
CHAOS VOLUME 11, NUMBER 3 SEPTEMBER 2001
Activated escape of periodically driven systems
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We discuss activated escape from a metastable state of a system driven by a time-periodic force. We
show that the escape probabilities can be changed very strongly even by a comparatively weak
force. In a broad parameter range, the activation energy of escape depends linearly on the force
amplitude. This dependence is described by the logarithmic susceptibility, which is analyzed
theoretically and through analog and digital simulations. A closed-form explicit expression for the
escape rate of an overdamped Brownian particle is presented and shown to be in quantitative
agreement with the simulations. We also describe experiments on a Brownian particle optically
trapped in a double-well potential. A suitable periodic modulation of the optical intensity breaks the
spatio-temporal symmetry of an otherwise spatially symmetric system. This has allowed us to
localize a particle in one of the symmetric wells. ©2001 American Institute of Physics.
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Fluctuation-induced escape from a metastable state is a
the root of many physical phenomena, from diffusion in
crystals to protein folding, and is closely related to nucle-
ation in phase transitions and activated chemical reac-
tions. In all these phenomena it would be advantageous to
control the escape probability by applying an external
force. The problem of escape of driven systems has there
fore attracted much attention in diverse contexts, a recent
application being stochastic resonance.1 We show that
this problem can be solved in a very general form for a
broad range of driving field frequencies, which goes far
beyond the adiabatic limit. The analytic theory is com-
pared with the results of analog and digital simulations.
We then discuss experiments on controlling escape in
modulated optical traps. An important application of the
results is the possibility of selective control of particle
diffusion in a periodic potential, including both the rate
and direction of the diffusion.

I. INTRODUCTION

The question of how a system responds to an exte
field is one of the fundamental problems of physics. A stro
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nonlinear response is usually associated with a sharply r
nant excitation of the system. However, the effect of exter
driving may also be extremely large for an important a
wide class of phenomena related to large fluctuations, inc
ing escape from a metastable state and nucleation in p
transitions.

The mechanism responsible is readily understood
adiabatically slow driving, where the driving frequency
small compared to the relaxation rate in the absence of fl
tuations and the system remains in quasiequilibrium. For s
tems in thermal equilibrium, the fluctuation probabilities a
given by the activation law,W}exp(2R/kBT). For large in-
frequent fluctuations, which are discussed in the present
per, the probabilitiesW are much less than all frequencie
and relaxation rates. We will be specifically interested in
tivated escape, in which caseR is the activation energy o
escape. The driving force modulates the value ofR quasi-
statically and, even where the modulation amplitudeudRu is
small compared toR, it may still substantially exceedkBT,
in which caseW will be changed very strongly. We empha
size that the change of the activation energy islinear in the
field amplitude, forudRu!R.

For higher field frequencies, where the driving becom
nonadiabatic, the expected major effect of the field would
to ‘‘heat up’’ the system by changing its effective temper
ture. Indeed, in the weak-field limit, the escape rateW is
il:
© 2001 American Institute of Physics
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known, theoretically2 and experimentally,3 to be incremented
by a term proportional to the fieldintensity I rather than the
amplitude A}I 1/2.2 However, one may ask what happens
the appropriately weighted field amplitude is not small co
pared to the fluctuation intensity~temperature!, and whether
an exponentially strong change of the escape rate will oc

Theoretical analysis of nonadiabatically driven syste
is complicated, since one may no longer assume that
system is in thermal equilibrium. Whereas for equilibriu
systems the exponent in the escape rate can be found, at
in principle, as the height of the free-energy barrier, for no
equilibrium systems there are no universal relations fr
which it can be obtained;4 the situation with the prefactor i
even more complicated.5 Much effort has been put into solv
ing the nonadiabatic response problem, in diverse conte
and numerical results have been obtained for specific mo
~see, e.g., Refs. 6 and 7!.

Recent theoretical results8,9 show that, counter-
intuitively, for high-frequency driving the change ofR is
proportional to the field amplitude, i.e., lnW is linear inA,
over a broad range ofA. The proportionality coefficient was
called the logarithmic susceptibility~LS!. Just like the con-
ventional linear susceptibility, the LS relates the respons
the system in the presence of external driving to its dynam
in thermal equilibrium in the absence of the driving field. W
emphasize that the amplitude is a nonanalytic character
of the field, as it is obtained by taking the square root of
period-averaged squared field. We are therefore talking a
a nonanalytic field dependence of the escape rate, and
need to determine a mechanism that would lead to suc
dependence.

In Sec. II we provide a general formulation which allow
one to find, for a periodically driven system, the activati
energy of escape induced by Gaussian noise with an arbi
power spectrum. In Sec. III we outline the theory and a
lyze the frequency dispersion of the LS. We then discuss
results on the prefactor in the escape rate of a dri
system10 and analyze the full time-dependent as well as
time-averaged escape rate, including both the exponent
prefactor. In Sec. IV we present the results of analog
digital simulations of driven systems. These results provid
full qualitative and quantitative confirmation of the theo
and also reveal the underlying physics explicitly. In Sec
we describe the experimental observations of the activa
escape of particles in modulated optical traps. Section
contains conclusions and a discussion of unsolved probl
in activated escape, including the problem of statistical
construction of the dynamical model of a fluctuating syste

II. GENERAL FORMULATION OF THE ESCAPE
PROBLEM

The idea underlying the theory of the LS8,9 is that, al-
though the motion of the fluctuating system is random, i
large rare fluctuation from a metastable state to a rem
state, or in a fluctuation resulting in escape, the system
most likely to move along a particular trajectory known
the optimal path~see Refs. 11–19 and references there!.
The effect of the driving field accumulates as the syst
Downloaded 05 Sep 2001 to 35.8.48.84. Redistribution subject to AIP l
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moves along the corresponding optimal path, giving rise t
linear-in-the-field correction to the activation energy of e
cape.

A natural theoretical approach to the escape problem
based on the path-integral technique. We will give a form
lation which is based on this technique and allows one to fi
the logarithm of the escape rate for aperiodically driven
system. We consider a general case where fluctuations in
system are caused by a stationary colored Gaussian n
f (t) with a power spectrumF(v) of arbitrary shape.18,20

The Langevin equation of motion is of the form

q̇5K~q;t !1 f ~ t !, K~q;t1tF!5K~q;t !, ~1!

wheretF is the period of the driving field. The noise is full
characterized by its correlation functionf(t)5^ f (t) f (0)& or
by F(v), the Fourier transform off(t). The characteristic
noise intensity isD5maxF(v)/2.

If the noise is weak then, over the noise correlation tim
tcorr and the characteristic relaxation time in the absence
noise t rel , the system will approach the metastable perio
stateqa(t) and will then perform small fluctuations abou
it.21 To escape from the basin of attraction of this state,
system should be subjected to a sufficiently large pulse of
force f (t). Various realizations off (t) ~the pulse shapes! can
result in escape. Their probability densities are given by
functional22

P@ f ~ t !#5expF2
1

2D E E dt dt8 f ~ t !F̂~ t2t8! f ~ t8!G , ~2!

whereF̂(t) is a reciprocal of the noise correlation functio
f(t), *dt1 F̂(t2t1)f(t12t8)5Dd(t2t8). For white noise,
F̂(t)5f(t)/4D5d(t)/2.

We assume that the noise intensityD contains a small
constant, which is the small parameter of the theory. T
parameter guarantees that the functional~2! is exponentially
small for all pulsesf (t) which can give rise to escape. I
addition, its values differ exponentially for different appr
priate f (t). Thus there exists a realizationf (t)5 f opt(t)
which is exponentially more probable than the others. T
optimal realization provides the maximum toP subject to the
constraint that the system~1! actually escapes. The pat
qopt(t) along which the system moves when driven by t
optimal forcef opt(t) is the optimal fluctuational path,qopt(t).

From ~2!, the pathsqopt, f opt provide the minimum to
the functional

R@q~ t !, f ~ t !#5
1

2 E E
2`

`

dt dt8 f ~ t !F̂~ t2t8! f ~ t8!

1E
2`

`

dt l~ t !@ q̇2K~q;t !2 f ~ t !#. ~3!

They can be obtained from the corresponding variatio
equations of motion. The Lagrange multiplierl(t) relates
f opt(t) andqopt(t) to each other.

The boundary conditions for the escape problem foll
from the fact that the system starts from the periodic attrac
qa(t)5qa(t1tF) in the distant past~on the time scale
tcorr, t rel!, with f 50 asymptotically, and that, as the forc
icense or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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589Chaos, Vol. 11, No. 3, 2001 Activated escape of systems
decays after having driven the system away from the att
tor, the system should not be brought back to the initia
occupied basin of attraction. The latter condition is on
satisfied18 if, for t→`, the system is approaching the u
stable periodic stateqb(t)5qb(t1tF) on the boundary of
the basin of attraction toqa(t),

f ~ t !→0, l~ t !→0 for t→6`,
~4!

q~ t !→qa~ t ! for t→2`, q~ t !→qb~ t ! for t→`.

The time-averaged escape rate has the form

W̄5C exp@2R/D#, R5minR. ~5!

The exponentR can be obtained for an arbitrary noise spe
trum and an arbitrary periodic driving by solving the vari
tional problem~3! and ~4! numerically. In particular, in the
case of white noise, whereF̂(t)5d(t)/2, the Lagrange mul-
tiplier and the forcef (t) can be easily eliminated from th
variational equations, 2l(t)5 f (t)5q̇2K, and the varia-
tional functionalR for the escape problem takes the for
~cf. Ref. 9!

R@q~ t !#5
1

4 E2`

`

dt @ q̇2K~q;t !#2. ~6!

The variational equations of motion for the problem~3!
are usually nonintegrable. In the case of a white-noise dri
system this was pointed out by Graham and Te´l.14 Generi-
cally there are several solutions which start from the attra
for t→2` and arrive to a given stateqf at a given timet f .
The physically meaningful observable solutionqopt(t) pro-
vides theabsolute minimumto the functionalR.23

The prefactorC in the escape rate~5! and the relation of
W to a directly observable quantity, the time-periodic curre
from the basin of attraction, are discussed below.

III. THE LOGARITHMIC SUSCEPTIBILITY

We now turn to the case where the driving forceF(t) is
additive,

K~q;t !52U8~q!1F~ t !, F~ t1tF!5F~ t !, ~7!

and only weakly perturbs the system dynamics; in particu
it does not change the number of attractors or saddle st
Even in this case the effect ofF(t) on the escape probabilit
may be exponentially strong,8–10 because it is determined b
the ratio of the field-induced incrementdR of the escape
activation energy to small noise intensityD. We note that
U(q) can be thought of as a metastable potential in wh
the system moves in the absence of periodic driving.

To first order inF, the correctiondR can be obtained
from the variational functional~3! by evaluating the term
}F(t) along the zeroth-order pathqopt

(0)(t), f opt
(0)(t), l (0)(t).

However, special care has to be taken of the fact that
optimal escape path is aninstanton.9 In particular, the func-
tion l (0)(t) is other than zero within a time interval of widt
;tcorr, t rel and is exponentially small otherwise. At the sam
time, the optimal fluctuation leading to escape may occu
Downloaded 05 Sep 2001 to 35.8.48.84. Redistribution subject to AIP l
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any timetc , in the absence of periodic driving@one can think
of tc as the ‘‘center’’ of the instanton whereul (0)(t)u reaches
its maximum#.

The fieldF(t) lifts the time degeneracy of escape path
It synchronizesoptimal escape trajectories, one per period,
as to minimize the activation energy of escapeR. The field-
induced change ofR should be evaluated along such a tr
jectory, i.e.,

dR5min
tc

dR~ tc!,

dR~ tc!5E
2`

`

dt x~ t2tc!F~ t !

[(
n

x̃~nvF!Fn exp~ invFtc!, ~8!

x~ t !52l (0)~ t !,

wherex̃(v)5*2`
` dt x(t)exp(ivt), andFn is thenth Fourier

component of the field.20 A complete derivation for a white-
noise driven system is discussed in Ref. 9; for the gen
case discussed here it will be given elsewhere. We note
Eq. ~8! has a particularly simple form for sinusoidal driving
whereF(t)5AcosvFt. In this casedR52ux̃(vF)uA.

The change of the activation energydR, and therefore
the logarithm of the escape rateW̄, are linear in the field
F(t). The coefficientx̃(v) is the logarithmic susceptibility
~LS!.8,9 The functionx is a characteristic of the system, a
are, for example, the polarizability and other standard lin
susceptibilities. It can be calculated for a given model
measured experimentally.

Unlike the standard linear susceptibility which, by ca
sality arguments, is given by a Fourier integral over tim
from 0 to`, x̃(v) is given by an integral from2` to `. The
analytic properties ofx̃(v) therefore differ from those of the
standard susceptibility and, in particular, their hig
frequency asymptotics arequalitatively different. The stan-
dard susceptibility for a damped dynamical system decay
a power law for largev @e.g., as 1/@U9(qa)2 iv#, for the
model ~7!#. In contrast, from~8! the LS decreasesexponen-
tially, x̃(v)5Me2uvutp, wheretp5Im tp , andtp is the pole
or the branching point of the functionl (0)(t). The
asymptotic behavior ofx̃(v) is different, of course, iftp

50, i.e.,l (0)(t) has a singularity for real time. This happen
for example, if the potentialU(q) has singularities encoun
tered by the optimal path. Therefore it does not typica
occur in dynamical systems.

The LS takes a particularly simple form for a white
noise driven system. From~6!, ~7!,

x~ t !52l (0)~ t !52q̇opt
(0)~ t !, q̇opt

(0)5U8~qopt
(0)!. ~9!

In this case, the explicit form oftp and the prefactorM in
x̃(v) are determined solely by the singularities ofU8(q).
They were obtained in Ref. 24.

A. Complete nonadiabatic escape theory

The notion of the LS makes it possible to find not on
the exponent, but also the prefactor in the escape rate,
thus to obtain a complete nonadiabatic solution of the esc
icense or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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problem for dynamically weak driving. Since the celebrat
Kramers paper,25 the calculation of the prefactor has be
one of the central problems in escape rate theory. For a
riodically driven system, the escape rateW(t) is periodic in
time. It can be introduced as a currentj away from the meta-
stable state, which is measuredwell behindthe boundaryqb

of the attraction basin@for the model~7! with F50, qb is the
position of the local maximum of the potentialU(q)#. In the
rangeuU8(q)u@F the current scales withq as

j ~q,t !5W@ t2td~q!#, dtd /dq521/U8~q!. ~10!

Equation~10! provides a meaningful definition of bot
instantaneous and time-averaged escape rates. For weak
ing, the values of the escape rate at different pointsq suffi-
ciently far behindqb(t) differ only by a phase shifttd(q),
which makes it possible to make a sensible measureme
W(t)5W(t1tF). For a white-noise driven system, an e
plicit expression for the time-dependent escape rateW(t)
and forW̄ was obtained10 by combining the results on the L
with the integral representation of the time-dependent pr
ability density nearqb . In particular, it was shown that

W̄/W05~2p!21E
0

2p

df exp@2dR~f/vF!/D#, ~11!

whereW0 is Kramers’ escape rate in the absence of modu
tion for an overdamped system~the type of systems which
we discuss in this paper!, anddR(tc) is given by Eq.~8!.

Since dR(tc) is a zero-mean periodic function,W̄ al-
ways exceedsW0 . For smallF/D, the correction toW0 is
quadratic inF/D ~cf. Ref. 2!. In the opposite limit of large
F/D, the escape rate is changed exponentially, w
ln@W̄/W0#'2D21 mindR(tc), which coincides with Eqs.~5!
and ~8!. The dependence of the escape rate on time and
parameters of the system for a simple metastable potent
illustrated in Fig. 1.

The time dependence of the escape rateW(t) and the
change of its form with varying parameters of the system

FIG. 1. The logarithm of the average escape rate~11! as a function of the
scaled amplitudeA/D of a sinusoidal field for the potentialU(q)5q2/2
2q3/3 ~Ref. 10!. The curvesa to d refer to the dimensionless frequenc
vF50.1,0.4,0.7,1.2. Inset: time dependence of thelogarithm of the instan-
taneous escape rate for the same frequencies andA/D510 (f5vFt), illus-
trating loss of synchronization of escape events with increasingvF .
Downloaded 05 Sep 2001 to 35.8.48.84. Redistribution subject to AIP l
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particular with the frequency and amplitude of the drivin
force, were analyzed in Refs. 10 and 26. The explicit form
the probability distribution in the vicinity of the boundar
qb(t) was obtained in these papers, too. One of the con
sions which follows from the results is that the prefactor
the expression for the currentj (t) calculated right on the
boundaryqb(t) has a totally different form from that in the
current well behindqb(t), which gives the observable rat
W(t) ~10!. This is in contrast with what happens in the ca
of nondriven overdamped systems.25

Calculating the current at the periodic boundaryqb(t)
was the goal of the recent papers by Lehmannet al.27 As
noted before, the functional form of this current differs fro
that of the coordinate-independent instantaneous escape
In their analysis, Lehmannet al. adopted the idea,8,9 Fig. 2,
of synchronization of optimal paths by a periodic field. T
evaluation of the prefactor in Ref. 27 is based on an ad
tional specific conjecture. Most of the specific results refer
a singular potential U(q) in Eq. ~7!: it consists of two
opposite-sign parabolas matched between their extre
However, the nonanalyticity of this potential should give ri
to a deviation from the linear amplitude dependence of
activation energy~8! for comparatively small amplitudes o
the driving periodic force. The deviation will be stron
where the amplitude of forced vibrations becomes com
rable to the distance from the extrema ofU(q) to the singu-
lar point where the parabolas are connected, as was ind
observed in Ref. 27. However, as we showed earlier by s
ing the variational problem~5!, ~6! exactly9 ~cf. Fig. 2!, for
generic analytic potentials the activation energy of escap
well described by the LS in a broad range of field amp
tudes. We demonstrate this below by analog and dig
simulations.

IV. ANALOG AND DIGITAL SIMULATIONS

A. Measuring the logarithmic susceptibility

To test the relevance of the LS and to investigate
properties, we have built an analog electronic model28 of the
system~1! for the double-well Duffing potential

FIG. 2. Optimal escape paths~bold solid lines! of a periodically driven
Brownian particle,ḣ5h2h31A cosvt 1 f (t), for A50.1, v52 ~from
Ref. 9;h andv correspond toq andvF in the present paper, respectively!.
The paths@given by Eqs.~4!–~6!# go from the stable to the unstable period
states shown by bold dashed lines~by thin dashed lines, in the absence
driving!. Thin solid lines show optimal paths in the absence of drivi
h (0)(t2tc)52$11exp@2(t2tc)#%

21/2, with differenttc . The driving lifts the
degeneracy with respect totc . The pathsh (0)(t2tc) with the ‘‘right’’ tc @as
given by~8!# are the ones around which the exact paths are oscillating.
linear nonadiabatic theory gives the decrement of the activation barrier t
accuracy 12%.
icense or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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U~q!52 1
2 q21 1

4 q4. ~12!

We drive it with zero-mean quasiwhite Gaussian noise fr
a shift-register noise generator, digitize the responseq(t),
and analyze it with a digital data processor. We have a
carried out a complementary digital simulation see Ref.
for details on the algorithm used and the noise generat
The analog and digital measurements involved noise inte
ties in the rangesD50.021– 0.04 andD50.007– 0.030, re-
spectively, in dimensionless units.

For escape from the stateqa521 of the white-noise
driven Duffing oscillator, Eqs.~9! and ~12! give the LS as

x̃~v!5p21/2G@~12 iv!/2#G@~21 iv!/2#, ~13!

whereG(x) is the gamma function. For sinusoidal drivin
the measured time-averaged escape rate is compared wit
expressions~11! and ~13! in Fig. 3. We emphasize that th
data refer to a strongly nonadiabatic driving,vFt rel50.6 @for
the model~12!, t rel51/U9(qa)51/2#, and cover the range
from weak fields,A&D, to A/D510. The corresponding
change ofudRu/D5ux̃(vF)uA/D was&4.2. The data and the
theory are in full agreement, without any adjustable para
eters. It is seen from the data that, forux̃(vF)uA/D.1 the
dependence of lnW̄ on A becomes linear, as expected. W
note that a qualitatively similar dependence of lnW̄ on the
driving amplitude can be seen in the experimental data
driven Josephson junctions.3

In Fig. 4 we show the data on the LS for several no
intensities. The activation energyR was obtained by measur
ing the slope of lnW̄ vs 1/D. From ~8!, the slope ofR vs A
yields the absolute value of the LS. The difference betw
the measured and calculatedR arises from the noise intensit
being not too small~D'0.020– 0.036 for the data points i
Fig. 4!, or in other words, comes from the field dependen
of the prefactor in the expression for the escape rateW̄. As
seen from Fig. 3, when the latter is taken into account, th
is full quantitative agreement between the theory and sim

FIG. 3. The average escape rateW̄ for a sinusoidally driven Duffing oscil-
lator ~12! as a function of the field amplitudeA, W0 is the escape rate fo
A50. The driving frequency isvF51.2, the white-noise intensity isD
50.03. Solid line: the theoretical expression~11!; filled and empty circles
are the data from analog and digital simulations, respectively, with no
justable parameters.
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lations. It is also seen from Fig. 3 that simulations withD as
high as 0.03 still give the correctslopeof dR vs A for large
A, and thus the correctux̃u.

The frequency dependence ofux̃(v)u, a fundamental
characteristic of the original equilibrium system, is compar
with the theoretical prediction~13! in the inset. As expected
the LS falls off exponentially at high frequencies, where
the limit of x̃(v) for v→0 corresponds to adiabatic drivin
and can be obtained from the Kramers theory. We note t
generally, the LS is not a monotonic function of frequenc
for underdamped systems, it displays resonant peaks.8

B. Switching between optimal paths

We now turn to the investigation of a specific feature
the escape rate that is related to the minimization overtc in
~8!. It is expected to arise for a nonsinusoidal field, and
particular for a biharmonic one.8 Here, the periodic function
dR(tc) may havetwo minima per period. However, the ac
tivation energy will always correspond to theabsolutemini-
mum of dR(tc). For a certain relation between the param
eters, the values ofdR(tc) at the two minima are equal. Th
situation is then similar to the first-order phase transit
where two minima of the free energy are equally deep.
the opposite sides of the phase transition line the system
different states. In the present case, if the parameters
through critical values where the minima ofdR(tc) are
equally deep, switching will occur from one minimum to th
other.

For biharmonic driving, a convenient control parame
is the phase differencef12 between the field componentsF1 ,
F2 . In the simulations we used the Duffing oscillator~12!
driven by the fieldF(t)50.1 cos(1.2t)10.3 cos(2.4t1f12).
For such a field, the functiondR(tc) ~8! has two minima.
Their relative depths depend onf12.

d-

FIG. 4. The dependence of the activation energyR on the amplitudeA of
the sinusoidal driving force withvF51.2 for the Duffing oscillator as de-
termined by electronic~open circles! and numerical~filled circles! simula-
tions and Eq.~11! ~solid line! ~Ref. 24!. The data of analog and digita
simulations refer to the noise intensities 0.028,D,0.036 and 0.020,D
,0.028, respectively. The inset shows the absolute value of the LS o
systemux̃(v)u measured~open and filled squares for analog and numeric
simulations, respectively! and calculated from~13! ~full curve! as a function
of frequencyv.
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The increment of the activation energydR5mindR(tc)
as a function off12 obtained from analog experiments an
numerical simulations is compared to theoretical predicti
in Fig. 5~a!. For the critical valuef125fcr , dR has a cusp.
On the opposite sides of the cusp it is determined by dif
ent minima ofdR(tc). Relative numbers of escape even
along the paths corresponding to these minima are show
Fig. 5~b!. The data clearly show that the contribution fro
one of the minima dominates everywhere except within
narrow vicinity of fcr , where the contributions from bot
minima are of the same order of magnitude.

In Fig. 5~c! we compare observed and predicted esc
paths forf125fcr ~in the calculations, account was taken
the field-induced corrections!. The coexistence of the two
escape paths per period is clearly seen, and agreement
theory is excellent.

V. DYNAMICAL SYMMETRY BREAKING IN A
MODULATED BISTABLE OPTICAL TRAP

A simple physical system which embodies fluctuatio
induced escape is a mesoscopic particle suspended in a l
and confined within a metastable potential well. The parti
moves at random within the well until a large fluctuatio
propels it over an energy barrier. An optically transpar
dielectric sphere can be readily trapped with a strongly
cused laser beam, creating an optical gradient trap, i.e., ‘
tical tweezers.’’30 Techniques based on optical tweezers ha
found broad applications in contactless manipulation of
jects such as atoms, colloidal particles, and biological m
rials. Fluctuation-induced escape can be studied using a
optical trap generated by two closely spaced parallel li
beams, as illustrated in Fig. 6. Such trap was implemen
initially to study the synchronization of interwell transition
by low-frequency~adiabatic! sinusoidal forcing.31

FIG. 5. ~a! The activation energyR as a function of phase differencef12

with vF51.2 for the Duffing oscillator driven by the biharmonic forc
F(t)50.1 cos(vFt)10.3 cos(2vFt1f12). Calculations based on~8! ~full
curve! are compared with data from electronic~open circles! and numerical
~filled circles! simulations.~b! Relative numbers of escape trajectories fo
lowing each escape path in the electronic~filled circles! and numerical~open
circles! experiments compared to the calculated relative probabilities~full
curve!. ~c! Measured escape trajectories for the electronic model~thin
jagged lines! with the critical phase differencef125fcr'3.57, compared to
the calculated optimal paths~circles and triangles!; solid lines are periodic
states of~1!, ~7! in the absence of noise. The data were obtained with
noise intensityD50.028.
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An important experiment with a particle in a double-we
trap is a measurement of the transition rate in a station
potential. Such an experiment can provide a rigorous tes
the multidimensional Kramers rate theory with no adjusta
parameters. Quantitative measurements require that the
fining potential be adequately characterized. This can
done by measuring directly the full three-dimensional~3D!
stationary probability distributionr(r ) of a trapped Brown-
ian particle.32

A stable three-dimensional trap is produced by two
cussed laser beams as a result of the electric field grad
forces exerted on a transparent dielectric spherical silica
ticle of diameter 2R50.6 mm. Displaced typically by 0.25
to 0.45mm, the beams create a double-well potential, w
the stable positions of the particle centered atr1 andr2 . The
stability perpendicular to the beam axis is due to the tra
verse beam profile gradient; in the beam direction the po
tial gradient is derived from the strong focusing of the o
jective lens.30 Relatively infrequent thermally activate
random transitions between the potential wells occur thro
a saddle point atr s as depicted in Fig. 6. The experiment
setup and the measurement technique have been discu
elsewhere.32

The full double-well confining potentialU(r ) is deter-
mined from the measured stationary distributionr(r ) as
U(r )52kBT ln r(r ). From the depths and curvatures of th
potential wells and the curvature ofU(r ) at the saddle point
r s , it is straightforward tocalculate the Kramers escape
rates. These rates can also be measured directly by pla
the particle into one of the wells and measuring the aver
time it takes to switch to the other well. The potentialU(r ),
and the barrier height in particular, can be systematica
varied by changing the beam intensities. This results in
exponential change of the escape rate, thus making it p
sible to compare theory and experiment over a wide rang
the escape rates. Extremely good agreement is obtaine
seen from Fig. 7.

The double-beam trap can also be used to investigate
effect of ac-modulation on transition rates. An interesti
application of this effect is todirect the diffusion of a particle
in a spatially periodic potential.33 It follows from the results
of Sec. II that, for a generic periodic potential, the a

e

FIG. 6. ~Color online! Rendering of two focused laser beams, the equil
rium positions of the particle~rings!, and a transitional path between th
beams.
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induced change of the activation barrier differs depending
the direction~right or left, for example! in which the particle
moves in escape. This makes the probabilities of transiti
to the right and to the left exponentially different and resu
in diffusion in the direction of more frequent transitions.

An effect closely related to directed diffusion, but mo
amenable to testing using optical trapping, is ac-field indu
localization in one of the wells of a symmetric double-we
potential. We expect both these effects to occur if the app
field breaks the spatio-temporal symmetry of the system8,34

The ratio of the stationary populationsw̄1 ,w̄2 of the wells is
determined by the ratio of the period-averaged ratesW̄i j of
the interwelli→ j transitions,

w̄1 /w̄25W̄21/W̄12}exp~@dR12dR2#/kBT!, ~14!

where dR1,2 are field-induced corrections to the activatio
energies of escape from wells 1,2~8!.

The experiment was conducted35 for equal static barrier
heights in the two wellsDU15DU2[DU, with DU0 set at
'7.5kBT. The intensity of a laser beam was then modula
by an electro-optic device, giving rise to modulation
DU/kBT with an amplitude'2.5. The modulation fre-
quencyvF/2p was varied between 1 and 100 Hz, whic
covers the range from adiabatically slow to nonadiaba
modulation~the relaxation time ist rel;1022 s!. This may be
compared to the mean unmodulated transition rateW0

;0.1 s21. Over this range, field-induced repopulation w
observed between the wells for a nonsinusoidal modula
wave form, so thatw̄1Þw̄2 .

The results on the instantaneous escape ratesW12(t) and
W21(t) for an adiabatic modulation (vF/2p51 Hz) are
shown in Fig. 8. The barrier heights in the two wells we
modulated in counter phase. The form of the modulation w
dDU(t)5const@sin(vFt)1(1/2)sin(2vFt1f12)#. For this

FIG. 7. ~Color online! Comparison of the measured transition ratesWmeas

and the rates calculated from the three-dimensional Kramers theory,WK,
using the measured curvatures of the potential wells. The squares repr
escapes from the well atr1 and the triangles represent escapes from the w
at r2 in Fig. 6. The line of slope one indicates the result expected if
three-dimensional Kramers theory correctly predicted the measured tr
tion rates~Ref. 32!.
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wave form, there is only one optimal escape path per per
for each well, and no switching between the paths occur
with varying f12.

As shown in the inset to Fig. 8, the difference betwe
the barrier heights in the two wells varies asymmetrica
over the cycle. It depends onf12 and can be inverted if the
phase angle is shifted byp. In other words, the modulate
potential is not invariant undert→t1p/vF , x→2x, y
→2y ~with x, y measured from the symmetry planes par
lel to the beam axes, see Fig. 6!. It is this breaking of the
spatio-temporal symmetry that leads to the escape rate f
one of the wells being on average much bigger than from
other, as seen from Fig. 8. In turn, this leads to a hig
population in one of the wells. Not only has the effect be
observed for slow modulation, as evidenced by Fig. 8, bu
population difference of 20% has been observed deeply
the nonadiabatic regime, withvF/2p520 Hz, for the modu-
lation amplitude used. This is sufficient to create significa
directional diffusion, and demonstrates the onset ofdynami-
cal symmetry breaking. The dependence ofw̄1 /w̄2 on the
phase shiftf12 is in agreement with the theory of Sec. III.35

VI. CONCLUSIONS AND OPEN QUESTIONS

We have shown theoretically, by analog and digi
simulations, and by optical trapping experiments that flu
tuations in driven systems, and in particular escape from
metastable state, can be effectively controlled by an exte
field. The field gives rise to a change of the activation ene
of escape, which can be much bigger than the character
noise intensity~temperature! even for comparatively weak
fields. Over a broad range of field amplitudes, this chang
linear in the field even where the driving frequency excee
the reciprocal relaxation time of the system and substanti
exceeds the escape rate. The effect is described by a p
cally observable quantity, the logarithmic susceptibility. T
LS relates the probability of large fluctuations in the pre

ent
ll
e
si-

FIG. 8. ~Color online! The least-squares fits to the experimentally det
mined instantaneous time-dependent switching probabilities for a partic
the adiabatically modulated double-beam trap, over a cyclevFt of the
modulating wave form. The phase angle between the first and second
monics is f125p/2. When the phase angle was incremented byp, the
escape rates from the left and right wells interchanged, within experime
error. Inset shows the instantaneous difference between the heights o
potential barriers in the two wells.
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ence of an external field to the dynamics in the absenc
driving. It displays a specific frequency dispersion, whi
makes it possible to control, selectively, the escape rate
targeted system. The LS can be calculated, for a given m
of the system, and can be measured experimentally.

An important application of the escape rate control
directed diffusion in a spatially periodic potential. As w
have demonstrated, such control can be performed even
symmetric potential, in which case not only the rate, but a
the preferred direction of diffusion can be convenien
changed by changing the driving field parameters.

The high efficiency of the escape rate modulation
largely due to thesynchronizationof optimal escape paths b
the driving field. We have predicted and observed this s
chronization. We have also observed the related effec
switching between different branches of the activation
ergy as a function of the field parameters—a generic ph
transition type effect related to coexistence of different
cape paths in systems away from thermal equilibrium.

The results of this research are relevant to biologi
systems, since activated escape lies at the root of many
logical processes at the molecular level, and modulation
the escape rate is often the way nature exercises con
However, detailed understanding of how this control is p
formed is missing in most cases. This is a fundament
important and most challenging open scientific problem.

Another important open problem of broad interest
whether large fluctuations can be used to learn about
dynamics of a fluctuating system away from stable or me
stable states. The underlying idea here is that, in large fl
tuations, the system explores remote areas of the space
dynamical variables. An example where fluctuations ha
been used to find the global potential in which a system
moving was discussed in Sec. V. The problem becomes m
complicated if the system dynamics is unknown. Howev
given that the system is most likely to move along a cert
path during a large fluctuation, the observation of such pa
can enable one to infer a dynamical model of the system.
process can then be iterated, as indicated by recent resu36

The results described here are of interest also from
viewpoint of practical applications. An important example
the separation of colloidal particles and macromolecu
Our experiments show that selectively directed diffusion i
promising new approach to this problem. Another exampl
control of crystal growth using an ac field. The releva
nucleation rate will be changed by the field in a way simi
to the escape rate. Therefore it should be possible to stro
modulate it both in time and space.
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