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1.1 INTRODUCTION

A characteristic feature of nonlinear science generally, and of nonlinear optics in
particular, is the common necessity of having to make simplifications, and then
approximations in order to solve the equations of even the simplified models. These
considerations applya fortiori to the study of fluctuation phenomena in nonlinear
systems, and thus account for the increasing role being played by analogue and digital
simulations, which enable the behaviour of the model systems to be investigated in
considerable detail.

Several years have now passed since a contribution [1] to an earlier volume in this
series illustrated some of these ideas. It was shown in particular that detailed analyses
of fluctuations in model systems not only provide a deeper understanding of complex
phenomena but often also pave the way to the development of new experimental
techniques and new ideas of technological significance.

In this chapter, we discuss the application of simulation techniques to the study of
fluctuational escape and related phenomenain nonlinear optical systems: that is, sit-
uations where a large deviation of the system from an equilibrium state occurs under
the influence of relatively weak noise present in the system. We will be interested
primarily in the analysis of situations where large deviations lead to new nontrivial
behaviour or to a transition to a different state. The topics to be discussed have
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been selected mainly for their own intrinsic scientific interest, but also in order to
provide an indication of the power and utility of the simulation approach as a means
of focusing on, and reaching an understanding of, the essential physics underlying the
phenomena under investigation; they also provide examplesof different theoretical
approaches and situations where numerical and analogue simulations have led to the
development of new experimental techniques and new ideas with potential techno-
logical significance. Although the different Sections all share the same general theme
- of fluctuational escape phenomena in model nonlinear optical systems - they deal
with quite different aspects of the subject; each of them is therefore to a considerable
extent self-contained (with Secs. 1.4 and 1.5 being exceptions, because they should
be read after Sec. 1.3) and thus can be read almost independently of the others.
Before considering particular systems, we review briefly the scientific context of the
work and discuss in a general way the significance of escape phenomena in nonlinear
optics.

The investigation of fluctuations by means of analog or digital simulation is
usually found most useful for those systems where the fluctuations of the quantities of
immediate physical interest can be assumed to be due to noise. The latter perception
of fluctuations goes back to Einstein, Smoluchowski, and Langevin [2, 3, 4] and
has often been used in optics (cf. Refs. [5, 6, 7, 8]). In nonlinear optics, the
noise can be regarded as arising from two main sources. Firstthere are internal
fluctuations in the macroscopic system itself. These arise because spontaneous
emission of light by individual atoms occurs at random, and because of fluctuations
in the populations of atomic energy levels. The physical characteristics of such noise
are usually closely related to the physical characteristics of the model that describes
the “regular” dynamics of the system, i.e. in the absence of noise. In particular, the
power spectrum of thermal noise and its intensity can be expressed in terms of the
dissipation characteristics via the fluctuation-dissipation relations (cf. Ref. [9]) and,
if the dissipation is non-retarded so that the corresponding dissipative forces (e.g.
the friction force) depend only on the instantaneous valuesof dynamical variables,
the noise power spectrum is independent of frequency, i.e. the noise is white. The
model of noise as being white and Gaussian is one of the most commonly used in
optics because the quantities of physical interest often vary slowly compared with
the fast random processes that give rise to the noise, like emission or absorption of
a photon [5, 6, 7, 8]. The second very important source of noise is external: for
example, fluctuations of the pump power in a laser. The physical characteristics of
such noise naturally vary from one particular system to another; its correlation time
is often much longer than that of the internal noise, and its effects can be large and
sometimes quite unexpected (cf. Ref. [10]).

In general, the fluctuations observed in nonlinear optics are both spatialand
temporal, i.e. the variations of the quantities of interestoccur to a large extent
independently in time and in space. However, in many cases the spatial modes in a
system are well-separated: the dynamics of interest is thenjust that of a few dominant
modes. The appearance of such modes is typical for high-Q active and passive optical
cavities. In view of recent progress in microelectronics (quantum-dot technology,
semiconductor-laser arrays, etc.), the investigation of systems with a discrete set
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of spatial structures (modes) is particularly interestingand important [11]. The
amplitudes and phases of the actual modes (or other appropriate characteristics of a
system that do not depend on coordinates) make a set of purelydynamicalvariables,
and the analysis of fluctuations in a system reduces to the investigation of the kinetics
of a dynamical system.

One of the most remarkable phenomena where fluctuational transitions play a key
role is stochastic resonance(SR), a phenomenon in which a weak periodic signal
in a nonlinear system is enhanced by an increase of the ambient noise intensity; a
stronger definition requires that the signal/noiseratio (SNR) should also increase.
The SR phenomenon appears to be widespread. After being introduced as a possible
explanation of the earth’s ice-age cycle [12, 13], SR has subsequently been observed
or invoked in a large variety of contexts: see e.g. [14, 15, 16, 17, 18] for reviews. SR
has also been extensively investigated in nonlinear optical systems including lasers
[19, 20, 21, 22], passive optical systems [23, 24, 25, 26], and a Brownian particle in an
optical trap [27]. In this chapter, following a brief introduction to the SR phenomenon
in an optical bistable system, a new form of optical heterodyning related to stochastic
resonance is described, in which two high-frequency signals (input and reference
signals) are applied to a bistable system. We note that the effect of noise-enhanced
heterodyning was first predicted theoretically and investigated in analogue model in
a broad range of parameters [28].These investigations in turn made it possible to
observe a noise-induced enhancement of heterodyning in an optical bistable device
[29]. At the same time, noise-induced increase of the SNR (rather than of the signal
only) can occur only in certain classes of nonlinear systems[31].

When it was first discovered, and for some time afterwards, SRseemed a rather
mysterious phenomenon and a number of highly sophisticatedtheoretical approaches
were proposed (see citations in e.g. the reviews [16, 30, 32,33]. All these theories
assumed that bistability is an essential prerequisite for the SR phenomenon to occur.
Only some years later was it appreciated [34, 35] that a much simpler formalism –
linear response theory(LRT) – would suffice to describe what was often the most
interesting limit in practice, where the signal was relatively small and the noise was
relatively strong. An analytic theory of the more complicated effects that occur for
stronger signal strengths [34, 36, 37, 38] has also been developed, and has been
confirmed in considerable detail through analogue electronic experiments.

The perception of SR as a linear response phenomenon led naturally, however, to
the realisation that SR can also occur without bistability [31, 39, 40] and to observa-
tion of the phenomenon in an underdamped, monostable, nonlinear oscillator [39].
In fact, it is well-known that the response of a monostable system to signals in certain
frequency ranges can be strongly increased by noise, e.g. just by raising the tem-
perature. Examples range from currents in electron tubes tooptical absorption near
absorption edges in semiconductors. For underdamped oscillators, a temperature-
induced shift and broadening of the absorption peaks, i.e. “tuning” by external driving
due to the oscillator nonlinearity, was first discussed in [41]; complete classical and
quantum theories of these effects were given in [42]. Underdamped systems were
also considered in [43].
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Describing SR in terms of a susceptibility is particularly advantageous for systems
that are in thermal equilibrium, or in quasi-equilibrium. In such cases the fluctuation-
dissipation relations [9] can be used to express the susceptibility in terms of the
spectral density of fluctuations in the absence of the periodic driving. This was used
explicitly in the case of noise-protected heterodyning. Itis true in general that the
analysis of fluctuations is greatly facilitated by the presence of thermal equilibrium
when the conditions of detailed balance and of the time reversal symmetry are
satisfied [44].

However, in many cases the fluctuating systems of interest are far from thermal
equilibrium. Examples include optical bistable devices [45], lasers [46, 23], pattern
forming systems [47], trapped electrons which display bistability and switching
in a strong periodic field [48, 49, 50], and spatially periodic systems (ratchets)
which display a unidirectional current when driven away from thermal equilibrium
[51, 52, 53, 54, 55, 56]

A powerful tool for analysing fluctuations in a non-equilibrium systems is based
on the Hamiltonian [57] theory of fluctuations or alternatively on a path-integral
approach to the problem [44, 58, 59, 60, 61, 62]. The analysisrequires the solution
of two closely interrelated problems. The first is the evaluation of the probability
density for a system to occupy a state far from the stable state in the phase space. In
the stationary regime, the tails of this probability are determined by the probabilities
of large fluctuations.

The other problem is that of thefluctuational pathsalong which the system
moves when a large fluctuation occurs. The distribution of fluctuational paths is a
fundamental characteristic of the fluctuationdynamics, and its understanding paves
the way to developing techniques for controlling fluctuations. Its importance for
gaining insight into the physics of fluctuations from a dynamical perspective was
recognized almost half a century ago by Onsager and Machlup [44]. A theoretical
understanding, and basic techniques for treating the problem, have been developed
since that time; but it was not until recently [60] that the distribution of fluctuational
paths for large fluctuations was observed in an actual experiment, through an analogue
simulation.

A simple qualitative idea behind the theory of large fluctuations in noise-driven
systems is that such fluctuations result from large outbursts of noise that push the
system far from the attractor. The probabilities of large outbursts are small, and
will actually be determined by the probability of themost probableoutburst of noise
capable of bringing the system to a given state. This particular realisation of noise is
just the optimal fluctuational force. Because a realisation(a path) of noise results in a
corresponding realisation of the dynamical variable [63],there also exists an optimal
path along which the system arrives to a give state with overwhelming probability.
From a different perspective, optimal paths were first described for nonlinear non-
equilibrium Markov systems in [57]. Using another approach, the analysis of the tails
of the distribution was also done in [64], whereas the approach described above was
discussed in [65] in the context of escape from a metastable state. This approach is not
limited to Markov systems [42]. For systems driven by Ornstein-Uhlenbeck noise,
the problem of optimal paths was discussed in [58, 66, 67, 68,69, 70, 71, 72, 73]; an
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equivalent eikonal formulation was developed in [74, 75, 76, 77]. The general case
of Gaussian noise was discussed in [78, 79, 80]; see also Sec.1.3. For reviews of
related work on fluctuations in colored noise driven systemssee [81, 82].

A brief introduction to the theory of large fluctuations is given in Sec. 1.3 together
with the results of some direct observations of the optimal paths in model systems.
It is very important to note that, following the first observations of optimal paths in
analogue electronic models, fluctuational paths have very recently been investigated
in optical systems, including measurements of the so-called prehistory probability
distribution (PPD) of the radiation intensityI for dropout event in a semiconduc-
tor laser [83], and the time-resolved measurement of polarization fluctuations in a
semiconductor vertical-cavity surface emitting laser [84].

The preliminary analogue and numerical simulations made itpossible to test
fundamental tenets of the theory of large fluctuations, and thus to provide an experi-
mental basis on which the theory could advance. At the end of Sec. 1.3 and in Sec.
1.4 we present two examples of recent advances in the theory of large fluctuations.
In the first example, the time evolution of the escape flux overa barrier on a short
time scale is considered. It is a problem of of fundamental importance [85] and,
furthermore, of immediate practical interest given that new methods of spectroscopy
with femto-second resolution have recently become available [86]. The technique of
non-stationary optimal paths can be employed to solve the problem and numerical
simulations verify the theoretical predictions. The striking feature predicted theo-
retically and demonstrated in simulations is that, for a system initially at the bottom
of the well, the escape flux over the barrier on times of the order of a period of
an eigen-oscillation grows in a step-wise manner, providedthat friction is small or
moderate. If the initial state is not at the bottom of the well, the steps at large enough
times transform into oscillations. The step-wise/oscillatory evolution at short times
appears to be a generic feature of a noise-induced flux.

The second example is related to the recent analytical solution [56, 87] of the long-
standing problem of escape from a potential well in the presence of non-adiabatic
periodic driving. It was shown [56, 87] that, over a broad range of driving field
magnitudes, the logarithm of the fluctuation probability islinear in the field, and
the response can therefore be characterized by alogarithmic susceptibility(LS). We
evaluate the activation energies for escape, with account taken of the field-induced
lifting of the time and spatial degeneracy of instantonlikenucleation trajectories. The
immediate advantage of the theory is that it provides the solution of a complicated
theoretical problem in a simple analytic form that describes the dependence of the
“activation energy” on both the amplitude and frequency of the driving field and can
be extended immediately to a periodic driving field of arbitrary form.

Analogue experiments and digital simulations confirmed that the variation of the
activation energy for escape with driving force parametersis accurately described
by the logarithmic susceptibility (LS). Experimental dataon the dispersion are in
quantitative agreement with the theory. And, again, it is interesting to note that,
after the LS was investigated in analogue and numerical simulations, it was then
also measured in optical experiments on a sub-micron brownian particle in a bistable
three-dimensional optical trap [88, 89]. This research emphasizes the fundamental
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importance of the logarithmic susceptibility, a new physical quantity that relates the
response of the system in the absence of detailed balance to its characteristics in
thermal equilibrium. It yields quantitative agreement with experiment and expresses
the corrections to the “activation energy” in a simple integral form analogous to that
well-known from linear response theory.

In the preceding example, analogue and numerical simulations were used to verify
existing theoretical predictions. However, in reality thesignificance of analogue
and digital simulations goes far beyond this modest role. The analogue circuit
combines features of a real physical system and of the computer model and an attentive
researcher can very often make important discoveries by analysing its behaviour.
Perhaps the most striking example is given in the review by Kautz [90]: “In discussing
analogue simulations of a rf-biased Josephson junction, performed by Levinsen and
others at Berkley, Levinsen and Sullivan conceived a new type of voltage standard...”.
From our own experience, examples of theory being led by the analogue simulation
include the discovery of the noise-induced spectral narrowing [91] and of SR in
monostable systems [31, 39], leading to extensive researchby many groups and
correspondingly to substantial theoretical progress.

We then report and discuss the results of recent investigations of fluctuational
escape from the basins of attraction of chaotic attractors (CA). The question of noise-
induced escape from a basin of attraction of a CA has remaineda major scientific
challenge ever since the first attempts to generalize the classical escape problem to
cover this case [92, 93, 94]. The difficulty in solving these problems stems from the
complexity of the system’s dynamics near a CA and is related,in particular, to the
delicate problems of the uniqueness of the solution and the boundary conditions at a
CA. The approach proposed here is based on the analysis of theprehistory probability
distribution. It is shown in particular that both the existence and uniqueness of
solution can be verified experimentally using measurementsof a PPD. Moreover,
using this technique and its extension [95] to measure both the optimal paths and the
corresponding optimal fluctuational force, one can identify the initial conditions on
a chaotic attractor and find an approximation to the energy-optimal control function
of escape from a CA, thus paving the way to exciting new applications in the field
of nonlinear control. One such application to the energy-optimal control of escape
from the basin of attraction of CA of a periodically driven nonlinear oscillator will
be described. Finally, a fluctuational escape from a Lorenz attractor, a well-known
system that is of importance in modelling the dynamics of real optical systems, will
be discussed.

The chapter is organized as follows: Sec. 1.2 describes an investigation of the
SR phenomenon and of noise-protected heterodyning in an electronic circuit and in
an optical bistable device. Sec. 1.3 discusses the results of investigation of optimal
paths for large fluctuations and their relationships to the analysis of fluctuations in
real optical systems. Sec. 1.4 presents two examples of recent advances in the theory
of large fluctuations related to the time evolution of the escape flux over a barrier in
a potential system on a short time scale, and to the non-adiabatic escape problem.
The results of numerical and analogue simulations are compared with theory. Sec.
1.5 describes investigations of the escape from a CA and the applications of these
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results to the solution of the nonlinear optimal control problem. Finally, in Sec. 1.6,
we summarise the results and consider future perspectives.

1.2 STOCHASTIC RESONANCE AND NOISE-PROTECTED
HETERODYNING

1.2.1 Introduction

The idea of stochastic resonance (SR) was introduced by Benzi et al. [12], and
Nicolis [13], who showed that a weak periodic signal in a nonlinear system can be
enhanced by the addition of external noise of appropriate intensity; it was demon-
strated subsequently that the same is often true of the signal-to-noise ratio (SNR)
as well [19, 96]. Recently the quest for practical applications of SR has become
a subject of intensive investigation [97]. An important restriction in this respect is
[97, 28] that the frequency of the input signal should be low compared to the char-
acteristic frequencies of the system under study. Indeed most investigations of SR to
date [20, 23, 34, 35, 98, 99, 100, 101] (see also [102] and references therein) have
related to low-frequencysignals driven bistable systems.The origin of the SR in such
cases lies in the fact that the low-frequency driving force modulates the probabilities
of fluctuational transitionsWnm between the coexisting stable states, and hence the
populations of the states, which gives rise to a comparatively strong modulation of a
coordinate of the system with an amplitude proportional to the distance between the
stable positions. This mechanism of strong response of a symmetric bistable system
to an external forcing was first suggested by Debye [103] in the context of molecules
that have several different equivalent orientations in solids and may reorient between
them. Since the transition probabilities increase sharply(exponentially, for Gaussian
noise) with noise intensityD, the efficiency of modulation and the SNR are also
sharply increased. The mechanism is operative provided: (i) the stationary popula-
tions of the states are nearly equal to each other; and (ii) the frequency of the force is
much smaller than the reciprocal relaxation timet−1

r of the system (see [15]). It was
suggested [28], however, and demonstrated in analogue simulations, that a related
phenomenon can occur when a nonlinear system is driven by twohigh frequency
signals: if the resultant heterodyne signal is of sufficiently low frequency, both it and
its SNR can be enhanced by the addition of noise.

Here, we use the ideas of SR and heterodyning to demonstrate the new phe-
nomenon ofnoise-enhancedoptical heterodyningin an optically bistable (OB) device
driven by two modulated laser beams at different wavelengths. An optical system was
chosen for the investigations for two main reasons. First, because of recent progress
in optical data processing and communication [104, 105] andof possible applications
of optical bistability in this context [106]: the trend to miniaturise OB devices and
to reduce their threshold power [107] has highlighted the problem of controlling the
signal and the SNR in optical systems. Secondly, OB systems provide an opportu-
nity to investigate a wide range of quite general fluctuationphenomena associated
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with coexisting stable states far from thermal equilibrium. Thus the investigation of
fluctuations in these systems is of fundamental interest andsignificance.

In Sec. 1.2.2 the fluctuations and fluctuational transitionsin an OB system subject
to white noise are analysed. In Sec. 1.2.3 the phenomenon of stochastic resonance in
the OB system is discussed in terms of linear response theoryand the corresponding
experimental results are presented. In Sec. 1.2.4 we discuss theory and experimental
results for the new form of optical heterodyning noise-protected with stochastic
resonance. Finally, Sec. 1.2.5 contains concluding remarks.

1.2.2 Fluctuations and fluctuational transitions in an OB system.

1.2.2.1 Theory. A simple model that makes it possible to describe optical bista-
bility in a variety of systems is a plane nonlinear Fabry-Perot interferometer, filled
with a medium whose refractive index is intensity dependent[106]. The “slow"
kinetics of a nonlinear interferometer may be often described by a Debye relaxation
equation for the phase gainφ, of form

φ̇+
1

τ
(φ − φ0) = Iin(t)M(φ) + Iref(t), (1.1)

IT (t) = N(φ)Iin(t), N(φ) = N(φ+ 2π), M(φ) =M(φ+ 2π).

Here Iin(t) is the intensity of the incident radiation, andφ0 is the phase of the
interferometer in the dark. The functionsN(φ) andM(φ) relate the intensities of
the transmitted and intracavity fields to that of the incident light. The functionIref(t)
corresponds to the intensity of radiation from an additional source, which is very
likely to be present in a real device to control the operatingpoint. This description is
valid in a plane wave approximation, provided that we neglect transverse effects and
the intracavity build-up time in comparison with the characteristic relaxation time of
nonlinear response in the system. It has been shown that the Debye approximation
holds for many OB systems with different mechanisms of nonlinearity.

Let us now consider stochastic motion in an OB system. In general, noise in
an OB system may result from fluctuations of the incident field, or from thermal
and quantum fluctuations in the system itself. We shall consider the former. The
fluctuations of the intensities of the input or reference signals give rise respectively
to either multiplicative or additive noise driving the phase. Both types of fluctuations
can be considered within the same approach [108]. Here we discuss only the effects
of zero-mean white Gaussian noise in the reference signal:

Iref(t) = Īref +∆I(t), 〈∆I(t)〉 = 0, 〈∆I(t)∆I(0)〉 = 2Dδ(t).

In this case, for a constant intensity of the input signal,Iin(t) = Īin = const, Eq.
(1.1) describes the Brownian motion of the phaseφ in a bistable potential

U(φ) =
1

τ
(
1

2
φ2 − φφ0)− Īrefφ− Īin

∫ φ

0

dφ′M(φ′). (1.2)
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Stable states can be found, for example, by graphical solution of the equation
1/τ(φ−φ0) =M(φ)Īin+ Īref for the potential minima [42, 65], and it can be shown
immediately that OB arises only if system is biased by a sufficiently strong external
field, i.e. when it is far away from thermal equilibrium. If the noise intensity is weak,
the system when placed initially in an arbitrary state will,with an overwhelming
probability, approach the nearest potential minimum and will fluctuate near this
minimum. Both the fluctuations and relaxation will be characterised by the relaxation
time of the systemτr. So within a time∼ τr the system forgets about its initial state
and a quasistationary distribution is formed near the stable position. It is of Gaussian
shape near its maximum and of width∝ (Dτr)

1/2. If the noise intensity is small
compared to the potential barrier height, fluctuational transitions between the stable
states occur rarely and the probabilitiesWnm of transitions are given by Kramers’
[109] relation

Wnm ∝ exp(−∆Un/D). (1.3)

The stationary distribution over the wells is formed over a time∼ max {W−1
nm} . For

the case of white Gaussian noise this distribution has the well known form of the
Gibbs distribution:

p(φ) = Z−1 exp(−U(φ)/D), Z =

∫

dφ exp[−U(φ)/D]. (1.4)

For small noise intensities the distribution has sharp maxima near the stable states
and their populationsw1,2 are described by the balance equations

ẇ1 = −W12w1 +W21w2, w2 = 1− w1. (1.5)

For arbitrary parameters of the system,w1 andw2 differ dramatically from each
other, one of them being∼ 1, with the other close to zero. Within a narrow range
of parameters, however, they have the same order of magnitude and one can refer
to thekinetic phase transitionbetween the two stable states: it is analogous to the
first-order phase transition in an equilibrium system with apotential (in the absence
of quantum fluctuations) playing the role of the generalisedfree energy of the system
[42, 65, 110]. This is the range of parameters that is of particular interest in the
present paper.

The model (1.1)-(1.5) describes stochastic motion in a general OB system for
white Gaussian noise in the low noise intensity limit. We nowapply this model to the
description of some experimental results on fluctuations and fluctuational transitions
in some particular OB devices.

1.2.2.2 Experiment In the experiments we have used two approaches. First, we
have simulated the kinetics of a bistable optical system in the Debye relaxation appox-
imation for different forms of potential by means of electronic analogue simulation.
Secondly, we have investigated the kinetics of a double-cavity membrane system
(DCMS) driven by two modulated laser beams at different wavelengths. This system
is known to display optical bistability [111].
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Fig. 1.1 Analog circuit used in the heterodyning simulations of [28]

An example of an electronic circuit is shown in Fig. 1.1. It issimilar to the circuit
used to model an OB system with a dispersive mechanism of nonlinearity [112]. The
circuits were driven by noise from a feedback-shift-register noise generator and in
addition, if necessary, by sinusoidal periodic forces froma pair of Hewlett-Packard
Model 3325B frequency synthesizers. In the DCMS used for theoptical experiments
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Generator
0 

ω 
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Fig. 1.2 Diagram showing the laser setup used in [29]

(see Fig. 1.2), the first resonator is formed by a membrane consisting of a thin
film (≈ 1µm thick) of semiconducting GaSe single crystal, separated from a plane
dielectric mirror by a metal diaphragm≈ 500µm in diameter. The air-filled gap
between the mirror and the membrane is≈ 10µm wide and forms a second resonator.
The incident beam from an argon laser, of wavelength 514.5 nm, propagating along
the normal to the mirror, provides an input signal. An additional beam of wavelength
488 nm from an argon laser is inclined with respect to the DCMSaxis and provides
a reference signal. The intensities of the laser beams are modulated by two electro-
optic shutters, to which periodic signals and noise are applied. The optical bistability
arises because of thermoelastic bending of the membrane caused by the 514.5 nm
laser beam: this particular mechanism has been found to be very effective for the
investigation of a variety of OB effects [111, 113,?]. The form of the periodic
functionM(φ) in (1.1) depends on the mechanism of thermal relaxation and the
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boundary conditions at the edge of the film; an approximate expression was found
in [111] on the basis of variational analytic approaches developed for describing
the thermoelasticity of shells. The phase gainφ is linear in bending and follows
adiabatically the thermal relaxation of the film, thus ensuring the validity of the
Debye relaxation approximation. Heating of the DCMS by the 488 nm reference
signal is directly proportional to its intensity.

It follows from the above discussion that an indicator of applicability of the de-
scription of stochastic motion in an OB system is an activation dependence of the
transition probabilitiesWnm on the noise intensity. Using level-crossing measure-
ments (shown to be independent on the level positions), we found in our previous
experiments [108] that the activation law applies over the whole range of noise
intensities that we are using.

For weak noise the spectral density of fluctuations (SDF) at the output of the OB
system is defined as

Q(ω) =
1

4πT

∣

∣

∣

∣

∣

∫ +T

−T

dt eiωtIT (t)

∣

∣

∣

∣

∣

2

T → ∞. (1.6)

For small noise intensities the system spends most of the time fluctuating near the
stable positions, and interwell transitions occur only occasionally.Q(ω) can then be
represented as the sum of partial contributions from vibrations about the equilibrium
positionsxn weighted with the populations of the corresponding stable stateswn,
and from interwell transitions. The intrawell contribution takes the form

Q(0)
n (ω) = N ′2(φn)Ī

2
in

D

π

1

U ′′
n + ω2

. (1.7)

(φn is the value of the phaseφ in theith stable state,U ′(φn) = 0, U ′′(φn) > 0).
One of the most important general features of fluctuations ina bistable system is

the onset of a narrow zero-frequency spectral peak for parameter values lying in the
range of the kinetic phase transition. This peak arises fromthe fluctuation-induced
transitions between the stable states of the system and is ofLorentzian shape

Q
(0)
tr (ω) =

w1w2

π
(ĪT1 − ĪT2)

2 W12 +W21

(W12 +W21)2 + ω2
, ĪTn ≡ N(φn)Īin (1.8)

The onset of this peak is closely related to stochastic resonance, which can occur if
a weak periodic signal is added to the input.

1.2.3 Stochastic resonance in an OB system

For an OB system driven by a combination of the stochastic reference beam and the
periodically modulated input beam (Iin(t) = Īin + A cosΩt), the equation for the
phase takes on the form

φ̇+ U ′(φ) =M(φ)A cos(Ωt) + ∆I(t), (1.9)
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Fig. 1.3 Signal-to-noise-ratio (SNR) in the optical experiment fora signal at frequency
Ω = 3.9Hz as a function of the internal noise intensity [114]. Inset: the corresponding signal
amplification.

To first order inA the intensity of the transmitted radiation is given by

〈IT (t)〉 = ĪT +ARe [χ(Ω) exp(−iΩt)]

whereχ(Ω) is the susceptibility. As a result of the periodic term in theintensity of
the outgoing radiation there arises aδ-spike in the SDF (1.6), with the area equal
to (1/4)A2|χ(Ω)|2. For low noise intensityD, when the system spends most of its
time fluctuating about the stable statesn = 1, 2, the susceptibility (like the SDF) is
given by the sum of contributions from the vibrations about these statesχn(Ω) and
the termχtr(Ω) that results from the periodic modulation of the populations by the
forceA exp(−iΩt).

For Ω ≪ τ−1 the intrawell susceptibilities correspond to quasistaticforcing,
and can easily be obtained by linearising the equation of motion near the stable
states. To calculate the interwell contribution to lowest order inA/D, one has to
find corrections to the escape probabilitiesWnm, which can be easily done using a
path-integral formulation, solving the corresponding variational problem (see [82]),
and calculating the periodic redistribution over the wells, using balance equations.
The resulting expression in the case of additive noise in theOB system takes the form

χ(Ω) =
∑

n=1,2

M(φn)
∂ĪTn

∂Īref
wn (1.10)
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+
w1w2

D
(ĪT1 − ĪT2)

W12 +W21

(W12 +W21)− iΩ

φ2
∫

φ1

dφ′M(φ′)

In general, the SDF at low frequency is a superposition of aδ-function peak at the
frequencyΩ, the zero-frequency peak, and a broad, smoothly varying background
(atωτ ≪ 1), which is proportional toD and which is small ifD is small.

According to [12, 13, 19, 96], the two principal features of stochastic resonance
phenomena are that the signal and/or the signal-to-noise ratio R

R =
1

4
A2|χ(Ω)|2/Q(0)(Ω) (A→ 0), (1.11)

can be enhanced by adding noise to the system, and display resonance-like behaviour
in a certain range of noise intensities. It follows from Eqs.(1.11) and (1.11) that
the signal andR in OB system indeed increase sharply withD if the heights of the
“potential barriers" satisfy∆U1,2 ≫ D, because the probabilities of fluctuational
transitions (1.3) sharply increase with noise intensity.

These particular effects have been observed experimentally [114]. A sinusoidal
signal at a frequency of 3.9 Hz was applied to an electro-optic modulator to modulate
the input signal at wavelength 514.5 nm, while the intensityof the 488 nm radiation
was modulated with noise. It is clearly seen from the Fig. 1.3that the signal and
R (for the transmitted light intensity at wavelength 514.5 nm) increase sharply in
certain range of the noise amplitudeD. Outside this rangeR decreases with increase
of D.

But, as mentioned above in Sec. 1.1, the mechanism of bistable stochastic res-
onance requires that the frequency of the input signal is much less than reciprocal
relaxation time of the system.

1.2.4 Noise-enhanced optical heterodyning.

We now consider the case where two high-frequency fields are mixing nonlinearly in
the OB system to generate a heterodyne signal. The equation of motion for the OB
system takes the form

φ̇+ U ′(φ) =M(φ)Ain(t) cos(ω0t+ ψ(t)) +Aref cos(ω0t) + ∆I(t), (1.12)

whereω0 is a high frequency (≫ τ−1) andAin(t), ψ(t) are the slowly-varying
amplitude and phase of the modulated input signal, respectively.

In the most interesting and practically important case, when the frequencyω0

is much higher than the reciprocal relaxation time of the system, simple analytical
results can be obtained in the spirit of [115]. If the characteristic frequency of
the modulationΩ ≡ ψ̇, and Ȧin/Ain ≪ τ−1 ≪ ω0, the response consists of a
comparatively slow motionφ(sl) with fast oscillations at frequencyω0 superimposed
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on it. We therefore seek a solution in the form

φ(t) = φ(sl)(t) + φ(1)(t). (1.13)

φ(1)(t) = ω−1
0

[

Aref sinω0t+M(φ(sl))Ain sin(ω0t+Ωt))
]

, (ψ̇ ≡ Ω)

Because of the nonlinearity ofM(φ), the oscillations induced by the two beams
produce a slowly varying heterodyne force driving the slow motion,

φ̇(sl) + U ′
(

φ(sl)
)

= −AeffM
′
(

φ(sl)
)

sinΩt+∆I(t) (1.14)

Aeff =
ArefAin(t)

2ω0

Thus we have reduced this problem to the form of conventionalSR (see Sec. 1.2.3)
with only a renormalized effective amplitude for the input signalAeff (cf Eq. (1.9))
and the functionM(φ) replaced by its derivativeM ′(φ) in the first term on the
right hand side. By analogy with standard SR, the SNR for heterodyning can be
characterized by the ratioR of the low-frequency signal in the intensity of the
transmitted radiation, given by14A

2
eff |χ(Ω)|2, to the value of the power spectrum

Q(0)(Ω) (with Q(0)(Ω) given by (1.7), (1.8)). The susceptibility of the system can
be easily calculated and takes the form

χ(Ω) =
∑

n=1,2

wn(N
′(φn) +M ′(φn)

∂ĪTn

∂Īref
) (1.15)

+
w1w2

D
(ĪT1 − ĪT2)(M(φ1)−M(φ2))

W12 +W21

(W12 +W21)− iΩ

Similar to what happens in conventional SR, the heterodyne signal and its signal-
to-noise ratio can be amplified by adding noise to the system,thus manifesting the
new phenomenon ofnoise-enhanced optical heterodyning.

These theoretical predictions were first tested in analog simulations for Brownian
motion in the symmetric Duffing potential withM(φ) ≡ φ [28]. It was found that the
heterodyne signal amplitude and correspondingR could be enhanced by adding noise
to the system for the cases both of white noise and of broad-band high-frequency
noise (i.e. noise with a power spectrum centered near the high frequencyω0 with
half width∆ω : τ−1 ≪ ∆ω ≪ ω0). The specific dependences of the renormalized
amplitude of the heterodyne signalAeff on the amplitudes and frequency of the input
and reference signals were found to be in good agreement withthe theory as shown
in Fig. 1.4. To investigate noise-enhanced optical heterodyning in the DCMS, the
488 nm reference signal was modulated periodically at frequencyω0 = 2.1 kHz and
in addition by noise with a cut-off frequency of 5 kHz. The 514.5 nm input signal
was modulated at frequenciesω0 ± Ω = 2.1± 0.0039 kHz. A heterodyne signal at
frequencyΩ = 3.9 Hz was detected in the transmitted light intensityIT at wavelength
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Fig. 1.4 Dependence of the signal-to-noise-ratioR dependence on the squared amplitude of
the reference signal, measured [28] in an analogue electronic experiment for noise intensities
D=0.015 (circles) andD=0.14 (squares). The inset shows the dependence of R on the squared
frequencyω0 for the same two noise intensities.

514.5 nm. The characteristic relaxation timeτr of the DCMS measured in experiment
was order of 2 ms, thus meeting the assumption thatΩ ≪ τ−1

r ≪ ω0.
We have observed strong noise-induced enhancements of boththe heterodyne

signal (by a factor of 1000) and the signal-to-noise ratio, in Fig. 1.5. The dependence
ofR on the noise intensity is of the characteristic reversed-N shape familiar from SR
in bistable systems and consistent with the theory given above. The enhancement
of the SNR occurs within a restricted range of noise intensity, as expected, and the
ratio between the value ofR at the minimum to that at the local maximum (i.e. the
maximum noise-induced “amplification" of the SNR) is∼ 10.

1.2.5 Conclusions

It will be apparent from the above discussion that the double-cavity membrane system
is ideally suited to investigations of fluctuations and fluctuational transition phenom-
ena. Stochastic resonance and huge noise-induced amplification of a heterodyne
signal have been observed. We would emphasize that noise-protected heterodyning
is a general phenomenon that may occur in bistable systems ofvarious sorts, and that
it may therefore be of interest for applications in engineering.
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Fig. 1.5 Signal amplification in the optical heterodyning experiment, with ω0 = 2.1 kHz
andΩ = 3.9 Hz, as a function of the internal noise intensity [29]. Inset: the corresponding
signal-to-noise-ratio (SNR).

1.3 OPTIMAL PATHS, LARGE FLUCTUATIONS, AND
IRREVERSIBILITY

1.3.1 Introduction

A fluctuating system typically spends most of its time in the close vicinity of a stable
state. Just occasionally, however, it will undergo a much larger departure before
coming back or perhaps, in some cases, making a transition tothe vicinity of a differ-
ent stable state. Despite their rarity, these large fluctuations are of great importance
in diverse contexts including, for example, nucleation at phase transitions, chemical
reactions, mutations in DNA sequences, protein transport in biological cells, and
failures of electronic devices. As already mentioned above, there are many cases
of practical interest where the fluctuating system is far from thermal equilibrium.
Examples include lasers [46], pattern-forming systems [47], trapped electrons which
display bistability and switching in a strong periodic field[48, 50], and Brown-
ian ratchets [116] which can support a unidirectional current under nonequilibrium
conditions. In general, the analysis of the behaviour of nonequilibrium systems is
difficult, there being no general relations from which the stationary distribution or
the probability of fluctuations can be obtained.

The most promising approach to the analysis of large fluctuations is through the
concept of theoptimal path[42, 57, 61, 65, 117, 118, 119, 120, 121]. This is the
path that the system is predicted to follow with overwhelming probability during
the course of the fluctuation. For many years it remained unclear how the optimal
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path – calculated as a trajectory of an auxiliary Hamiltonian system (see below) –
is related to the behaviour of real fluctuating systems. Recently, however, through
the introduction and use of the prehistory probability distribution [60] (see also
[122]), it has been demonstrated that optimal paths are physical observables that
can be measured experimentally for both equilibrium [60] and nonequilibrium [123]
systems. In what follows we review briefly what has been achieved and point out
the opportunities that have now appeared for making rapid scientific progress in this
burgeoning research field.

1.3.2 Theory

Consider an overdamped system driven by a periodic forceK(q;φ) and white noise
ξ(t), with equation of motion

q̇ = K(q;φ) + ξ(t), K(q;φ) = K(q;φ+ 2π),

φ ≡ φ(t) = ωt+ φ0; 〈ξ(t)ξ(t′)〉 = Dδ(t− t′). (1.16)

The familiaroverdampedbistable oscillator driven by a periodic force provides a
simple example of the kind of system we have in mind:

q̇ = −U ′(q) +A cosωt+ ξ(t),

U(q) = −1

2
q2 +

1

4
q4. (1.17)

We consider a situation that is bothnonadiabaticandnonlinear: neitherω norA
need be small; only the noise intensityD will be assumed small. We investigate
rare fluctuations to a remote point(qf , φf ), coming from the metastable state within
whose domain of attraction(qf , φf ) is located. The position of the stable stateq(0)(t)
is itself a periodic function of time,

q̇(0) = K(q(0);φ), q(0)
(

t+ 2πω−1
)

= q(0)(t). (1.18)

The equations for optimal paths can be found using the eikonal approximation to solve
the corresponding Fokker-Plank equation, or by using a pathintegral formulation
and evaluating the path integral over the fluctuational paths in the steepest descent
approximation (for details and discussion see [42, 57, 64, 65, 71, 72, 73, 117]). The
optimal path of a periodically driven system corresponds tothe locus traced out by
the maximum in the prehistory probability density,ph(q, φ| qf , φf ) [60, 123]. This
is the probability density that a system arriving at the point (qf , φf ) at the instanttf
(φ(tf ) = φf ) had passed through the pointq, φ at the instantt (t < tf ). A particular
advantage of this formulation is thatph is a physical quantity that can be measured
experimentally. The approach can be extended to include theanalysis of singular
points in the pattern of optimal paths.
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Using the path-integral expression for the transition probability density [64], one
can writeph in the form [60]

ph(q, φ| qf , φf ) = C

∫ q(tf )=qf

q(ti)≈q(0)(ti)

Dq(t′) δ(q(t)− q)

× exp

[

−S[q(t)]
D

− 1

2

∫ tf

ti

dt′
∂K

∂q

]

, ti → −∞ (1.19)

φ ≡ φ(t), φf ≡ φ(tf ).

Here,C is a normalization constant determined by the condition
∫

dq ph(q, φ| qf , φf ) = 1.

S[q(t)] has the form of an action functional for an auxiliary dynamical system with
time-dependent LagrangianL(q̇, q;φ):

S[q(t)] =

∫ tf

ti

dt L(q̇, q;φ), L(q̇, q;φ) =
1

2
[q̇ −K(q;φ)]2. (1.20)

In the range of small noise intensitiesD, the optimal pathqopt(t| qf , φf ) to the
point(qf , φf ) is given by the condition that the actionS be minimal. The variational
problem forS to be extremal gives Hamiltonian equations of motion for thecoordinate
q and momentump of the auxiliary system

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

dS

dt
=

1

2
p2

H ≡ H(q, p;φ) =
1

2
p2 + pK(q;φ), (1.21)

H(q, p;φ) = H(q, p;φ+ 2π).

The boundary conditions for the extreme paths (1.21) followfrom (1.19) and (1.20)

q(tf ) = qf ; (1.22)

q(ti) → q(0)(ti), p(ti) → 0, S(ti) → 0 for ti → −∞.

Since the HamiltonianH(q, p;φ) is periodic inφ, the set of paths{q(t), p(t)} is also
periodic: the paths that arrive at a point(qf , φf + 2π) are the same as the paths
that arrive at the point(qf , φf ), but shifted in time by the period2π/ω. The action
S(qf , φf ) evaluated along the extreme paths is also periodic as a function of the phase
φf of the final point(qf , φf ). The functionS(q, φ) satisfies the Hamilton-Jacobi
equation

ω
∂S

∂φ
= −H

(

q,
∂S

∂q
;φ

)

, p ≡ ∂S

∂q
,
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S(q, φ) = S(q, φ+ 2π). (1.23)

It is straightforward to see that the extreme paths obtainedby solving (1.21) form a
one-parameter set. It is known from the theory of dynamical systems (see for instance
[124]) that trajectories emanating from a stationary statelie on a Lagrangian manifold
(LM) in phase space(q, φ, p = ∂S/∂q) (the unstable manifold of the corresponding
state) and form a one-parameter set. The actionS(q, t) is a smooth single-valued
function of position on the LM. It is a Lyapunov function: it is nondecreasing along
the trajectories of the initial system in the absence of noise q̇ = K(q;φ). Therefore
S(q, t) may be viewed as a generalised nonequilibrium thermodynamic potential for
a fluctuating dynamical system [64]. The projections of trajectories in phase space
onto configuration space form the extreme paths. Optimal paths are the extreme
paths that give the minimal action to a given point in the configuration space. These
are the optimal paths that can be visualised in an experimentvia measurements of
the prehistory probability distribution.

Fig. 1.6 From top to bottom: action surface; Lagrangian manifold (LM); and extreme paths
calculated [80] for the system (1.17) using equations (1.21). The parameters for the system
wereA=0.264 andω=1.2. To clarify interrelations between singularities in the pattern of
optimal paths, action surface, and LM surface, they are shown in a single figure, as follows:
the action surface has been shifted up by one unit; and the LM has been scaled by a factor 1/2
and shifted up by 0.4.

The pattern of extreme paths, LM, and action surfaces for an overdamped peri-
odically driven oscillator (1.17) are shown in Fig. 1.6. Thefigure illustrates generic
topological features of the pattern in question. It can be seen from Fig. 1.6 that,
although there is only one path to a point(q, φ, p) in phase space, several different



xx FLUCTUATIONAL ESCAPE AND RELATED PHENOMENA

extreme paths may come from the stationary periodic state tothe corresponding point
(q, φ) in configuration space. These paths cross each other. This isa consequence of
the folding of the Lagrangian manifold.

A generic feature related to folding of LMs is the occurrenceof causticsin the
pattern of extreme paths. Caustics are projections of the folds of an LM. They start
at cusp points. It is clear from Fig. 1.6 that an LM structure with two folds merging
at the cusp must give rise to a local swallowtail singularityin the action surface.
The spinode edges of the action surface correspond to the caustics. Aswitching line
emanates from the cusp point at which two caustics meet. Thisis the projection of the
line in phase space along which the two lowest sheets of the action surface intersect.
The switching line separates regions which are reached along differentoptimalpaths,
and the optimal paths intersect on the switching line. The intersection occursprior to
a caustic being encountered by the optimal path. The formation of the singularities,
avoidance of caustics, and formation of switching lines were analyzed numerically
in [118], and a complete theory was given in [119]. Until veryrecently, the generic
topological features of the pattern of optimal paths had notbeen observed in any
experiment. We now describe briefly the experimental technique [123] that enables
the pattern of optimal paths and its singularities to be observed, and we present and
discuss some of our initial results.

1.3.3 Experiments

The experiments are based on analog electronic circuits designed in the usual way
[112, 125] to model the system of interest, and then driven byappropriate external
forces. Their response is measured and analysed digitally to create the statistical
quantity of interest which, in the present case, was usuallya prehistory probability
distribution [60, 123]. We again emphasize that such experiments provide a valid
test of the theory, and that the theory should in this case be universally applicable
to anysystem described by (1.16), including natural systems, technological ones, or
the electronic models studied here. Some experiments on a model of (1.17) are now
described and discussed as an illustrative example of what can already be achieved.

The model was driven continuously by external quasi-white noise from a noise
generator and by a periodic force from a frequency synthesiser. The fluctuating
voltage representingq(t) was digitized and analysed in discrete blocks of 32768
samples using a Nicolet NIC-1180 data-processor. The inputsweeps were triggered
by the frequency synthesiser so that information about the phase of the periodic force
could be retained. Wheneverq(t) entered a designated square centred on a particular
(qf , φf ) value, the immediately preceding part of the trajectory wascollected and
stored; in cases where relaxation trajectories were also ofinterest, the immediately
following part of the trajectory was preserved too. The trajectories that had arrived
in any chosen square could subsequently be ensemble-averaged together to create
the prehistory probability distributionph(q, φ|qf , φf ) corresponding to the chosen
(qf , φf ), with or without the relaxational tail back towards the stable state.

Because the fluctuations of interest were – by definition – rare, it was usually
necessary to continue the data acquisition process for several weeks in order to build
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Fig. 1.7 The prehistory probability densityph(x, t;xf , 0) [60] for (1.17), measured [62]
for A = 0 in the analog electronic experiment for a final positionxf = −0.30 with D =
0.0701.

up acceptably smooth distributions. For this reason, the analysis algorithm was
designed to enable trajectories to several termination squares (not just one) to be
sought in parallel: an8 × 8 matrix of 64 adjacent termination squares, each centred
on a different(qf , φf ) was scanned.

Experimentally measuredph for the system (1.17) for two qualitatively different
situations are shown in Figs. 1.7 and 1.8. It is immediately evident: (i) that the
prehistory distributions are sharp and have well defined ridges; (ii) that the ridges
follow very closely the theoretical trajectories obtainedby solving numerically the
equations of motion for the optimal paths, shown by the full curves on the top-planes.
It is important to compare the fluctuational path bringing the system to(qf , φf ) with
the relaxational path back towards the stable state in thermal equilibrium, Fig. 1.7,
and away from it, Fig. 1.8. Fig. 1.7 plots the distribution for the system (1.17) in
thermal equilibrium, i.e.A=0. The ridges of a distribution are compared with the
calculated fluctuational and relaxational paths at the top of the figure. The time
reversal symmetry [44] between these paths can be clearly seen. Fig. 1.8 plots the
ph and the ridges of a distribution recorded for the special situation that arises when
the termination point lies on the switching line [123]. In figure, the time dependent
stable and unstable states bearx = −1 andx = 0 are shown by dashed lines on the
top. The data are compared to the (theoretical) fluctuational paths, calculated from
(1.21), shown as full lines. It can be seen: that there aretwodistinct paths via which
the system can arrive at(qf , φf ) but onlyonerelaxational path taking it back to the
stable state. Unlike the behaviour expected and seen [62] inequilibrium systems,
neither of the fluctuational paths is a time-reversed image of the relaxational one.
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Fig. 1.8 Fluctuational behaviour measured and calculated for an electronic model of the
nonequilibrium system (1.17) withA = 0.264, D = 0.012. The main figure plots the
prehistory probability densityph(x, t;xf , 0) and posthistory distribution to/from the remote
statexf = −0.63, t = 0.83, which lies on the switching line. In the top-plane, the
fluctuational (squares) and relaxational (circles) optimal paths to/from this remote state were
determined by tracing the ridges of the distribution [62].

Note that there aretwo equally probable fluctuational paths to arrive on a switching
line, they form a so calledcorral [123].

Although the system (1.17) is relatively simple, it describes very well the fluctua-
tional dynamics of many real physical systems. In particular, a behaviour qualitatively
similar to the one shown in Fig. 1.7 was observed recently in the experiments with
semiconductor lasers [83, 84].

In the work by Hales and co-authors [83] the prehistory distribution was observed
experimentally using a semiconductor laser with optical feedback. Near the solitary
threshold, the system was unstable: after a period of nearlysteady operation, the
radiation intensity decreased; then it recovered comparatively quickly, growing to
regain its original value; decreased again; and the cycle repeated. In the experiment,
the output intensity was digitized with 1 ns resolution. Theph obtained in [83] from
1512 events is shown in Fig. 1.9. The results were compared with the results of
numerical simulation for the system (1.17).

In the work by Willemsen and co-authors [84] the three Stokespolarization pa-
rameters were studied during polarization switches in a vertical-cavity semiconductor
laser. It was demonstrated that when the linear part of the absorptive anisotropy is
close to zero [126], the laser is bistable and switches stochastically between two
polarisations [127]. The analysis of large fluctuations of polarizations in this sys-
tem [84] reveals what authors have called a “stochastic inversion symmetry" (see
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Fig. 1.9 Bottom: The prehistory probability distribution of the radiation intensityI (in
arbitrary units) for dropout events in a semiconductor laser. Top: The PPD for a Brownian
particle, obtained from simulations [83].

Fig. 1.10), which is analogous to the time reversal symmetryobserved for the model
(1.17) and shown in Fig. 1.7.

1.3.4 Optimal paths on a finite time range, and conclusions

The previous discussion,and the results of [62, 123, 128, 129, 130, 131] among others,
show that our analog electronic technique makes it possibleto test fundamental tenets
of fluctuation theory, and thus provide an experimental basis on which the theory can
advance. We can investigate the pattern of optimal paths forthermally nonequilibrium
systems and reveal its singularities including, in particular, switching lines and strong
(nonanalytic in the noise intensity) smearing of the prehistory probability distribution
near cusp points. The particular system we have investigated has the least number of
degrees of freedom necessary to observe these singularities, and therefore it is most
appropriate for analysis in these initial investigations.The approach that we have
described is in principle applicable to any nonequilibriumsystem, and we believe it
will be found useful in a wide range of applications.
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Fig. 1.10 Time-resolved measurements of a very large polarisation fluctuation, where the
size of the fluctuation is about half (in fact, 45%)of that of acomplete polarisation switch [84].
s1, s2 ands3 are the normalized Stockes parameters representing the polarization state on the
Poincaŕe sphere [84].

It should also be clear that the structures predicted by the theory are indeed
observed in real systems. Reasoning along these lines, researchers have recently
started predicting peculiar features which should be observable in real systems, on the
basis of the topology of corresponding Lagrangian manifold. These include features
predicted on the assumption that the optimal path (and the corresponding fluctuation
in the real system) takes place over a finite time range [132, 133, 134, 135, 136].

One of the most striking effects predicted on this basis is perhaps what occurs in
noise induced escape from a metastable well on a time scale preceding the formation
of a quasi-equilibrium distribution within the metastablepart of the potential (see
[135, 136] for more details), which we now review briefly.

In his seminal work [109], Kramers considered the noise-induced flux from a
single metastable potential well i.e. he considered a Brownian particle

q̈ + Γq̇ + dU/dq = f(t), (1.24)

〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2ΓTδ(t− t′),

which was put initially at the bottom of a metastable potential wellU(q) and then he
calculated the quasi-stationary probability flux beyond anabsorbing barrier. There
have been many developments and generalizations of the Kramers problem (see
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[137, 138] for reviews) but both he and most of those who followed him considered
just thequasi-stationaryflux, i.e. the flux established after the formation of a quasi-
stationary distribution within the well (up to the barrier). The quasi-stationary flux is
characterized by a slow exponential decay, an Arrhenius dependence on temperature
T , and a relatively weak dependence on frictionΓ:

Jqs(t) = αescapee
−αescapet, αescape = P e−

∆U
T , (1.25)

whereP depends onΓ andT in a non-activation manner.
But how does the flux evolve from its zero value at the initial moment to its

quasi-stationary value at time-scales exceeding the timetf for the formation of
quasi-equilibrium? It is obvious that the answer may dependon initial conditions.
The most natural are those corresponding to the stable stationary state of the noise-
free system i.e.(q = qbottom, q̇ = 0) whereqbottom is the coordinate of the bottom
of the potential well. We assume such an initial state here. If the noise is switched
on suddenly (e.g. if the thermal isolation of a frozen systemis broken) then the
time evolution of the escape flux from the noise-free metastable initial state is highly
relevant. It might seem natural that the evolution from zeroto the quasi-stationary
value should besmooth. Such an assumption might also seem to have been confirmed
recently by Schneidman [139] who found that, for both the strongly underdamped
and overdamped cases, the escape flux from a single metastable well grows with
time t smoothly, att ∼ tf . But does this exhaust the problem? We can prove
theoretically, and demonstrate experimentally, that there are some generic situations
when the escape flux behaves in a quite different manner.

Our prediction are based, as mentioned, on an extensive use of the method of
optimal fluctuationwithin which an escape rate is sought in the form

αescape = P e−
S
T (1.26)

where the actionS does not depend onT ; the prefactorP does depend onT , but
relatively weakly. The actionS is related to a certain optimal fluctuation which, in
turn, corresponds to themost probable escape path(MPEP).

The quasi-stationary flux is formed by optimal fluctuations which bring the system
from the bottom of the well to the saddle during anoptimal time

topt ∼
1

min(Γ, ω0)
ln

(

∆U

T

)

, (1.27)

whereω0 is the frequency of eigenoscillation in the bottom of the well.
At much shorter time-scales,t ≪ topt, the flux is necessarily formed by optimal

fluctuations strongly differing from those of durationtopt, and the smallert the
more marked this difference becomes. Thus, in the range (1.27), S depends ont.
Moreover, it can be shown rigorously that ifΓ < Γc whereΓc is typically equal to
2ω0, thenS(t) is a step-wisefunction: see the example in Fig. 1.11. The vertical
and horizontal positions of the center of the stepS(t) numbern (counted from the
left) equal respectively∆Uω0/(nπΓ) andnπ/ω0, providednπΓ ≪ ω0. Generally,
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Fig. 1.11 (a) Examples of MPEPs (plotted in the energy-coordinate planeE − q where
E = q̇2/2 + U(q)) to escape from the bottom of the metastable wellU(q) = q2/2 with
q <

√
2 (thick solid line) to beyond the barrier atq =

√
2 (U(q) = −∞ atq >

√
2, which

is equivalent to the absorbing wall indicated by triangles), forΓ = 0.05; (b) the corresponding
theoretical (thick solid line) and experimental (thin jagged line) dependences of the actionS
on the escape timet. Circles, squares and triangles indicate bits corresponding to respectively
0, 1 and 2 turning points in the MPEP. The dashed and dotted lines indicate: in (b) the 1st and
2nd inflection point withdS/dt = 0; and in (a) the corresponding MPEPs. The thin solid
line shows: in (b) the large-time asymptotic levelS = ∆U ; and in (a) the corresponding
MPEP (which is the time-reversal of the noise-free trajectory from the top of the barrier into
the bottom of the well). The dash-dotted line shows in (a) theMPEP corresponding to some
arbitrarily chosen timet = 4.51 (see (b)) and demonstrates, in particular, that the escape
velocity is generally non-zero. The inset shows the experimental dependence of the flux on
time, forT = ∆U [135, 136].

when the shape of the potential well departs from parabolicity, the equalities turn into
approximations. Thus, in the range (1.27),J depends exponentially strongly both on
Γ and ont (c.f. the inset of Fig. 1.11).

1.4 LOGARITHMIC SUSCEPTIBILITY

A very good example of the usefulness of the concept of the optimal path is the idea
of the logarithm susceptibility (LS) [56, 87, 140].

Underlying the theory of the LS [56, 87] is the realization that, although the motion
of the fluctuating system is random, large rare fluctuations from a metastable state to
a remote state, or during escape, take place in an almost deterministic manner: the
system is overwhelmingly most likely to move along a particular trajectory known
as the optimal path (see [42, 57, 64, 69, 120] and references therein). The effect of
a comparatively weak field on the escape probability can therefore be understood in
terms of the work that the field does on the system as it moves along the optimal
path. One may expect this work to be related to the field-induced change in the
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activation energyR for the corresponding large fluctuation. This change is linear
in the field, provided that the field-induced change of the optimal path itself is
negligible. It follows from these arguments that in the caseof periodic driving
F (t) =

∑

k Fk exp(ikΩt), the leading-order correctionδR to the activation energy
of escape is

δR = min
tc

δR(tc), δR(tc) =
∑

k

Fkχ̃(kΩ)e
ikΩtc ,

χ̃(Ω) = −
∫ ∞

−∞

dt q̇(0)(t)eiΩt, q̇(0) = U ′(q(0)). (1.28)

Here, χ̃(Ω) is the LS for escape. It is given [56, 87] by the Fourier transform of
the velocity along the most probable escape pathq(0)(t) in the absence of driving
(F (t) = 0). The pathq(0)(t) is an instanton [122]: it starts fort → −∞ at the
metastable minimumqs of the potentialU(q) and goes fort → ∞ to the topqu
of the potential barrier over which the particle escapes. The minimization overtc
corresponds to choosing the position of the center of the instanton so as to maximize
the work the fieldF (t) does on the system along the escape pathq(0)(t−tc). We have
already noted that, for Markov systems in thermal equilibrium, optimal fluctuational
paths are the time-reversed relaxational paths in the absence of noise [44, 130, 141].
Unlike the standard linear susceptibility [9] which, on causality arguments, is given
by a Fourier integral over time from0 to ∞, the LS χ̃(Ω) is given by an integral
from −∞ to ∞. The analytic properties of̃χ(Ω) therefore differ from those of
the standard susceptibility, and in particular their high-frequency asymptotics are
qualitativelydifferent. The standard susceptibility for damped dynamical systems
decays as a power law for largeΩ (e.g., as1/[U ′′(qs)− iΩ], for the model of damped
Duffing oscillator). In contrast, from (1.28) the LS decreasesexponentiallyfast,

χ̃(Ω) =Me−|Ω|τp , τp = min

∣

∣

∣

∣

Im

∫

dq/U ′(q)

∣

∣

∣

∣

. (1.29)

Here, the integral is taken from any point in the interval(qs, qu) to the (complex)
positionqp of the appropriate singularity ofU ′(q). Note thatq̇(0)(t − tc) for given
real tc has a pole or a branching point at Imt = τp. The prefactorM depends on
the form ofU(q) nearqp and can be obtained in a standard way. In particular, for a
polynomial potential (|qp| → ∞) with U(q) = Cqn/n for |q| → ∞, we have

|M | = 2π|Ω/C|ν |ν|ν+1/ν!, ν = 1/(n− 2). (1.30)

This expression applies also for finite|qp|, with U(q) ≈ C/µ(q − qp)
µ for q → qp,

if n in (1.30) is replaced by−µ: note that|M | then decreases with increasingΩ.
To test these predictions, we used an analog electronic model [112] of the over-

damped motion of a Brownian particle in the double-well Duffing potential. We drove
it with zero-mean quasi-white Gaussian noise from a shift-register noise generator,
digitize the responseq(t), and analysed it with a digital data processor. We also
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Fig. 1.12 The dependence of the activation energyR on the amplitudeA of the harmonic
driving forceF (t) = A cos(1.2t) as determined [140] by electronic experiment (filled
circles), numerical simulations (open circles) and analytic calculation (solid line) based on
(1.28) for an overdamped Duffing oscillatorU(q) = −q2/2 + q4/4; the dash-dot line,
drawn parallel to the full curve, is a guide to the eye. The inset shows the absolute value
of the LS of the system|χ̃(Ω)| (1.28) measured (filled and open squares for experiment and
numerical simulation, respectively) and calculated (fullcurve) as a function of frequencyΩ
using (1.29) withχ̃(0) = −1 andτp = π/2,M = −(1 + i)(πω)1/2 in (1.29).

carried out a complementary digital simulation [142]. Numerical simulations in the
case of small damping are currently in progress: preliminary results indicate a reso-
nant behaviour of the LS. The analog and digital measurements ofR involved noise
intensities in the rangesD = 0.028−0.036 andD = 0.020−0.028 respectively; the
lowest (real time [112]) driving frequency used was 460 Hz. The results are plotted
in Fig. 1.12. The major observation is that, as expected,R is indeedlinear in the
force amplitude (R = 1/4 forA = 0). The slope yields the absolute value of the LS.
Its frequency dependence, a fundamental characteristic ofthe original equilibrium
system, is compared with the theoretical predictions (1.29) in the inset of Fig. 1.12.

The LS theory was applied recently to the localization of a Brownian particle in a
three-dimensional optical trap [89]: a transparent dielectric spherical silica particle
of diameter 0.6µm suspended in a liquid [88]. The particle moves at random within
the potential well created with a gradient three-dimensional optical trap – a technique
widely used in biophysical studies. The potential was modulated by a biharmonic
force. By changing the phase shift between the two harmonicsit was possible to
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localize particle in one of the wells in very good quantitative agreement with the
predictions based on the LS.

1.4.1 Conclusions

It is evident from the above discussion that the theory of theoptimal paths provides
a deep physical insight into the dynamics of fluctuations andis in good agreement
both with the results of analog and numerical simulations and with the results of the
experiments in optical systems. It has now become possible to use the prehistory
formulation [60] as a basis for experiments on fluctuationaldynamics. The work
on Markov systems presented in this section has already verified several longstand-
ing theoretical predictions, including symmetry between the growth and decay of
classical fluctuations [44], the breaking of this symmetry under non-equilibrium con-
ditions [57, 59, 65, 118], the relationship between lack of detailed balance and onset
of singularities in the pattern of optimal paths, as well as the character of these singu-
larities [119, 120, 121, 123, 143], including occurrence ofswitching between optimal
paths and critical broadening of the paths distribution. Ithas now become possible to
apply this theory and the corresponding experimental methods to the analysis of the
fluctuational dynamics in optical systems and to develop newmethods of controlling
them.

1.5 CHAOTIC ESCAPE AND THE PROBLEM OF OPTIMAL CONTROL

One of the main problem in the dynamics of optical systems is that of controlling the
system dynamics [144]. The difficulties in solving such a problem depend on many
factors. A typical optical system is characterised by the phenomenonof multistability
[145, 146, 147, 148], i.e. the co-existence of a relatively small number of distinct
dynamical regimes that are defined by the initial conditions. Because real optical
systems are always subject to random fluctuations [46, 146],spontaneous transitions
of the system take place from one regime to another. It is obviously desirable
to be able to control these transitions. Moreover, in optical systems non-regular
oscillations are often observed which are chaotic and can bedescribed by the theory
of deterministic chaos [144, 146, 148]; such non-regular oscillations in the phase
space of the system can be characterised by a chaotic attractor. The transformation of
the system dynamics from a chaotic regime to a regular regimeis also an interesting
problem in dynamical control. In solving it for real systems, it is essential to take
into account of fluctuations.

The need to be able to control chaos has attracted considerable attention recently.
Methods already available include a variety of minimal forms of interaction [149,
150, 151, 152, 153, 154] and methods of strong control [155, 156] which necessarily
require a large modification of the system’s dynamics, for atleast a limited period
of time. For example, in [157, 158] the procedure of controlling chaos by means of
minimal forms of interaction (of saddle cycles stabilization) is realized for different
laser systems.
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At the same time the energy-optimal directing of the motion away from a chaotic
attractor (CA) to another coexisting attractor has remained an important unsolved
problem of long standing. Its solution would be an importantextension of the range
of model-exploration objectives (c.f. [155] and [153]) achievable through minimal
control techniques and has a variety of applications for controlling the dynamics of
multistable optical systems [146].

In this section the application of the optimal path approachto the problem of
escape from a non-hyperbolic and from a quasi-hyperbolic attractor is examined. We
discuss these two different types of chaotic attractor because it is known [159] that
noise does not change very much the structure and propertiesof quasi-hyperbolic
attractors, but that the structure of non-hyperbolic attractors is abruptly changed in
the presence of noise, with a strong dependence on noise intensity. Note that for
optical systems both types of chaotic attractor [160, 161, 162] (non-hyperbolic and
quasi-hyperbolic) are observed, but a non-hyperbolic attractor is much more typical.

1.5.1 Escape from a non-hyperbolic attractor

1.5.1.1 Introduction to the optimal control problemConsider a system of the
form

ẋ = f(x, u, t), (1.31)

with the state variablex ∈ Rn, and an admissible control functionu ∈ Rm in
the control setU . Assume that it is desired to transfer the system from the state
X0 = x(t0) to the terminal stateX1 = x(t1) in such a way that the (“cost”)
functional

J = min

∫ t1

t0

f0(x, u, t)dt (1.32)

is minimized, witht1 unspecified. Let(u(t), x(t)) be a solution of this problem.
Then there exist continuous piece-wise differentiable functionsy0(t), ..., yn(t) which
are not simultaneously zero and which satisfy together withthe functionsxi(t) the
differential equations (see e.g. [163])

ẋi =
∂H
∂yi

ẏi = − ∂H
∂xi

(1.33)

with the Hamiltonian

H(x1, ..., xn; y0, ..., yn;u(t), t) =

n
∑

i=0

yifi(x1, ..., xn;u(t), t). (1.34)

An optimal control functionu(t) maximizesH at each instant.H is a continuous
function of the time and one hasH(t1) = 0. If the functionsfi, i = 0, ..., n do not
depend on time explicitly, thenH is a constant and equal to zero.

It can be seen that the solution of the problem of the energy-optimal guiding
of the system from a chaotic attractor to another coexistingattractor requires the
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solution of the boundary value problem (1.33), (1.34) for the Hamiltonian dynamics.
The difficulty in solving these problems stems from the complexity of the system
dynamics near a CA and is related, in particular, to the delicate problems of the
uniqueness of the solution, its behaviour near a CA, and the boundary conditions at
a CA.

Below we show how the energy-optimal control of chaos can be solved via a
statistical analysis of fluctuational trajectories of a chaotic system in the presence
of small random perturbations. This approach is based on an analogy between the
variational formulations of both problems (see e.g. [164]): the problem of the energy-
optimal control of chaos and the problem of stability of a weakly randomly perturbed
chaotic attractor. One of the key points of the approach is the identification of the
optimal control function as an optimal fluctuational force [164].

We emphasize that the question of stability of a CA under small random per-
turbations is in itself an important unsolved problem in thetheory of fluctua-
tions [92, 93, 94] and the difficulties in solving it are similar to those mentioned
above. Thus it is unclear at first glance how an analogy between these two unsolved
problems could be of any help. However, as already noted above, the new method
for statistical analysis of fluctuational trajectories [60, 62, 95, 112] based on the
prehistory probability distribution allows direct experimental insight into the almost
deterministic dynamics of fluctuations in the limit of smallnoise intensity. Using
this techique, it turns out to be possible to verify experimentally the existence of a
unique solution, to identify the boundary condition on a CA,and to find an accurate
approximation of the optimal control function.

Let us now formulate the problem of the energy-optimal steering of the motion
from a chaotic attractor to the coexisting stable limit cycle for a simple model,
a non-centrosymmetric Duffing oscillator. This is the modelthat, in the absence
of fluctuations, has traditionally been considered in connection with a variety of
problems in nonlinear optics [165]. Consider the motion of aperiodically driven
nonlinear oscillator under control

q̇1 = K1(q(t)) = q2, (1.35)

q̇2 = K2(q(t)) + u(t)

= −2Γq2 − ω2
0q1 − βq21 − γq31 + h sin(ωt) + u(t),

Here u(t) is the control function. It is a system where chaos can be observed
at relatively small valuesh ≈ 0.1 of the driving force amplitude and the chaotic
attractor is a non-hyperbolic attractor or a quasiattractor [166].

We have considered the following energy-optimal control problem. The system
(1.35) with unconstrained control functionu(t) is to be steered from a CA to a
coexisting stable limit cycle (SC) in such a way that the “cost” functional J is
minimized, witht1 unspecified

R = inf
u∈U

1

2

∫ t1

t0

u2(t)dt. (1.36)
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Here the control setU consists of functions (control signals) able to move the system
from the CA to the SC. The Pontryagin Hamiltonian (1.34) and the corresponding
equations of motion take the form

q̇i =
∂Hc

∂pi
, ṗi = −∂Hc

∂qi
, i = {1, 2}, (1.37)

Hc = 1/2p22 + p1K1 + p2K2.

Here it is assumed that the optimal control functionu(t) at each instant takes those
valuesu(t) = p2 that maximizeHc overU .

We note that forp1 = 0 andp2 = 0 the dynamics of (1.37) reduces to the deter-
ministic dynamics of the original system (1.35) in the absence of control (u(t) = 0).
So we begin our analysis by considering some relevant properties of the deterministic
dynamics of a periodically driven nonlinear oscillator.

The parameters of the system (1.35) were chosen such that thepotential is monos-
table (β2 < 4γω2

0), the dependence of the energy of oscillations on their frequency

is nonmonotonic (β
2

γω2
0
> 9

10 ), and the motion is underdampedΓ ≪ ω ≈ 2ω0.
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Fig. 1.13 Phase diagram of the system (1.35) on the (ω, h) plane obtained numerically for
the parameter valuesΓ = 0.025, ω0 = 0.597, β = 1, γ = 1. See text for a description
of the symbols, the various lines are guide to the eye. The working pointP , with ωf =
0.95, h = 0.13, shown by a thick plus, was chosen to lie in the region of coexistence of the
period 1 stable limit cycle and of the strange attractor [167].

A simplified parameter space diagram obtained numerically [167] is shown in
Fig. 1.13. The dashed lines bound the region in which both thelinear and nonlinear
responses of period 1 coexist. The upper line marks the boundary of the linear
response and the lower line marks that for the nonlinear responses. The boundaries



CHAOTIC ESCAPE AND THE PROBLEM OF OPTIMAL CONTROL xxxiii

of hysteresis for the period 1 resonance are shown by solid lines. The region in which
linear response coexists with one or two nonlinear responses of period 2 is bounded
by dotted lines. This region is similar to the one bounded by dashed lines. The region
of coexistence of the two resonances of period 2 is bounded bythe dashed-dotted
line. Chaotic states are indicated by small dots. The chaotic state appears as the result
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Fig. 1.14 The basins of attraction of the SC (shaded) and CA (white) fora Poincaŕe cross-
section withωf t = 0.6π(mod2π), ωf = 0.95 in terms ofq1 at q2. The boundary of
the CA’s basin of attraction, the saddle cycle of period 1, S1, is shown by the filled square.
The saddle cycle of period 3, S3, is shown by pluses. The intersections of the actual escape
trajectory with the Poincaré cross-section are indicated by the filled circles [168].

of period-doubling bifurcations, and thus corresponds to anon-hyperbolic attractor
[166]. Its boundary of attraction∂Ω is nonfractal and is formed by the unstable
manifold of the saddle cycle of period 1 (S1).

For a given damping (Γ = 0.025) the amplitude and the frequency of the driving
force were chosen so that the chaotic attractor coexists with the stable limit cycle
(SC):h = 0.13, ωf = 0.95 (see Fig. 1.13).

The basins of attraction of the coexisting CA (strange attractor) and SC are shown
in the Fig. 1.14 for the Poincaré cross-sectionωf t = 0.6π(mod2π) in the absence
of noise [168]. The value of the maximal Lyapunov exponent for the CA is 0.0449.
The presence of the control function effectively doubles the dimension of the phase
space (compare (1.35) and (1.37)) and changes its geometry near the non-hyperbolic
attractor. In the extended phase space the attractor is connected to the basin of
attraction of the stable limit cycle via an unstable invariant manifold. It is precisely
the complexity of the structure of the phase space of an auxiliary Hamiltonian system
(1.37) near the non-hyperbolic attractor that makes it difficult to solve the energy-
optimal control problem.
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However, using the recently proposed [60, 62, 95, 112] method for experimental
analysis of the Hamiltonian flow in an extended phase space ofthe fluctuating system,
we can exploit an analogy between the Wentzel-Freidlin and Pontryagin Hamiltonians
arising in the analysis of fluctuations, and the energy-optimal control problem in a
nonlinear oscillator. To see how it can be done let us consider the fluctuational
dynamics of a nonlinear oscillator (1.35).

Let us analyze the motion of an oscillator interacting with athermal bath:

q̇1 = q2,

q̇2 = −2Γq2 − ω2
0q1 − βq21 − γq31 + h sin(ωt) + ξ(t), (1.38)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t) = 4ΓkT δ(t).

In the zero-noise-intensity limit, a consistent theoretical development [42, 169] from
the microscopic to the macroscopic equations of motion leads to descriptions of both
its deterministic (dissipative) and fluctuational dynamics within the framework of
Hamiltonian formalism [57]. The comparison of the Hamiltonian approach to large
fluctuations, described in Sec. 1.3, and the approach to optimal control problem shows
that, both on physical grounds and rigorously, the Wentzel-Freidlin Hamiltonian [57]
(1.37) is equivalent to the Pontryagin Hamiltonian (1.34) [163] and the corresponding
optimal control function is equivalent to the optimal fluctuational force. The analogy
between the two problems opens up the possibility of a directexperimental insight
into the geometry of the phase space of system (1.34) using a statistical analysis of
the fluctuational trajectories in this system when a controlfunctionu(t) is substituted
for the random functionξ(t). In particular the optimal control signal̄u(t) can be
identified with the optimal fluctuational force which drivesthe system from the
chaotic attractor to the stable limit cycle [164]. We note that both ū(t) and the
optimal force are related top2 in (1.37) (see e.g. in [143]).

We therefore suggest that the optimal control functionū(t) can be found experi-
mentally by measurement of the optimal fluctuational force [95, 112].

This interrelationship is intuitively clear because, in thermal equilibrium (D =
4ΓkBT ), the probability of fluctuations is determined by the minimum work of the
external source needed to produce the given change in the thermodynamic quantities
ρ ∝ exp(−Rmin/kBT ) [9]. We emphasize that the analysis presented above draws
an analogy between two quite distinct and separate problems: the deterministic
energy-optimal control problem, and the problem of the stability of the system in the
presence of small random perturbations. Very similar conclusions can be drawn using
a more general formulation of the stochastic optimal control problem (see e.g. [164]).

1.5.1.2 Statistical analysis of fluctuational trajectories A statistical analysis of
the fluctuational trajectories is based on the measurementsof theprehistory proba-
bility distribution [60] ph(q, t; qf , tf ) (see Sec. 1.3). By investigating the prehistory
probability distribution experimentally, one can establish the area of phase space
within which optimal paths are well defined, i.e. where the tube of fluctuational
paths around an optimal path is narrow. The prehistory distribution thus provides
information about both the optimal path and the probabilitythat it will be followed.
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In practice the method essentially reduces to continuouslyfollowing the dynamics
of the system and constructing the distribution of all realizations of the fluctuational
trajectories that transfer it from a state of equilibrium toa prescribed remote state.

To find the optimal control function̄u(t)we performed digital simulations of (1.38)
using the Heun algorithm, with particular care given to the random number generator
(see [142, 170]), because simulation times necessarily grow exponentially asD → 0.
We have also carried out a complementaryanalog electronic modeling [112] of (1.38).
We drive it with zero-mean quasi-white Gaussian noises froma noise generator,
digitize the responseq1(t), q2(t), ξ(t), and analyze it with a digital data processor.
In both analog and digital simulations,trajectories moving the system from the chaotic
attractor to the stable limit cycle were collected, and the corresponding distributions
of the escape trajectories were built and analyzed. Qualitatively similar results were
obtained but, because precision is of particular importance here, most of the data
reported below are those from the digital simulations.

For the technique to be applicable, a solution of (1.37) moving the system from
the CA to∂Ω must exist, and one has to be able to identify the boundary conditions
for this solution on the CA.

In the presence of weak noise there is a finite probability of noise-induced tran-
sitions between the chaotic attractor and a stable limit cycle. In Fig. 1.14 the filled
circles show the intersections of one of the real escape trajectories with the given
Poincaŕe section. The following intuitive escape scenario can be expected in the
Hamiltonian formalism. Let us consider first the escape of the system from the
basin of attraction of a stable limit cycle that is bounded byan saddle cycle. In
general, escape occurs along a single optimal trajectoryqopt(t) connecting the two
limit cycles.

The trajectoryqopt(t) is determined by minimizingS in (1.20) on the set of all
classical deterministic trajectories determined by the HamiltonianH (1.37), that start
on a stable limit cycle ast→ −∞ and terminate at an saddle cycle ast→ ∞. That is,
qopt(t) is a heteroclinic trajectory of the system (1.37) with minimum action, where
the minimum is understood in the sense indicated, and the escape probability assumes
the formP ≈ exp(−S/D). We note that the existence of optimal escape trajectories
and the validity of the Hamiltonian formalism have been confirmed experimentally
for a number of nonchaotic systems (see Refs. [62, 95, 112, 131, 171] and references
therein).

If the noise is weak, then the probabilityP ≈ exp(−S/D) to escape along the
optimal trajectory is exponentially small,but it is exponentially greater than the escape
probability along any other trajectory, including along other heteroclinic trajectories
of the system (1.37).

Since the basin of attraction of the CA is bounded by an saddlecycle S1, the
situation near S1 remains qualitatively the same and the escape trajectory remains
unique in this region. However, the situation is different near the chaotic attractor.
In this region it is virtually impossible to analyze the Hamiltonian flux of the addi-
tional system (1.37), and no predictions have been made about the character of the
distribution of the optimal trajectories near the CA. The simplest scenario is that an
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optimal trajectory approaching the boundary of a chaotic attractor is smeared into a
“cometary tail" and is lost, merging with the boundary of theattractor.
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Fig. 1.15 Escape trajectories found [172] in the analogue simulations for the parameters
h = 0.19, ωf ≈ 1.045, ω0 ≈ 0.597, D ≈ 0.0005 are shown in comparison with the
Poincaŕe cross-section of a quasi-attractor and its basins of attraction forωf t = 0.

However, statistical analysis of real fluctuation-inducedescape trajectories gives
a more detailed picture of the noise-induced escape from a chaotic attractor. Several
thousand real escape trajectories of the system (1.38) fromthe basin of attraction
of a CA in various operating regimes were investigated [172]. The typical situation
as measured in analog simulations is displayed in Fig. 1.15 for system parameters
close to the point P in Fig. 1.13 and a noise intensityD ≈ 0.0005. The figure
shows 65 measured fluctuational escape trajectories. All the trajectories have been
shifted in time so that the characteristic regions of the trajectories corresponding to
the transition from chaotic to regular motion coincide witheach other.

It is evident that all real trajectories pass through the close neighborhood of some
optimal trajectory in a tube with a radius∝

√
D. Therefore it is possible to determine

the optimal escape paths by simple averaging performed separately for each group of
trajectories. The number of different optimal escape pathsobtained for the transition
CA → S3 depends on the choice of the working point. From one to three distinct
optimal escape paths for operation in various regimes were observed experimentally.
The escape probabilities along different paths are different, and, as the noise intensity
is reduced, one of the escape paths becomes exponentially more probable then the
others. In what follows we concentrate on the properties of this most probable escape
path.

To find the boundary conditions on the CA, we analyze the prehistory probability
distributionph(q, t; qf , tf ) of the escape trajectories. The corresponding distribution
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is shown in the Fig. 1.16. It can be inferred by the inspectionof how the ridge of the
most probable escape path merges the CA that most of the escape trajectories pass
close to the saddle cycle of the period 5 embedded into the CA.

This hypothesis can be elaborated further using a statistical analysis of the trajec-
tories arriving to a small tube around S3 for the nose intensity reduced by a few orders
of magnitude up toD = 1.5 × 10−6, see Fig. 1.17 [172]. The statistical analysis

6 12
−1.5

−0.5

0.5

1.5

 q
1

 N

Fig. 1.16 The prehistory probability distribution of the escape trajectories for the parameters
as in Fig. 1.13. The circles, squares and triangles show single periods of the saddle cycles of
period 5 (S5), 3 (S3), and 1 (S1), respectively [172].

of the escape trajectories described in the subsection reveals that the energetically
favorable way to move the system from the CA to the stable limit cycle starts at the
saddle cycle of period 5 (S5) embedded in the CA, passes through saddle cycle S3
and finishes at the saddle cycle S1 at the boundary of the basinof attraction of the
CA. Subsequent motion of the system towards the stable limitcycle does not require
external action.

To find an approximation to the optimal control function we collect all successful
realisations (qesc1 (t), qesc2 (t), ξesc(t)) that move it from S5 to∂Ω. An approximate
solutionũ(t) is then found as an ensemble average over the correspondingrealisations
of the random force〈ξesc(t)〉 (the exact solution is̄u(t) = limD→0 ũ(t)). The results
of this procedure are shown in the upper trace of Fig. 1.18. Toremove the irrelevant
high-frequency component left after averaging, we filteredthrough a zero-phase
low-pass filter with frequency cut-offωc = 1.9.

It can be seen from the figure that the optimal force switches on at the moment
when the system leaves S5 along its unstable manifold. The optimal force returns to
zero when the system reaches the saddle cycle S1.
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Fig. 1.17 Escape trajectories for the parameters as in Fig. 1.16. The squares and circles
show one period of the saddle cycle S3 and one period of S5, respectively.

Thus we conclude that the solutioñu(t) and the corresponding boundary condi-
tions can be found using our new experimental method. Moreover the problem of
escape from the CA of a periodically driven nonlinear oscillator can be essentially
reduced to the analysis of a transition between three saddlecycles S5→ S3→ S1.
We note that the latter result is in qualitative agreement with the well known state-
ment that unstable cycles provide detailed invariant characterizations for dynamical
systems of low intrinsic dimension (see e.g. [173, 174, 175]).

This result opens up the possibility of the numerical solution of the corresponding
boundary value problem for the energy-optimal control formulated above.

It can be shown [172] that the average time for the system to approach S5 is
much smaller then the average escape time and thus the optimal escape paths found
from the statistical analysis of the escape trajectories isindependent on the initial
conditions on the attractor and provides an approximation to the global minimum of
the corresponding deterministic control problem.

1.5.1.3 Numerical solution of the boundary value problemIn principle, it is
possible to find the optimal path by direct solution of the Pontryagin Hamiltonian
(1.37), with appropriate boundary conditions. We must stress that even for this
relatively simple system, the solution is a formidable, andalmost impossible, task.
First of all, in general one has no insight into the appropriate boundary conditions,
in particular into those at the starting time (which belong to the strange attractor).
But even if the boundaries were known, in practice the determination of the optimal
path is impossible: the functionalR of Eq. (1.36) has so many local minima, that it
proved impractical to attempt a (general) search for the optimal path.
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Fig. 1.18 The most probable escape path (bottom solid curve) from S5 tothe S1, found in
the numerical simulations. The stable limit cycle is shown by rombs, see Fig. 1.16 for other
symbols. Parameters wereh = 0.13, ωf = 0.95, ω0 ≈ 0.597, D = 0.0005. Top:
optimal force (solid line) corresponding to the optimal path after filtration[168], and optimal
force from numerical solution of the boundary value problem(dots).

However, once the fluctuational trajectories were available, we did indeed manage
to find the optimal path using by direct solution of the Pontryagin Hamiltonian. The
idea is to study the escape scenario which emerges from the fluctuational trajectories:
as we mentioned, the escape takes place through S3, S5 and S1.We then built
an initial trial function, taking a linear combination of the structures involved in the
escape. The combination was such that at short times the trial function coincided with
S5, while at large times it coincided with S1. At intermediate times, we had a mixture
of S5 and S1 in the initial trial function, but no S3. Using a well known algorithm
for two points boundary conditions (TWPBVP, obtained via netlib [176], see [177]
for details), we then relaxed this trial function to find the optimal path, defined as the
path which minimises the functional 1.36. It is striking that the relaxational optimal
path that we found does go through S3, in good agreement with what was observed
for the optimal path obtained via the fluctuational trajectories (for details, see [172]).

1.5.1.4 The energy-optimal migration control of a chaotic oscillator Here we
examine the control of migration in a periodically driven nonlinear oscillator. Our
aim is to demonstrate that application of the approximate solution found from the
statistical analysis of fluctuational trajectories optimizes (minimizes) the energy of
the control function. We compare the performance of some known adaptive control
algorithms to that of the control function found through ouranalysis.

To verify that the optimal forcẽu(t) found in the experiment does minimize the
energy of the control function steering the system (1.35) from the CA to the S1, we
set it to arbitrary initial conditions in the basin of attraction of CA and let it evolve
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deterministically until it passed through the initial partof the unstable manifold of
S5. At this moment the deterministic control function was switched on. For small
variations in the shape of the control function and/or initial conditions, the amplitude
of the control function was set to the threshold of the switching for the system from
chaotic motion to regular motion on the stable limit cycle. It was found that the
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Fig. 1.19 (a) The shapes of the control functions (not drawn to scale) used in the numerical
experiment: 1 - optimal force found from the statistical analysis of the fluctuational escape
trajectories; 2 - approximation of the optimal force by theu(t) = a1 sin(a2t) exp(−(t −
a3)

2a4) whereai are constants; 3 - approximation of the optimal force by the rectangular
pulses; 4 - arbitrary perturbation of the optimal force witha low-frequency perturbation;
5 - control functions produced by the OPCL algorithm; 6 - control function for the adaptive
control. (b) Energies of the control functions shown in (a) [168].

system is very sensitive to variation of both the shape of thecontrol function and the
initial conditions. It was also demonstrated that any deviation from the shape of̃u(t)
or from the initial conditions found in the experiment leadsto a substantial increase
in the energy of the control function required to steer system from a CA to S1. Some
experimental results are shown in Fig. 1.19. Thus it can be seen that the energy of the
control function is approximately twice larger if the optimal force is approximated by
thesin function modulated by the Gaussianu(t) = a1 sin(a2t) exp(−(t − a3)

2a4)
and it is∼ 4 and 20 times larger if the optimal force is approximated by rectangular
pulses or perturbed with arbitrary low-frequency perturbations respectivelly.

We have also performed experiments using an open-plus-closed-loopcontrol tech-
nique [155] and adaptive control algorithm [156] to steer the system from the CA to
the S1. The equations of motion are taken in the form

q̇1 = q2 + F1(q, g, t),
q̇2 = −2Γq2 − ω2

0q1 − βq21 − γq31 − f cos(ωt)
+F2(q, g, t), q = q1, q2, g = g1, g2

(1.39)
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HereF (q, g, t) is the control function in the form

F (q, g, t) = (ġ −K(g)) + S(t)(K ′(g)−A)(g(t)− q(t)). (1.40)

We will be interested in the situation when the “goal dynamics” g(t) is a solution of
(1.35) withu(t) = 0, i.e. ġ = K(g). Namelyg(t) describes the stable limit cycle
of period 1 SC coexisting with the CA. Thus the first term in (1.40) vanishes. And
F (q, g, t) takes the following explicit form

Fi(q, g, t) = S(t)
∑

j=1,2

(Kij − aij)(gj − qj), (1.41)

Here i = 1, 2 andKij = ∂Ki/∂qj. We have considered only the caseaij =
−|aij|δij andS(t) = 1− exp(−λt) as it was suggested in [156]. Parameters|a| and
λ were varied to optimize the energy of the control function.

The energy of the control functions obtained by these methods varies from 0.14
to 0.6 and thus it is more then one order of magnitude larger then the energy of the
optimal control functioñu(t) found by our new technique. (see Fig. 1.19). Similar
results were obtained using the algorithm for adaptive chaos control [150] for the
migration of the nonlinear oscillator from the CA to SC (see Fig. 1.19).

We note that neither the OPCL nor the adaptive control algorithms were devised
to optimize the energy of the control, but rather the recovery time. It is clear that
these methods are insensitive to the initial conditions at the CA. The shapes of the
control functions are, to a large extent, also prescribed bythe algorithms and are not
optimized. In this sense the high energy of the control functions is not a surprise: the
results presented serve the purpose to illustrate the main point, i.e. the sensitivity of
the optimal control to the shape of the control function and to the initial conditions,
discussed above.

1.5.2 Fluctuational escape from a quasi-hyperbolic attractor

We now consider, for comparison, fluctuational escape from the Lorenz attractor,
which, for a certain range of parameters, is a quasi-hyperbolic attractor consisting of
unstable sets only [160]:

q̇1 = σ(q2 − q1),

q̇2 = rq1 − q2 − q1q3, (1.42)

q̇3 = q1q2 − bq3 + ξ(t),

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t) (1.43)

In the absence of noise, the system [178] describes the generation of a single-mode
laser field interacting with a homogeneously broadened two-level medium [179].
The variables and parameters of the Lorenz system can be interpreted in terms of
a laser system as:q1 is the normalized electric field amplitude,q2 the normalized
polarization,q3 the normalized inversion,σ = k/γ1, r = Λ + 1, b = γ2/γ1, with
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k the cavity decay rate of the field in the cavity,γ1 andγ2 the relaxation constants
of the inversion and polarization, andΛ the pump parameter. Far-infrared lasers
have been proposed as an example of a realization of the Lorenz system [161]. A
detailed comparison of the dynamics of the system (1.42) anda far-infrared laser,
plus a discussing the validity of the Lorenz system as laser model, can be found in
[162].

The Lorenz equations have a simple structure and contain twononlinear terms
only. Let us briefly consider the main bifurcations in the system (1.42) (a more
detailed analysis can be found in [180]). We fix the parameters σ = 10, b = 8/3
and vary the parameterr: in this case two global bifurcations take place (see the
bifurcation diagram in Fig. 1.20). Forr = 1, a supercritical pitchfork bifurcation
happens: the stationary state at the originO ≡ (0, 0, 0) becomes a saddle state
and two new stationary states appear:P1 ≡ (

√

b(r − 1),
√

b(r − 1), r − 1) and
P2 ≡ (−

√

b(r − 1),−
√

b(r − 1), r − 1). In the system phase space there are two
stable pointsP1 andP2, a saddle pointO at the origin, and their one-dimensional
(separatrixes) and two-dimensional manifolds.

The second bifurcation occurs at

r =
σ(σ + b+ 3)

(σ − b− 1)
≈ 24.74..., (1.44)

and it is a subcritical Hopf bifurcation, when statesP1 andP2 loss their stability and
in the phase space there is the unique chaotic quasi-hyperbolic attractor.

There are also two local bifurcations. The first one takes place forr ≈ 13.926...,
when a homoclinic tangency of separatrixes of the originO occurs (it is not shown
in Fig. 1.20) and a hyperbolic set appears, which consists ofa infinite number of
saddle cycles. Beside the hyperbolic set, there are two saddle cyclesL1 andL2

around the stable statesP1 andP2. The separatrixes of the originO withdraw to
the saddle cyclesL1 andL2, and the attractors of system are the statesP1 andP2.
The second local bifurcation is observed forr ≈ 24.06. The separatrixes do not
withdraw to the saddle cyclesL1 andL2. As a result, in the phase space of the
system a stable quasi-hyperbolic state appears — the Lorenzattractor. The chaotic
Lorenz attractor includes separatrices, the saddle pointO and a hyperbolic set, which
appears as a result of homoclinic tangency of separatrices.The presence of the saddle
point in the chaotic attractor defines the prefix “quasi” in the definition of the chaotic
attractor asquasi-hyperbolic[160]. The statesP1, P2 remain stable. Thus, in the
ranger ∈ [24.06 : 24.74] the co-existence of the chaotic attractor and two stable
point-attractors is observed in the phase space of the Lorenz system. Let us fix the
parameterr = 24.08 in this range and consider the noise-induced escape for the
chaotic attractor to the basins of attraction of the stable points. Note that in [64]
the invariant measure of the noisy Lorenz attractor was found within a Hamiltonian
formalism, but large deviations from a chaotic attractor were not considered.

First, we examine [181] the structure of the system phase space for chosen param-
etersσ = 10, b = 8/3, r = 24.08 (Fig. 1.21).
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Fig. 1.20 The bifurcation diagram of the lorenz system for fixedσ = 10, b = 8/3. The
unstable and stable sets are shown by dashed and solid lines respectively.

The saddle cyclesL1 andL2 surround the stable statesP1 andP2 and they are
located at the intersection of the unstableWu and stableW s manifolds. The unstable
manifold goes to the stable stateP1 from one side and to the chaotic attractor from
the other side. The stable manifoldW s forms a tube in the vicinity of the stable state
[182]. The saddle cyclesL1 andL2 have the multipliers(1.0000, 1.0280, 0.0001),
and therefore trajectories will go slowly away along the unstable manifold and they
will approach quickly along the stable manifold.

For simplicity we add noise in the form of a white noiseξ(t) to the third equation
of system (1.42), preserving the original system symmetry.

Like the escape from a non-hyperbolic attractor, there is notheoretical prediction
about the process of fluctuational escape from the Lorenz attractor. But the process is
readily studied via numerical simulation and via analysis of the prehistory probabil-
ity distribution built using the fluctuational escape trajectories. For definiteness, we
examine escape to the stable pointP1. The averaged escape trajectory and the cor-
responding averaged fluctuational force obtained in this way are shown in Fig. 1.22.
We have found that the escape occurs via the following scenario. The escape tra-
jectory starts from the stable manifold of the saddle pointO. Under the action of a
fluctuation, an escape trajectory tends to pointO along the two-dimensional stable
manifold. Then, without reaching the saddle pointO, the trajectory departs from it
again, following a path close to the separatrixΓ2, and falling into the neighborhood
of the saddle cycleL1. In the absence of an external force, the trajectory goes away
from the cycleL1, slowly untwisting. The fluctuational force induces a crossing
through the saddle cycle, and the trajectory then relaxes tothe stable pointP1. We
can thus split the escape process into two parts: fluctuational and relaxational. In
practice all the fluctuational part belongs to the Lorenz attractor, and itself consists of
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Fig. 1.22 The averaged escape trajectory (solid line) and the averaged fluctuational force
(dashed line) during escape from the Lorenz attractor [181].

two stages: at first, the fluctuational force throws the trajectory as close as possible
to the cycleL1; then, the trajectory crosses this cycle under the action offluctuations.
The first stage is defined by the stable and unstable manifoldsof the saddle pointO,
and the time-dependence of the fluctuational force is similar to that of the coordinate
q3 (Fig. 1.22). During the second stage, the fluctuations have acomponent which
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oscillates in anti-phase to the coordinateq3. Because the trajectory of the noise-free
system departs from the cycleL1 very slowly, the fluctuational force inducing the
crossing through the cycle may start to act at any time duringa long interval. For this
reason the averaged fluctuational force itself consists of along oscillating function.

It is clear that all of the escape trajectory from the Lorenz attractor lies on the
attractor itself. The role of the fluctuations is, first, to bring the trajectory to a seldom-
visited area in the neighborhood of the saddle cycleL1, and then to induce a crossing
of the cycleL1. So we may conclude that the role of the fluctuations is different in
this case, and the possibility of applying the Hamiltonian formalism will require a
more detailed analysis of the crossing process.

Thus, we have found that the mechanisms of escape from a non-hyperbolic at-
tractor and a quasi-hyperbolic (Lorenz) attractor are quite different, and that the
prehistory of the escape trajectories reflects the different structure of their chaotic
attractors. The escape process for the non-hyperbolic attractor is realized via several
steps, which include transitions between low-period saddle-cycles co-existing in the
system phase space. The escape from the Lorenz attractor consist of two qualitatively
different stages: the first is defined by the stable and unstable manifolds of the saddle
center point, and lies on the attractor; the second is the escape itself, crossing the
saddle boundary cycle surrounding the stable point attractor. Finally, we should like
to point out that our main results were obtained via anexperimentaldefinition of
optimal paths, confirming our experimental approach as a powerful instrument for
investigating noise-induced escape from complex attractors.

1.6 CONCLUSIONS

The recent rapid advances in the understanding of fluctuating nonlinear systems,
including optical systems, have come about in large part through the mutually sup-
portive relationship between analytic calculation and analog and digital simulations.
This has been especially true of problems involving large fluctuations, where use of
simulations, coupled with the introduction of the prehistory probability distribution,
have set the area on an experimental basis for the first time, and helped to stimulate
new advances in the theory. These have included the logarithmic susceptibility, de-
scribed above, which promises to do for optimal paths what the conventional linear
susceptibility has done for linear response theory. The theory of the logarithmic
susceptibility in turn has been tested, and its limits of applicability explored, through
simulations. And the same is true of recent developments in understanding Kramers’
problem on short timescales. Studies of the fluctuational escape from chaotic at-
tractors, of which two examples is described above, are entirely simulation-led at
present. But the results of the analogue and digital experiments have already pro-
vided strong guidance for future developments in the theory. It seems certain that the
close symbiotic relationship between simulation and theory in fluctuational dynamics
will continue, and that the emergence of many new results andphenomena may be
anticipated over the next few years.
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