. This interesting question will be considered in more detail elsewhere.
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Figure captions

Figure 1. The dependences of (a) the largest Lyapunov exponent and (b) the maximal

velocity dispersion Smax on the forcing amplitude A, both with D = 1.E − 6 (pluses)

and without D = 0 (circles) weak additive noise. In (b), results for D = 1.E − 5 and

D = 1.E − 7 are shown by the dotted and dashed lines respectively.

Figure 2. Time realizations of the applied force (dashed line) and the system response

(bold solid line) for A = 0.8. The local Lyapunov exponent is shown by the circles.

Figure 3. Time evolution of the velocity dispersion Sẋ(t) for: (a) A = 0.8, D = 0;

(b) A = 0.7, D = 0; (c) A = 0.7, D = 0.000001. The envelope of the external force

sin(ω1t− ω2t) is shown by the dashed lines in (a) and (b).

Figure 4. The stroboscopic section (point data) of Duffing system for A = 0.8. The

location of ensemble of initially nearby trajectories after relaxation time for two time

moment t = 10002π
ω1

(in region of negative local LLE) and t = 10102π
ω1

(in region of

positive local LLE) are shown by squares and triangles respectively.

Figure 5. The measure of complexity Kσ as a function of amplitude A both with

(pluses, for D = 1.E − 6) and without (circles, for D = 0) weak additive noise. The

dependence of the fractal dimension DF on the forcing amplitude A is shown by the

“×”s.
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Tables

di β

Amplitude A D = 0 D = 1.e− 6 D = 0 D = 1.e− 6

0.4 1.01 1.01 ln σ ln σ

0.5 1.08 1.08 ln σ ln σ

0.6 1.36 1.36 1.16 1.16

0.7 1.43 1.43 1.5 1.5

0.8 1.53 1.53 1.57 1.57

0.9 1.54 1.54 1.46 1.46

Table 1: The information dimension di and the scaling of the spectrum β for different

values of amplitude A in the absence and in the presence of noise.
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