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Phase relationships between two or more interacting processes from one-dimensional time serie
I. Basic theory
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A general approach is developed for the detection of phase relationships between two or more different
oscillatory processes interacting within a single system, using one-dimensional time series only. It is based on
the introduction of angles and radii of return times maps, and on studying the dynamics of the angles. An
explicit unique relationship is derived between angles and the conventional phase difference introduced earlier
for bivariate data. It is valid under conditions of weak forcing. This correspondence is confirmed numerically
for a nonstationary process in a forced Van der Pol system. A model describing the angles’ behavior for a
dynamical system under weak quasiperiodic forcing with an arbitrary number of independent frequencies is
derived.
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I. INTRODUCTION

To establish from experimental data whether or not two
more interacting processes are synchronized is an old
important problem. In the absence of noise, the existenc
synchronization between two processes in interacting li
cycle oscillators was originally taken to imply that their bas
frequencies of oscillation are related as integer numbers~i.e.,
are rationally connected! @1,2#, and that their instantaneou
phases are permanently locked. This definition suggests
the detection of whether or not synchronization exists can
established by computation of the ratio of basic frequenc
in the Fourier spectrum of the signal from one of the su
systems involved. Even in this simplest case, however,
finite observation time and the discreteness of the digit
tion steps used in practice will make it appear thatall fre-
quencies are rationally connected, thereby complicating
reliable estimation of their ratio. Furthermore, the noise t
is invariably present in all real macroscopic systems me
that only effective synchronization@3# can normally take
place, meaning that the phases can remain locked only
ing finite time intervals, and that the basic frequencies m
no longer be rationally connected@4#. Serious difficulties
may also arise due to the nonstationarity of experime
data.

In view of these problems, modern techniques for est
lishing the presence or absence of synchronization are b
on the assumption that the behavior of each subsystem
be considered separately, and that their individual time se
can be compared by a variety of techniques~e.g., by compu-
tation of the phase difference between them!. This approach
has been justified theoretically@3–6# and is widely used to
detect synchronization, not only in periodic noisy, but also
chaotic@7–10# oscillators, and even between stochastic@11–
15# processes. Its principal assumption is quite reason
where the system is being forced externally, when one is a
to measure both the forcing and response signals@16#, or for
mutually coupled oscillators of radiotechnical@8,9,17# or
biological @18# origin, or for biological systems such as is
1063-651X/2002/65~3!/036211~12!/$20.00 65 0362
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lated neurons@19#, or in any situation when a living system
is artificially split into separate subsystems for research p
poses, usually by means of surgery or drugs~thereby disrupt-
ing its natural functional state! @20–23#. However, in practice
there are not many opportunities to measure noninvasiv
separate signals coming from different interacting proces
within a living system: the independent registration of s
nals derived from respiration and from cardiac activity@24–
28# is one of the very rare examples.

It remains an open problem how best to learn from
one-dimensional signal coming from a system, within whi
several processes with distinguishable time scales inte
whether or not the processes in question are synchronou
Ref. @29# it was suggested that the interaction of processe
the autonomic regulation of the human cardiovascular s
tem could be studied by the application of ideas from eth
musicology to univariate time series~heart rate data!. How-
ever, this approach is tightly linked to the physiologic
nature of the particular data and cannot be applied in gene
Another possibility that has recently been demonstrated@30#
is to filter a univariate time series to create two ‘‘separa
signals that can then be analyzed for synchronization p
nomena in the usual ways already developed for bivar
time series.

In the present paper we propose a more general appr
towards detecting the presence or absence of synchroniz
between two or more interacting processes from univar
experimental data. A preliminary report@31# introducing the
main idea has already been published. The aims of
present paper are, first, to give an explicit relation betwe
the new variable introduced for univariate data and the c
ventional variables used in synchronization theory. Seco
we extend the approach to encompass the case of se
interacting processes.

In Sec. II the basic idea of the approach is outlined,
plicit models for the angles of return times maps are deriv
for an oscillator that is forced either periodically or qua
periodically, and the relation between the angles and the c
ventional phase difference is established. In Sec. III the la
relation is demonstrated on a model of nonstationary for
©2002 The American Physical Society11-1
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oscillations and the method is tested. The results are sum
rized and discussed in Sec. IV, and conclusions are draw
Sec. V.

II. ANALYTIC DESCRIPTION FOR THE IDEAL
NOISE-FREE CASE

A. General idea and experimental observations

The central idea of the proposed approach is based on
simple fact that, ifm periodic processes with different fre
quencies interact weakly enough within a single system
m-dimensional torus exists in its phase space@2#. The case of
two interacting processes is illustrated by Fig. 1~a!, showing
a two-dimensional torus as the attracting set. To quan
motion on this torus, therotation numberj is introduced as
the ratio between the basic frequencies of the interacting
cillators. It specifies how many periods of one oscillator f
within a single period of the other oscillator.

If the processes arenot synchronous, the rotation number
is irrational. The phase trajectory then fills the whole tor
surface and is never closed, and thus its Poincare´ map is a
closed curve. If the processes aresynchronous, the rotation
number is rational. In this case, distinct stable and unsta
cycles lie on the torus surface, and the phase trajectory te
towards the stable limit cycle. The Poincare´ map consists of
one or several stable points belonging to the stable cycle
an equal number of saddle points belonging to the sad
cycle lying between the stable points on the closed cu

FIG. 1. ~a! Surface of a two-dimensional torus. The pointO is
some origin in whose vicinity the motion occurs. The saddle cy
SC~dashed line! is that from which the torus was created as a res
of a Hopf bifurcation. The phase trajectory moves along the to
surface and makes two kinds of rotation: around the pointO with
amplitudeR, and around the cycle SC with amplituder. ~b! Poin-
carémap for a two-dimensional resonant torus inside the region
1:3 synchronization. Arrows show the direction of stable and
stable manifolds of saddle equilibria.f i is the current angle,r i is
the current amplitude.~c! Illustration how the points jump on the
Poincare´ section of a two-dimensional torus.
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formed by the unstable manifolds of the saddles as show
Fig. 1~b!. To consider the dynamics of the Poincare´ map,
place the origin somewhere inside the region bounded by
closed curve and introduce the phase anglef i and phase
radiusr i @Fig. 1~b!#. At each discrete time momentt i when
the trajectory returns to the Poincare´ secant surface, the
phase vector rotates by some angle. It is obvious that for
synchronous regime there is a discrete number of poss
values off i , and for the asynchronous one the anglef i may
take any value between@2p; p#. The geometrical meaning
of the rotation number is then the average angle by which
phase vector rotates at each step@Fig. 1~c!#,

^f i2f i 21&52pj, ~1!

where^¯& means an average over time.
If some general noise~with large enough tails in its dis

tribution! perturbs the system, only effective synchronizati
can take place@3#. In terms of the Poincare´ section this
means that, at every step, noise prevents the phase
from jumping exactly to the stable point, but makes it jum
instead to the vicinity of the stable point. However, at
certain moment, a large enough fluctuation may throw
phase point outside the region bounded by the two sta
manifolds of the nearest saddle points, and the phase p
then moves along the unstable manifold to another sta
point @Fig. 1~b!#. The latter stage of the dynamics is asso
ated withphase slip. Thus, instead of one or a few discre
points, one observes one or a few clouds of points smea
around the stable equilibrium/equilibria, and possibly a
the trace of the unstable manifolds forming the torus. T
latter situation is illustrated by Fig. 2~a! where a stroboscopic
section is shown for a Van der Pol system under harmo
forcing while affected by Gaussian white noise,

ẋ5y; ẏ5e~12x2!y2v0x1C sinVt1ADm~ t !. ~2!

Here, the nonlinearity parametere50.1, eigenfrequencyv0
51, forcing amplitude C50.1, forcing frequency V
51.025,m(t) is a random value with a Gaussian distrib
tion, zero average and unity variance, and the noise varia
D50.1. For these parameter values, effective 1:1 synchr

e
lt
s

f
-

FIG. 2. ~a! Stroboscopic section of a Van der Pol system forc
periodically and influenced by noise in the region of 1:1 effect
synchronization~black points!. The white point shows the stabl
cycle in the noise-free system. Parameter values are given in
text. ~b! Map for angles of return times for the case illustrated
~a!. The thin black line shows the return function of Eq.~11! for
j51.
1-2
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PHASE RELATIONSHIPS BETWEEN . . . . I. . . . PHYSICAL REVIEW E65 036211
zation takes place. In Fig. 2~a! black points show the strobo
scopic map of system with noise, and the white diamond
among the bulk of the black ones shows the position of
stable cycle in the noise-free system. Here, the anglef i can
take any possible values, but those corresponding to the
cinity of stable equilibrium are the most probable. Effecti
synchronization manifests itself in a sharp increase in
duration of the time intervals without phase slips.

According to the Takens theorem@32# and its extension to
noise-affected system@33#, the system’s attractor can be r
constructed from its one-dimensional time series. Obviou
the Poincare´ map can also be restored from the reconstruc
phase trajectory, being topologically equivalent to that of
original system. In Refs.@34,35# it is shown that the same
map can be reconstructed from return times of the syste

Consider a map for the angles of a return times map,

f i5 f ~f i 21!. ~3!

The technique of plotting such a map has already been
plied to reveal determinism in theR-R intervals of anesthe
tized dogs@36# and in the human heart rate during pac
respiration@37#, and in jet atomization@38#. The distinctive
shape of the maps observed in all these works was attrib
to interaction between the particular processes involved. H
zel et al. @36# and Suderet al. @37# suggested approximat
empirical models to describe the dynamics of such maps,
without linking them to the general theory of synchroniz
tion or developing an analytic description.

Some typical examples of such a map are shown in F
3~a! for the noise-free Van der Pol system~2! with e50.1
and the small forcing amplitudeC50.01, for several values
of forcing frequencyV varying from 0.25 to 0.9. The basi
frequency of the oscillations is close tov051, and thus the
rotation numbersj are close to the corresponding values
V. Note that, forj51/2, one observes a 1:2 synchronizati
that is reflected by the presence of only two points in
map of Fig. 3~a! ~the most distant point from the diagonal
the lower-right part of the picture and the closest point to
diagonal in the upper-left part!, and that the whole return
function is not seen here since we removed all transients

FIG. 3. ~a! Map for angles of return times for the Van der P
system under periodic forcing with fixed small amplitude and d
ferent values of rotation number.~b! A series of return functions o
map~11! for different values of rotation numberj close to those in
~a!. Moving down from the diagonal, the plots sequentially cor
spond to@according to relation~12!#: j50.1 ~and 0.9!, j50.2 ~and
0.8!, j50.25 ~and 0.75!, j50.3 ~and 0.7!, j50.4 ~and 0.6!, j
50.5.
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the other regimes appear not to fall within the synchroni
tion tongues. Here and in what follows, the axes of the m
for angles have the limits@2p; p#.

B. Derivation of the map for angles of return times map
for two interacting processes

In this subsection we will clarify the physical meaning
the angles of return times map and will relate it to the co
ventional phase difference. We will also derive the map
scribing the evolution of angles with time.

Consider a very simple case of a forced system, name
periodic self-sustained oscillator with eigenfrequencyv0 and
amplitudeR that is forced harmonically at frequencyV and
amplituder. As a result of the forcing, a two-dimension
torus is born@Fig. 1~a!#. If the nonlinearity in the oscillator is
weak, its autonomous solution can be approximated b
sinusoidal function of time, and the oscillator is then call
quasiharmonic. If the harmonic forcing is also weak,r !R,
the solution of the resulting nonautonomous equations ca
approximated by a superposition of: one sine term com
from the unforced system and describing rotation arou
some originO, i.e., oscillations with frequencyv and ampli-
tudeR @as shown in Fig. 1~a!#; and a second sine term co
responding to rotation around the saddle cycle~SC! ~the
former limit cycle of the autonomous system from which t
torus was born via a Hopf bifurcation!, i.e., oscillations with
the frequency of external forcingV and amplituder. Thus

x~ t !5R sinvt1r sin~Vt1f0!, r !R, ~4!

where f0 is the initial phase shift. Note that frequencyv
coincides with the eigenfrequencyv0 of the autonomous
system in the absence of synchronization. In the presenc
synchronization, it is shifted in the direction defined by t
forcing. If the oscillations are synchronized by the forcin
the rotation number of the whole system under considerat
here denoted asj5V/v, is equal ton/m, wheren, m are
integers.

Define the return times of the system as the time interv
between successive crossings by the signalx(t) of a thresh-
old x50 in one direction. To find the time momentstk of
these crossings one should solve the transcendental equ
x(t)50, which in general has no analytic solution. Let
make use of the fact that the first term is much larger than
second one, and, therefore, that the timestk of zero crossing
by x(t) are close to the timestk* 5pk/v of zero crossing by
(R sinvt). We expand the functionx(t) as a Taylor series in
the vicinity of tk* , considering only the linear term and ne
glecting all the others:

x~ t !5R sinpk1r sinS V

v
pk1f0D1RvS t2

pk

v D cospk

1rVS t2
pk

v D cosS V

v
pk1f0D50.

Noting that cospk5(21)k, and in order to consider ever
second zero crossing so as to register intersections in
one direction, we setk52i ,

-

-
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S t2
2p i

v D FRv1rV cosS 2p iV

v
1f0D G52r sin

2p iV

v
.

The t we seek is thei th moment of crossing,

t i52

r sinS 2p iV

v
1f0D

Rv1rV cosS 2p iV

v
1f0D 1

2p i

v
. ~5!

Divide the numerator and denominator of the first term
Eq. ~5! by r. SinceR@r , and thus in the denominator th
first term is much larger than the second one, we neglect
second term and thus obtain

t i'2
r

Rv
sinC i1

2p i

v
, ~6!

where C i5(2p iV/v1f0). Denote U52pV/v52pj.
Then the expressions for the time momentst i , t i 11 , t i 12 ,
t i 21 may be written by analogy. The return timesTi are the
differences between the successive timest i :

Ti5t i 112t i522
r

Rv
cosS C i1

U

2 D sin
U

2
1

2p

v
.

Put the origin into the central point of the return times m
(Ti ,Ti 11) found as an average of all valuesTi which is
equal to 2p/v. Introduce the angle between the current po
and the horizontal axis as follows:

f i5arctanS Ti 112
2p

v

Ti2
2p

v

D . ~7!

Then tanfi is

tanf i5

cosS C i1
3U

2 D
cosS C i1

U

2 D 5cosU2tanS C i1
U

2 D sinU.

~8!

Similarly, we obtain for cotfi21,

cotf i 215

cosS C i2
U

2 D
cosS C i1

U

2 D 5cosU1tanS C i1
U

2 D sinU.

Since

tanf i1cotf i 2152 cosU, ~9!

we obtain the following expression for the rotation numberj:
03621
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2p
arccos

tanf i1cotf i 21

2
~10!

and an explicit form of the map~3! for anglesf i :

f i5arctan~2 cos 2pj2cotf i 21!. ~11!

Equations~10! and ~11! are the final formulas@39# connect-
ing two successive angles of the return times map with
rotation numberj in the approximation of a quasiharmon
oscillator under weak harmonic forcing. Note that Eq.~11!
was quoted earlier as Eq.~6! of Ref. @31#, without detailed
justification.

C. Analysis of angles for two interacting processes

First, note that, if the amplitude of forcing is muc
smaller than the amplitude of natural oscillations in the s
tem, the map~3! does not depend on the amplitudes and
completely defined by the rotation numberj. The ambiguity
in defining the value of arctan that is periodic with the peri
p, not 2p, implies that the return function in Eq.~11! is not
continuous but makes a jump byp at the pointf50, thus
being not one-to-one. Moreover, the function arctan its
varies between2p/2 andp/2. To draw the return function
for angles in a proper way, reflecting its distinct physic
meaning, we just leave the value off i if f i 21>0 and sub-
tract p from f i if f i 21,0. When referring to maps~11!, or
~19! below, we will assume them to have been extended
this procedure.

Second, note that the map~11! does not depend on th
initial phase shiftf0 between the solution components.

Third, note that the return function of Eq.~11! is periodic
with respect to the variablej with period 1, because the
cosine function takes equal values for the arguments 2pj, or
2p62pj, or 2p l 62pj ~where l is an integer! if 0<j
<1. Denotej* 5(1/2p)arccos(cos 2pj), so thatj* or (1
2j* ) is the fractional part of the true rotation number lyin
within the interval@0;1#. Then the true rotation numberj can
be expressed viaj* as

j5j* 1 l , or j5~12j* !1 l . ~12!

Thus, from the map for angles onlyj* can be defined. To
select one of the two formulas in Eq.~12! and find l, the
Fourier spectrum of the original signalx(t) can be helpful,
since for this purpose only a rough estimate of the ba
frequencies is required. To simplify further consideration,
will take j to mean the value ofj* which in all numerical or
real data examples given in this paper coincides with t
rotation number.

Fourth, it follows from Eq.~11! that ~i! if j51/4, the
return function is the straight linef i5f i 212p/2 ~ii ! for any
value of j the return function passes through the points~0;
2p/2! and ~p;p/2! and touches the linef i5f i 212p/2 at
these points.

A series of return functions of Eq.~11! for several values
of j between 0.25 and 0.9 inclusive@the same values as i
Fig. 3~a!# are shown in Fig. 3~b!. The results are in good
agreement with Fig. 3~a!, showing that return functions de
rived theoretically appear to coincide with those obtain
from a numerical simulation.
1-4
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Our numerical simulation has demonstrated that clos
similar angles maps appear in the case when two peri
oscillators are coupled mutually and weakly; they are
shown here because they are equivalent to those for
forced Van der Pol system~2! for the same rotation number
@Fig. 3~a!#. Another useful observation is that even in t
case when a weakly chaotic oscillator is forced periodica
the map for angles may sometimes look very similar to t
for noise-influenced forced or interacting periodic oscillato
In Fig. 4 a map for angles of return times is given for t
Rössler oscillator@40# in a chaotic regime forced period
cally. The form of the equations is taken to be as in@41# with
the following parameters values: eigenfrequencyv51; a
50.2; b50.2; m510; and the forcing frequencyv150.3
with amplitudeC50.5.

To reveal the physical meaning of the angles, return to
~8!. Here,C i is the phase of external forcing taken at t
time moments 2p i /v when the phase of basic oscillation
with frequencyv changes by 2p. Note that in generalC i
defines the phase of external forcing up to some constan
C i is wrapped into the interval@2p;p# @which does not
change the value of tan(Ci 1u/2)#, it is by definition the
so-called relative phase introduced in Ref.@25#. Consider the
phase difference between two signals,C̃(t)5F1(t)
2F2(t), and the values ofC̃ at time momentst i when the
phase of one signal, e.g.,F2 , changes by 2p,

C̃~ t i !5C̃ i5F1~ t i !22p i . ~13!

Wrapping of C̃ i into the interval @2p;p# implies C̃ i

5F1(t i). That is, by construction,C̃ i coincides withC i .
Thus, Eq.~8! provides an explicit relation between the ang
of return times map and the conventional phase difference
to some constant. This relation will be demonstrated by
merical simulation of a nonstationary process in Van der
system in Sec. III B.

A classical sine circle map@42# is usually used to describ
the evolution of phase differenceC̃ i :

C̃ i 115C̃ i1d1K sinC̃ i ~mod 2p!, ~14!

whereK is the effective amplitude of external forcing andd
is the frequency detuning between the eigenfrequency of

FIG. 4. Map for angles of return times for the periodica
forced Rössler system in a chaotic regime. The parameter values
given in the text.
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system and the external forcing. A typical return function
the map~14! is shown in Fig. 5. Let us make a comparison
map ~11! with map ~14!.

The formal difference between Eq.~11! and the sine circle
map is the presence of two points at which the distance
tween the return function and the diagonal is minimal,
stead of only one such point. An important distinction is th
the map~11!, unlike map~14!, does not depend on the am
plitude of forcing and is thus always one-to-one, so no ch
can be described by it. Another important feature is that
return function of Eq.~14! can cross the diagonal, as param
etersK and d are varied, while in the map~11! it can only
touch the diagonal at two points wherej50 or j51, but
never crosses it.

It is obvious that, when~i! the approximation of a quasi
harmonic oscillator is not valid, and/or~ii ! the oscillator is
not being forced harmonically, and/or~iii ! the amplitude of
forcing cannot be considered small, the real map will dif
from that predicted theoretically. However, even where o
or more of~i!–~iii ! apply, but the torus still exists, the qual
tative picture remains the same, i.e., for the synchronous
gime we will obtain a finite number of points, whereas f
the asynchronous one the map will look like a continuo
curve.

We have, therefore, arrived at a diagnostic criterion
the existence of synchronization, or the lack of it, betwe
two noise-free interacting processes manifested within a o
dimensional signal.

D. Derivation of map for angles for several interacting
processes

We now consider the case when a quasiharmonic osc
tor is being forced, not just by one, but byn harmonic signals
with n independent frequenciesV i , i 51, . . . ,n. We sup-
pose the amplitudeAi of each of these signals to be muc
smaller thanR. Then, as before, the solution of the resultin
nonautonomous system can be approximated by

x~ t !5R sinvt1(
j 51

n

Aj sin~V j t1f j
0!, Aj!R. ~15!

Here f j
0 are the initial phase shifts of the solution comp

nents. Denote 2pV j /v5U j . As before, expand Eq.~15!
into Taylor series in the vicinity oft i* 52p i /v and neglect
all terms beyond the linear ones,

re
FIG. 5. Return function of a classical sine circle map.
1-5
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x~ t !5(
j 51

n

Aj sin~ iU j1f j
0!1S t2

2p i

v D
3S Rv1(

j 51

n

AjV j cos~ iU j1f j
0!D 50,

to obtain an approximate expression for the momentst i of
the signal’s intersection with the zero axis,

t i52

(
j 51

n

Aj sin~ iU j1f j
0!

Rv1(
j 51

n

AjV j cos~ iU j1f j
0!

1
2p i

v

'2
1

Rv (
j 51

n

Aj sin~ iU j1f j
0!1

2p i

v
.

The return times are defined as

Ti5t i 112t i5
2p

v
2

1

Rv F (
j 51

n

Aj sin~ iU j1f j
01U j !

2(
j 51

n

Aj sin~ iU j1f j
0!G

5
2p

v
2

2

Rv (
j 51

n

Aj cosS iU j1f j
01

U j

2 D sin
U j

2
.

Then tanfi is equal to

tanf i5

Ti 112
2p

v

Ti1
2p

v

5

(
j 51

n

b j cosS iU j1f j
01

3U j

2 D
(
j 51

n

b j cosS iU j1f j
01

U j

2 D ,

whereb j5(Aj /A1)@sin(Uj/2)/sin(U1/2)#, b151. Transform
the latter expression to rewrite it in a more convenient for

tanf i5F (
j 51

n

b j cosS iU j1f j
01

U j

2 D cosU j2(
j 51

n

sinS iU j

1f j
01

U j

2 D sinU j GF (
j 51

n

b j cosS iU j1f j
01

U j

2 D G21

.

~16!

Now add to and subtract from the numerator of Eq.~16!
cosU1 Sj51

n bj cos(iUj 1fj
01Uj/2), yielding
03621
,

tanf i5cosU11F (
j 52

n

b j cosS iU j1f j
01

U j

2 D (cosU j

2cosU1!2(
j 51

n

sinS iU j1f j
01

U j

2 D sinU j G
3F (

j 51

n

b j cosS iU j1f j
01

U j

2 D G21

. ~17!

By analogy derive the expression for cotfi21, sum it with
tanfi , and obtain an expression forf i ,

f i5arctanH 2 cosU12cotf i 2112

3F (
j 52

n

b j cosS iU j1f j
01

U j

2 D ~cosU j2cosU1!G
3F (

j 51

n

b j cosS iU j1f j
01

U j

2 D G21J .

~18!

Formula ~18! is valid for any number of forcing signals o
small amplitude applied to the quasiharmonic oscillator@43#.
It is important to realize that the validity of this formula
fully justified by the validity of Eq.~15! describing the be-
havior of the phase variablex(t) of a system forced by sev
eral harmonic signals. In Ref.@44# it was shown theoretically
that quasiperiodic motion on anm-dimensional torus is struc
turally unstable form>3. This means that, after such a tor
is born, an arbitrarily small perturbation of the system c
lead to trajectories on itsm-dimensional hypersurface be
coming Lyapunov unstable. Thus, in principle, even thre
frequency quasiperiodic oscillations cannot exist in real s
tems affected by noise. However, if the perturbation
vanishingly small, then although the trajectories may be
stable, the vector flow remains close to the quasiperio
one, and formula~18! is valid asymptotically as the pertur
bation tends to zero.

For forcing by two harmonic signals Eq.~18! takes the
form

f i5arctanH 2 cosU12cotf i 2112b2@cosU22cosU1#

3S b21

cosS iU11f1
01

U1

2 D
cosS iU21f2

01
U2

2 D D
21J ,
1-6
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b25
A2

A1

sin
U2

2

sin
U1

2

. ~19!

E. Analysis of angles map for three interacting processes

Consider Eq.~19!. Note that for more than two interactin
processes the resulting map for angles depends on the i
phase shiftsf j

0. First, one can check that, if the second for
ing signal is absent, it coincides with Eq.~11!. Second, if the
frequency of the second forcing signal tends to zero, Eq.~19!
also tends to coincide with Eq.~11!. Third, if b2 is not zero,
the map~3! is in fact a nonautonomous system, and the fo
ing represents a nonlinear function of harmonic terms w
two independent frequencies,V1 andV2 , added to a return
function that is similar in form to Eq.~11!. Thus, if the map
for anglesf i is a one-dimensional curve~or close to it in the
presence of noise! one can conclude that only two period
processes with different time scales are involved in the in
action. But if the map is far from being a one-dimension
curve, this implies that there are at least three interac
processes with different time scales.

Examples of what the phase portrait of the map~19! looks
like for four different sets of parameters are shown in Fig
Denote the ‘‘partial’’ rotation numbers asj i j , where the in-
dices i and j mean the numbers of the processes, and
index 0 signifies the ‘‘basic’’ process of frequencyv. Figures
6~a! and 6~b! illustrate the cases wherenone of the three
involved periodic processes are synchronized. For~a! v
51.120 002 . . . ~a random sequence of 0, 1, 2, and 3 af
the decimal point!, V150.2, V250.111 011 . . . ~a random
sequence of 0 and 1 after the first ‘‘1’’!, A150.1, A250.2,
while for ~b! v51.012 0023 . . . ~a random sequence of 0
1, 2, and 3 after the decimal point!, V150.3, V2

FIG. 6. Phase portraits obtained as the result of iterating m
~19! for different parameter values:~a!,~b! no synchronization be-
tween the three processes involved;~c!,~d! partial resonances whe
only two of three interacting periodic processes are synchron
Details are given in the text.
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50.201 022 . . . ~a random sequence of 0, 1, 2, and 3 af
the first ‘‘2’’ !, A15A250.1.

Figure 6~c! is an illustration of the case when the tw
periodic processes with small amplitudes are synchroniz
with frequencies:V150.3, V250.1 (A15A250.1), with a
corresponding ‘‘partial’’ rotation numberj125

1
3 , while nei-

ther of them is synchronized with the main rhythm withv
51.0100 . . . ~a random sequence of 0 and 1 after decim
point!. The existence of synchronization between the t
processes of small amplitude, and the absence of their
chronization with the main rhythm, is demonstrated by t
presence of a fixed number~three in this case! of continuous
nonclosed curves in the map.

Figure 6~d! illustrates the case where the other two pe
odic processes are synchronized, namely, the basic one

v51 and that withV150.3̇ ~where the overdot on the digi
indicates a recurring decimal! (A150.1). The ‘‘partial’’ ro-
tation numberj01 is 1

3. Here, V250.1001 . . . ~a random
sequence of 0 and 1 after the first ‘‘1’’! and A25A1 . Syn-
chronization with the basic process exhibits itself via t
presence of small closed loops in the map for angles. Her
thin black line marks the return function of the autonomo
system~11! for j5 1

3 .
In general, for the ideal noiseless case, one can de

immediately, just by inspection of the angles map, which
the three periodic processes are synchronous: the presen
a fixed number of closed loops in the map reflects synch
nization of one of the time scales with small amplitude w
the ‘‘basic’’ rhythm, while the presence of a fixed number
one-dimensional nonclosed curves points to synchroniza
between the two processes of small amplitude. The c
when all three rhythms are synchronous is reflected b
fixed number of points in the map, is thus trivial, and so
not illustrated here.

III. TESTING THE METHOD ON MODELS WITH NOISE

A. Two interacting processes

One of the simplest situations encountered in real~espe-
cially living! systems is the interaction of two periodic pr
cesses with different time scales. It may, however, be co
plicated by nonstationarity and by noise. First, conside
stationaryprocess in a periodic oscillator with periodic forc
ing under the influence of noise. In Fig. 2~b! the map for
angles of return times is shown for the case of effective
synchronization of Van der Pol system whose strobosco
section is given in Fig. 2~a!. Here, the upper cloud of point
on the diagonal corresponds to the smeared stable equ
rium of the stroboscopic map@white point in Fig. 2~a!#, and
the other points are related to the trace of the unstable m
fold. The thin black line plots the return function of map~11!
for j51, and the map points fall on it with high accuracy

Now let us simulate a typical experimental situation wh
the interacting processes arenonstationary, and the nonsta-
tionarity exhibits itself in a slow random variation of th
eigenfrequency of oscillations. Consider the Van der Pol
cillator ~2! with a randomly varying parameterv, which for

p

s.
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small e is approximately equal to the basic frequency of o
cillations, under external harmonic forcing:

ẋ5y, ẏ5e~12x2!y2v2x1C sinVt,

v5v01
Dh

t
h~ t !, ḣ52

h

t
1m~ t !, ~20!

for e50.1, v051, C50.2 V50.3̇. m(t) is Gaussian white
noise @^m(t)&50,̂ m(t)2&51#, h(t) is colored noise with
varianceDh and correlation timet5200.

The presence or absence of synchronization between
oscillations and forcing can easily be detected by the c
ventional method for bivariate data, i.e., by plotting the tim
dependence of the phase difference between the forcing
the responseDF(t)5F r(t)23F f(t), where F r(t) is the
phase of forced oscillations~‘‘response’’! in the system~20!,
and F f(t) is the phase of the external forcing. Consid
DF(t) at the momentst i when the signalx(t) returns to zero
in one direction, i.e., when the phase of oscillations chan
by 2p. In the absence of noise (Dh50) a 1:3 phase synchro
nization arises, and is detectable through the associated
teau around zero on aDF(t) plot over the whole observatio
time; the corresponding map~3! consists of three points~this
case is trivial and is not illustrated here!. For noise variance
Dh50.15 nonstationary oscillations take place in the syst
exhibiting epochs of effective 1:3 phase synchronizati
which are detectable through the presence of plateaus,
intervals where phase difference slides slowly@Fig. 7~a!#.

FIG. 7. Comparison of different methods to detect phase s
chronization for a forced Van der Pol system with slowly and ra
domly varying eigenfrequency, Eq.~20!. Parameter values are give
in the text. The first two rows of plots were derived frombivariate
data and are~a! the conventional phase differenceDF i between
response and forcing;~b! relative phaseC i ; ~c! map of relative
phaseC i 11 vs C i . The third and fourth rows are obtained fro
univariatedata:~d! angles of return times map;~e! map of angles;
~f! angles transformed by means of Eq.~8!; ~g! map of transformed
angles. Note the striking similarity of plots~b! and~f!, and~c! and
~g!, respectively.
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A phase of forcing at the momentst i , that is relative
phase C i wrapped into the interval@2p;p# is shown
in Fig. 7~b!. The corresponding circle map is show
in Fig. 7~c!. Note, that here by constructionC̃ i5C i
5@F f(t i)22p i # (mod 2p)52DF i /3~mod 2p!. In Fig.
7~d! the anglesf i of return times map@45# are shown and
their map is given in Fig. 7~e!.

Next, we analyze the behavior of the systemusing only
univariate data, namely, the variablex(t). From Eq.~8! the
relative phaseC i* is reconstructed from anglesf i whose
temporal dependence and map are given in Figs. 7~f! and
7~g!, respectively. Note the remarkable correspondence
Figs. 7~b! and 7~f!, and 7~c! and 7~g!, which clearly demon-
strates that the relation~8! still holds even for strongly non-
stationary processes. Another significant observation is
maps in Figs. 7~c! and 7~g!, being in fact classical circle
maps~compare with Fig. 5! are very close to being straigh
lines, thereby confirming that the forcing was indeed wea

B. Estimation of rotation number from the angles map

In Ref. @25# a method was suggested to find the rotati
numberj5n/m of synchronization from relative phaseC i :
the relative phase is extended to the interval@0;2pn#, the
numbern being found by trial; oncen is found, the number
m is given by the number of horizontal stripes in the plotC i
versusi. The situation becomes complicated if the proces
nonstationary and the transition occurs from synchroniza
with numeratorn1 to that withn2 , wheren2Þn2 , etc. Then
one has to find all possibleni ’s by trial and error and to
estimate all thej i corresponding to each different epoch
synchronization, which can require time and patience.

But we have shown theoretically in Sec. II C for the ide
stationary noiseless case, and confirmed by simulation
Sec. III A for a nonstationary case, that the relative phaseC i
can easily be obtained from the angles of return times m
provided that the interaction is weak. Then, in principle, w
can apply the already developed technique to the angles
thus estimate the rotation number. However, the angles
has a noticeable advantage over the relative phase, nam
that the shape of a particular angles map is explicitly defin
by the value of the rotation numberj. That means that one
can estimatej directly from the map without needing t
search for the correct valuen of the numerator. Equation~10!
could be used for the ideal noiseless case, which of cou
does not arise in reality. In real life situations one can e
matej as an average over some temporal window,

^j&5
1

2p
arccos

s

2
, s5^tanf i1cotf i 21&, ~21!

where^¯& implies an average over the window. As one r
gime gives way to another, the value of^j& changes, respec
tively.

The rational rotation numbern/m describing synchroni-
zation should be close to the one defined by Eq.~21!, which
we will further refer to as ‘‘average rotation number,’’ thoug
not precisely equal to it~due to noise and nonstationarity!. It

-
-
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should be noted that the number of clouds in the angles
does not in general allow one to define the rotation num
immediately, because it gives only its denominatorm. The
same number of cloudsm will exist for synchronization with
any n, though the clouds will be placed differently. To fin
the numeratorn we suggest finding the approximate rotati
number^j& using formula~21!, and then seeking the intege
n closest to the valuem^j&.

However, before applying formula~21! we should check
that it is valid under the circumstances in question, i.e., t
the processes under study interactweakly. The most straight-
forward way to check this is to obtain the value of^j& from
Eq. ~21!, to plot the corresponding return function, and to s
if it fits experimental map for angles well enough. If it doe
we can accept thiŝj& as an approximation of the true rota
tion number; but if not, we cannot rely on the value
question.

There is also a straightforward way to estimate the ro
tion number from the anglesf i by using its definition~1!.
However, to do so one needs to be able to extend the disc
anglef i in order to make it increase monotonically. In th
present paper we use only formula~21! to estimate the rota
tion number.

The rotation number̂j& for the case of Fig. 7~e! is ap-
proximated by formula~21! as 0.333 27...; the number 3 o
parallel stripes in Figs. 7~b!, 7~d!, 7~f! gives the denominato
m; and thus the true value of the rotation number correspo
ing to the epochs of phase locking is1

3. The return function
of map ~11! for j5 1

3 fits the plot in Fig. 7~e! with high
accuracy and cannot be distinguished from it, thereby c
firming that the interaction is weak.

C. Three interacting processes

The situation where more than two processes with diff
ent time scales interact is one that is often encountere
complex living systems. We, therefore, consider the cas
three interacting processes in systems affected by w
noise, which we will take to be Gaussian. It is clear that
addition of even weak noise will smear the plots in Fig.
affecting our ability to detect synchronization between
different processes. However, the extent of the effect w
differ for different rhythms. Namely, closed loops as in F
6~d! are likely to become hard to distinguish from a lar
number of discrete points; but we will still observe thr
isolated clouds of points pointing to synchronization betwe
the basic rhythm and the one with smaller amplitude w
rotation numberj5 1

3 . Similarly, the conclusions about th
absence of synchronization between the basic rhythm
those with smaller amplitude as illustrated by Fig. 6~c! will
remain valid even in the presence of noise.

However, noise will definitely prevent one from makin
judgments about the fine structure of such plots, thus ren
ing it almost impossible to establish whether or not the p
cesses with smaller amplitudes are synchronized with e
other. Fluctuational smearing of the plot in Fig. 6~c!, for
example, will prevent one from identifying the number
nonclosed curves~because two of them are likely to merge!,
and smearing of the plot in Fig. 6~d! will prevent one from
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distinguishing whether each cloud represents a smeared
or consists of several smeared points.

In view of these problems we suggest an extension of
method to remove from consideration the basic rhyth
thereby enabling us to focus our attention on the sma
amplitude processes. Namely, after detecting synchroniza
or otherwise between the main rhythm and the one of
remaining two, we propose to proceed as follows. Plot
return timesTi vs i and form a new dataset consisting of a
their local maxima~or minima! as shown in Fig. 8~a!. Now
treat the new data as an independent time series resu
from the interaction of only two processes. One can plot
these data the map of angles and then analyze it by ana
with Sec. III B.

This approach can be realized in application to expe
mental data only in cases where the frequency of the b
process is larger than those of smaller amplitude. Howe
this condition is often satisfied in practice, as will be illu
trated@46# in relation to human heart rate variability data.

To demonstrate the workability of this technique, we a
ply it to the Van der Pol system forced quasiperiodically a
influenced by noise,

ẋ5y, ~22!

ẏ5e~12x2!y2v0x1C1 sinV1t1C2 sinV2t1ADm~ t !

for e50.1, v051, C15C250.1, V150.5, V250.1, D
50.000 01. The parameters are selected in such a way
for all the processes effective synchronization takes pla
with j015

1
2 andj125

1
5 . In Fig. 8~a! the sequence of return

times Ti extracted from coordinatey(t), and all its local
maxima, are shown. In Fig. 8~b! the map for angles is show
for Ti , which consists of two clouds of points~black points!
lying on a return function~11! for j5 1

2 ~thin black line!,
being evidence of 1:2 synchronization between the basic

FIG. 8. Quasiperiodically forced Van der Pol system with no
~22!. All processes are synchronous.~a! Return timesTi . Local
maxima are connected by a thick solid line.~b!,~c! Angles-of-
return-times map for~b! Ti and~c! local maxima ofTi . Thin black
lines show return functions in Eq.~11! for ~b! j0151/2 ~c! j12

51/5.
1-9
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JANSON, BALANOV, ANISHCHENKO, AND McCLINTOCK PHYSICAL REVIEW E65 036211
cess and the one with frequencyV1 . At this stage, it is
difficult to decide from looking at the map whether or not t
smaller amplitude processes are synchronous. Now, plo
map for angles for the set of local maxima ofTi @Fig. 8~c!#.
One can clearly distinguish five separate clouds of po
here, pointing to synchronization between the processes
small amplitudes, the denominatorm of the rotation number
being given by the number of clouds. A rough estimate of
rotation number by Eq.~21! gives 0.212 36 which is close t
1
5 ~the corresponding return function is shown by a thin bla
line!, and so the correct rotation number of1

5 has been suc
cessfuly extracted.

Now, apply our technique to the case when only par
effective synchronization in Eq.~22! takes place. Sete
50.1, v051, C150.3, C250.17, V150.333 001, V2
50.1001,D50.0001. In Fig. 9~a! a map for angles of return
times is plotted. Three clouds of points testify to the effect
1:3 synchronization between the basic rhythm and forc
with frequencyV1 . The ‘‘average rotation number’’ calcu
lated from this map by use of Eq.~21! is 0.333 333, which is
a very good approximation of13. With this, the map for
angles for local maxima of return times shown in Fig. 9~b! is
rather smeared by noise and displays no effective synchr
zation between forcings. The average rotation num
from Eq. ~21! is 0.2801 . . . , which is close to the actua
frequency ratio of the processes under considerationj12
50.300 599 . . . . Thereturn function for the map~11! with
parameterj50.3, shown by a thin black line, seems to fit th
map points reasonably well.

Thus, the technique described above seems to be ab
provide information about synchronization, or its absen
between each consecutive~first with second, second with
third! pair of three processes interacting within a nonline
system, even in the presence of noise.

IV. SUMMARY AND DISCUSSION

To summarize, we have proposed an approach to the
tection of synchronization~or the lack of it! between two or
several processes interacting within a single system, u

FIG. 9. Quasiperiodically forced Van der Pol system with no
~22!. The basic process is synchronous with that withV2 . The
process withV3 is not synchronous with either of the other two.~a!
Angles map for return times map.~b! Angles map for local maxima
of return times. The thin black lines show return functions of E
~11! for ~a! j51/3, ~b! j50.3.
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only a one-dimensional signal coming from it. The approa
is based on plotting the map of angles of the return tim
map, and studying its dynamics. We have revealed an
plicit relation between the angles of return times map and
phase difference between interacting processes. The val
of this relation is confirmed also for nonstationary proces
in a model.

Explicit maps have been derived describing the behav
of the angles-of-return-times map for a system with a lim
cycle forced by an arbitrary number of harmonic signals
small amplitude. The maps obtained appear to describe
numerically simulated data under appropriate conditions.

All the formulas describing the angles’ behavior can
derived not only for the return times map, but also for t
stroboscopicmap reconstructed from a one-dimensional s
nal by the delay method. Moreover, as numerical simulati
have shown, they also fit well angles of Poincare´ sections
reconstructed from one-dimensional time series. The rea
for presenting the above discussion in relation to the ret
times map, rather than for the stroboscopic map, comes b
to the reason for writing this paper: to obtain a strobosco
section we would need to link ourselves to an external fo
ing, or to a signal from interacting partial subsystem, a
these are by definition absent or unknown in the contex
the problem posed.

Although the same~or similar! formulas should in prin-
ciple be obtainable for the reconstructed Poincare´ map
within the framework of our starting suppositions~4!, ~15!,
we failed to do so because of the complicated transcende
equations that arise.

Given a one-dimensional time series, we can find the m
for angles by reconstructing either the Poincare´ or the return
times map. Both of these operations seems equally valid
should lead to the same results for dynamical systems. H
ever, in practice, data from medical or biological expe
ments are often already presented in the form of return tim
like R-R intervals of human electrocardiogram. Moreove
the algorithm for extraction of return times can be simp
than that for the Poincare´ section, the latter being connecte
with restoration of the phase portrait in a multidimension
phase space and searching for intersection of the phase
jectory with a secant hypersurface. Of course, one sho
decide for oneself which method is preferable in any parti
lar case.

V. CONCLUSIONS

Based on the results presented above, we arrive at
following conclusions.

For two weakly interacting processes, the angles of ret
times map can be transformed to a relative phase by me
of Eq. ~8!.

Without noise, when a weak periodic forcing is applied
a periodic oscillator, the dynamics of angles of return tim
does not depend on the amplitude of forcing and is co
pletely defined by the rotation number. When a periodic
cillator is forced quasiperiodically and weakly, the dynam
of angles is defined not only by partial rotation numbers,
also by the ratios of the forcing amplitudes.

.
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The technique of eliminating the higher-frequency co
ponents by extracting local extrema from the return tim
allows one to reach a judgment about the synchronizatio
otherwise of each successive pair of processes involved
at least three processes.

We, therefore, expect that the proposed approach is lik
to be useful in application to the analysis of different kin
of real data, for example, biological. It is applied to heart r
variability data in the paper@46# that follows.
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