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Simple approximation of the singular probability distribution in a nonadiabatically driven system
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Singular behavior and the formation of plateaus in the probability distribution in a nonadiabatically driven
system are investigated numerically in the weak noise limit. A simple extension of the recently introduced
logarithmic susceptibility theory is proposed to construct an approximation of the nonequilibrium potential that
is valid throughout whole of the phase space.
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The action of an external periodic force on a stocha
system continues to attract intense interest@1–4#, first, be-
cause it gives rise to important phenomena in a diversity
physical systems including, e.g., lasers@5#, proteins@6#, and
Josephson junctions@7#. Second, even a quite weak period
excitation can lead to exponentially strong changes in
probability distributionr(x,t), thus offering the possibility
of using periodic forces to control the system@8–11#.

For many years, analytic theory was restricted either
the case of slow driving~adiabatic regime! or to that of fast
and weak driving~regime of effective heating by the extern
force @12#!. It was recently proposed that the interesti
nonadiabatic regime, lying in between these two extrem
can be treated in terms of alogarithmic susceptibility~LS!.
This approximation is valid in both the underdamped@9# and
overdamped@10# limits. However, up to now, most of the
discussion has been restricted to the activation ‘‘ener
only, and the range of applicability of the LS approach h
not been explored yet.

In this paper we investigate the validity of the LS appro
mation over the whole of phase space. Analysis of the n
equilibrium potential in the limit of small noise intensities
perfomed using Monte Carlo simulations. The results
compared with numerical integrations of the Fokker-Plan
equation~FPE!, the LS approximation, and the full Hami
tonian theory of fluctuations. In doing so we show that fo
moderate amplitude of the driving force, there is a large
gion of phase space within which the nonequilibrium pote
tial is almost flat. Within this region, a condition for appl
cability of the LS does not hold and applying it in th
standard way provides a very poor approximation. We p
pose a simple modification that extends the theory to co
whole of the phase space.

In the limit of small noise intensity@1,9,10# the probabil-
ity distribution has a WKB@13# form

r~x,t !5z~x,t !e2S[x,t]/D. ~1!

In the particular case of one-dimensional motion of a part
driven by a periodically modulated fieldK(x,t)52U8(x)
1F(t) and a white Gaussian noisej(t),

ẋ5K~x,t !1j~ t !, ^j~ t !&50, ^j~ t !j~0!&52Dd~ t !,
~2!

the action functional
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S@x,t#5
1

4E2`

t

@ ẋ2K~x,t !#2dt ~3!

satisfies a variational minimum principle.
The family of trajectories that minimize the action fun

tional ~3! covers the coordinate space of the system~2!. In
general, more than one trajectory arrives to any given po
in the coordinate space@14,15#. Those providing the globa
minimum ofS@x,t# define the activation ‘‘energy’’ to reach
point x at a moment of timet, which plays the role of a
nonequilibrium potentialF(x,t)5minS@x,t# @15#. These tra-
jectories are optimal paths along which the stochastic sys
fluctuates with overwhelming probability to a given remo
state, and they are experimentally observable@16,17#. Thus
an analysis of the probability distribution of the nonadiaba
cally driven system in the limit of small noise intensity r
quires a solution of the variational problem~3! with subse-
quent global minimization of the action on the set of
extremal trajectories.

Use of the LS @9,10# substantially simplifies such a
analysis. The theory calculates corrections to the activa
‘‘energy’’ induced by the nonadiabatic driving. It does so
terms of the work done by the external field as the syst
moves along theunperturbedtrajectories in thermal equilib-
rium, expressing the result in terms of a linear susceptibil

For the archetypal example of the overdamped Duffi
oscillator~2! the LS theory provides an analytical solution
the long-standing nonadiabatic escape problem. More
cently this theory was extended to find a complete solut
of the nonadiabatic escape problem including corrections
to finite noise intensity. The validity of the theory was ve
fied experimentally for escape processes@4#. Encouraging
agreement was obtained, which suggested that the LS m
be applicable throughout the whole coordinate space of
system~2! in accordance with its original formulation@9#.

We now consider fluctuations that are large but not qu
sufficient to cause escape from a potential well. In princip
the LS should provide a simple way of estimating their pro
ability distribution, even for nonadiabatic driving. For th
sake of definiteness, we consider motion of a Brownian p
ticle in a double-well Duffing potentialU(x)52x2/2
1x4/4 driven by a periodic forceF(t)5A cos(2p/T)t, and a
zero-mean white Gaussian noisej(t). This model has been
used for many physical systems~see, e.g., Ref.@18#! includ-
©2002 The American Physical Society08-1
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ing those considered recently in the context of stocha
resonance@19#.

The nonequilibrium potential of this system is defined
F(x,t)5 limD→02D lnr(x,t). It can be measured experime
tally in the limit of small noise intensity. The error in suc
measurements due to the necessarily finite noise intensiD
is at least of the order ofD, so the use of a small nois
intensity in such experiments is important. That is why t
measurements are usually complicated by the exponent
long observation times needed to build the tails of the dis
bution. To overcome this problem we use a modified Mo
Carlo numerical scheme, of which full details will be pr
sented elsewhere@20#. Here we mention only that the tech
nique has been tested on a number of different systems
that good agrement was obtained with the results obta
using traditional methods for larger noise intensities. T
simulation results are compared both with numerical integ
tions of the Fokker-Planck equation corresponding to Eq.~2!
and with the predictions of Hamiltonian fluctuation theory,
will be described below.

An example of2D ln@r(x,t)# obtained by Monte Carlo
simulation is shown in Fig. 1. It can be seen from the figu

FIG. 1. 2D ln@r(x,t)# given by the Monte Carlo simulations i
the low noise intensity limit~for D50.002). The two bold lines are
time sections ofF(x,t) predicted by the formula~4!. All the figures
presented in the paper are calculated for the model system~2! with
parametersT52p andA50.1.
02110
ic

s

e
lly
i-
e

nd
d

e
-

s

e

that the ln ofr(x,t) approaches a intriguing singular sha
with a plateau close to the boundary of the basin of attrac
of the quasistable state. It is in good agreement with res
from Hamiltonian fluctuation theory and from the numeric
solution of the FPE.

To calculate ln@r(x,t)# using the LS theory we will follow
the original paper@10#. The basic assumption of the theory
that a moderately strong driving field changes only sligh
the unperturbed fluctuational trajectory of the system~2! in
thermal equilibrium. If this assumption is valid, theF(x,t)
of the nonadiabatically driven overdamped Duffing oscilla
can be readily found by substitution into Eq.~3! of the
known ~see, e.g., Ref.@20#! form of the fluctuational trajec-
tory in thermal equilibrium given byẋ5U8(x).

By neglecting the term proportional toF2(t), F(x,t) can
be found as a sum of the equilibrium potentialDU(x)
5U(x)2U(21) and a correction due to the driving forc
@9,10#

F~x,t !5DU~x!2E
2`

t

ẋo~ t8!F~ t8!dt8, ~4!

whereẋo(t8) is the velocity of the particle fluctuating alon
the optimal path in thermal equilibrium. We see that Eq.~4!
expresses the corrections to the logarithm of the distribu
in terms of usual linear susceptibility. This explains the o
gin of the term ‘‘logarithmic susceptibility.’’ The LSx(t)5

2 ẋo( i ). It does not depend on the external force and it
therefore a fundamental property of the unperturbed equ
rium system.

We note that Eq.~4! specifies uniquely the probability
distribution for the periodically driven system~2! at every
point of the extended coordinate space (x,t). The results of
the calculations for two time cross sections are shown
Figs. 1 and 2. It can be seen from the figures that the
predictions coincide with the results of the Monte Ca
simulations everywhere except in the singular region wh
there is a plateau close to the boundary of attraction m
tioned above. The deviation of the LS predictions from t
results of simulations in this region is systematic, mu
larger than the noise intensityD, and clearly requires expla
nation.
FIG. 2. Two time sections of
F(x,t) for t51.6 and t54.1
given by the unmodified LS~4!
~dash-dotted line!, the full Hamil-
tonian theory~solid line!, integra-
tion of the FPE ~for D50.002,
dashed line!, Monte Carlo simula-
tions ~for D50.002, dotted line!,
and Eq.~4! cutting the action at
the levelSesc ~circles!.
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To understand the reason for this disagreement, let us
sider the asymptotically (D→0) exact Hamiltonian theory o
large fluctuations in a periodically driven system~see Refs.
@21,22#!.

The solution of the variational problem~3! for S@x,t# can
be written in terms of the family of extreme trajectories th
satisfies the Hamiltonian equations of motion for coordin
x and momentump of the auxiliary Hamiltonian system
@13,21#

dx

dt
5

]H

]p
5K12p,

dp

dt
52

]H

]x
52p

]K

]x
. ~5!

Along these trajectories the action is given by

dS

dt
5p

]H

]p
2H5p2. ~6!

Equations~5! and~6! with appropriate initial conditions give
a numerical scheme for computing the family of extrem
trajectories and multivalued action manifoldS@x,t#. Its glo-
bal minimum is the nonequilibrium potentialF(x,t) @14,15#.

In Fig. 3, the pattern of optimal paths providing the glob
minimum to the action functional@22# is shown in the region
betweenxst(t) andxu(t); xst(t) andxu(t) are the stable and
unstable orbits of the system~2!, respectively. The bold lines
~one per periodT) emanating fromxst(t) and reachingxu(t)
asymptotically are the most probable escape paths~MPEPs!.
These are the paths that provide minimum action for
system to arrive at the boundary of attraction. The singula
in the pattern of optimal paths of the periodically drive
Duffing oscillator was investigated earlier@22#. It is deter-

FIG. 3. The pattern of optimal paths. A line that starts at a c
point ~a circle! and approaches unstable periodic orbit is a switch
line. Thin solid lines are optimal paths for the nonequilibrium sy
tem ~2! and dash-dotted line is an optimal path for the correspo
ing equilibrium system@i.e., for Eq. ~2! with F(t)50#. Note that
equilibrium and nonequilibrium optimal paths that arrive to a s
gular region of plateau are very different—the original assumpt
of LS theory breaks down here.
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mined by the topology of the switching line emanating fro
a cusp point and approachingxu(t) asymptotically. This line
separates regions of the coordinate space to which the sy
arrives by different optimal fluctuation paths.

The region between the switching line and the bound
of attraction@xu(t)# is a singular plateau with almost con
stant action. Optimal fluctuation trajectories that arrive
this region first move close to the MPEP and then bend
move away from the boundary of attraction. In this regi
the basic assumption of the LS theory—that there are o
small deviations of the fluctuational paths in the periodica
driven system from those in thermal equilibrium—brea
down. As shown in Fig. 3, an optimal equilibrium pa
~dash-dotted line! arrives to the singular plateau region in
very different way compared to nonequilibrium optim
paths. As a consequence the predictions of the LS the
deviate strongly from the measured nonequilibrium poten
in this region.

What can be done to improve the LS approximation
this range? We note, first, that optimal paths reaching
singular region move very close to the MPEP, thus acquir
a value of action that is approximately the same as that
quired along the MPEP (Sesc50.2 for our choice of param-
eters!. Second, the action acquired along the optimal p
anywhere in the region betweenxst(t) and xu(t) cannot be
larger then the escape ‘‘energy’’~the activation ‘‘energy’’!.
This must mean that the action inside the singular region
almost equal toSesc. We therefore propose that, to improv
the LS approximation in this region, we may cut the surfa
given by Eq.~4! at the level of the escape actionSesc.

It can be seen from Figs. 2 and 4 that the predictions
the LS theory, corrected in the singular region, almost co
cide with the predictions of the Hamiltonian theory and t
results from numerical integration of the FPE over the wh
basin of attraction of the stable state, and that they are als
very good agreement with the results of the Monte Ca
simulations@23#.

In conclusion, one of the main results of the paper is
observation that the probability distribution may have larg
essentially flat regions in phase space. This is a purely
namical effect that is not associated with the flatness of
potential. Its origin is related to switching between differe
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FIG. 4. The cut nonequilibrium potential given by the modifie
LS approach: a better approximation, cf. Fig. 1.
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types of optimal fluctuational path, and it is a general feat
of optimal paths in periodically driven systems with me
stable states. The LS theory, which is a perturbation the
does not apply within the flat distribution regions. We ha
shown, however, that the distribution can still be found us
a simple and intuitively clear LS-based approach, and
have verified the results through detailed numerical simu
tions, integration of the Fokker-Planck equation, and solut
of the variational problem for large fluctuations. We emph
v.
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-
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size that this approach enables one to avoid the necessi
matching two theories in the region of the singularity, a
that it can readily be extended to the case of multiharmo
periodic driving.
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