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Investigations of nonlinear phenomena on the charged surface of liquid hy-
drogen are reviewed. It is demonstrated that excitation of the surface by
a low frequency ac electric field results in the formation of capillary waves
in the high frequency domain, and that the latter exhibit turbulence. The
quasi-adiabatic decay of this capillary turbulence has been studied both ex-
perimentally and theoretically. It is shown that the processes of formation
and decay of the turbulence are both controlled by the same relaxation mech-
anisms. For spectrally narrow pumping, the application of an additional
low frequency driving force causes a decrease of wave amplitude in the high-
frequency domain of the turbulent spectrum and correspondingly decreases
the width of the inertial range of energy transfer.
PACS: 68.03.Kn; 47.35.+i; 47.27.Gs

1. INTRODUCTION

Experiments over the last ten years have revealed many interesting non-
linear phenomena1–14 associated with wave motion on the charged surface of
liquid hydrogen. In what follows we present a succinct review of this work,
summarising the most important observations and their interpretation, and
including a discussion of our most recent experimental and theoretical re-
sults. The basis of the experiment is illustrated schematically in Fig. 1. A
laser beam is reflected from the charged surface of liquid hydrogen. Dc and
ac electric fields are applied between the charged layer and a conical elec-
trode placed above the liquid. Further details of the experimental arrange-
ment and the procedures used are given in Sec. 3. We review the theoretical
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Fig. 1. Schematic view of the experimental cell: (1) laser, (2) lens, (3)
photodetector, (4) analog-to-digital converter.

background in Sec. 2. We present and discuss the main experimental and
theoretical results in Secs. 4. and 5. First, however, we consider the prop-
erties to be expected of waves on a charged surface and we introduce the
concept of wave turbulence.

1.1. Waves on the charged surface of liquid hydrogen

The dispersion law for surface waves on a flat, equipotential, charged
layer of liquid between the plates of a horizontal capacitor can in general be
written as15

ω2
k = k tanh(kh)

(
g +

αk2

ρ
− 2kP

ρ
coth(kd)

)
, (1)

where ωk is the frequency of a wave of wave vector k, h is the thickness of
the liquid layer, α is the surface tension, ρ is the density of the liquid, g is
the acceleration due to gravity, d is the distance between the surface and the
upper plate of the capacitor, P = U2/8πd2 is the equilibrium pressure of the
electric field on the surface, and U is the voltage applied to the capacitor
(note that the electric force acting on the charged surface is directed upwards,
oppositely to the gravitation force).

In the case when the distance from the surface to the control (upper)
electrode is smaller than the wavelength (kd ≤ 1), the dispersion law (1) for
surface waves on a deep liquid simplifies greatly and can be written as

ω2
k = k

(
G +

αk2

ρ

)
, (2)
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Fig. 2. Spectrum of oscillations of the charged surface of liquid hydrogen in
the cylindrical cell for different values of the capacitor voltage U below the
second critical voltage U2.

where the quantity G = g − 2P/ρ d acts as an effective acceleration due to
gravity.

If the applied voltage tends to the critical value Uc1 = (4πρd3)1/2, the
effective gravitational acceleration G → 0, and the effective capillary length
λeff = 2π(α/ρG)1/2 → ∞. In this case the surface waves can be considered
as being purely capillary waves at all values of k, even where the wavelength
exceeds the capillary length of a neutral liquid λ = 2π(α/ρg)1/2. Hence
ωk ∝ k3/2 at practically all k.

From equation (2) it follows that in high electric fields U > Uc1, where
the effective acceleration due to gravity G becomes negative, a flat charged
surface should be unstable against a perturbation with k ≤ √

ρ|G|/α. We
have observed this instability (reconstruction of the initially flat charged
surface of liquid hydrogen) experimentally2: at voltages U > Uc1 a stationary
solitary wave (a hump) forms on the surface in a cylindrical cell filled with
liquid hydrogen. A similar phenomenon – formation of a stationary dimple –
was observed on the negatively charged surface of liquid helium2. It should
be mentioned that, as the voltage increased above a second critical voltage3,4,
Uc2 ' 1.2Uc1, the reconstructed surface of the liquid hydrogen lost stability
and a discharge pulse occurred from the top of the hump: it looked like a
geyser. After this discharge, the surface relaxed to its original flat state and
then the process repeated. Because of this effect, it was in practice impossible
to study capillary waves on the reconstructed surface of liquid hydrogen at
voltages above 1.2Uc1. After stepwise switching on the voltage U higher
the third critical voltage Uc3 > Uc2 the extraction of charges from under the
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surface of liquid hydrogen was observed1. In this regime the charged clusters
(snowballs) moved by strong electrical force penetrate through the liquid-
vapor interface, and a steady-state electrical current through the surface is
established.

Dispersion curves ω(k) for oscillations of the charged surface are shown
in Fig. 2. The first critical voltage in these measurements Uc1 = 1200 V, the
second critical voltage Uc2 = 1440 V, and the temperature was 15 K. As can
be seen in the figure, the spectrum is close to ω(k) ∼ k3/2; with increasing
voltage the spectrum softens and no particular changes were observed in
fields higher than the first critical value. As pointed out in Refs. 2,3 the
observed reconstruction can be discussed in terms of a second order phase
transition corresponding to a softening of the spectrum of surface waves with
increasing external electric field, as illustrated in Fig. 2.

1.2. Wave turbulence on liquid hydrogen

A highly excited state of a system with numerous degrees of freedom,
characterised by the presence of an energy flux that is directional in K-space,
is referred to as turbulent. In its turbulent mode, a system is far away from
its thermodynamic equilibrium and is characterised by significant nonlin-
ear interaction of the degrees of freedom, as well as by the dissipation of
energy16,17. The nonlinear interaction brings about an effective redistribu-
tion of energy between the degrees of freedom (modes). Turbulence may be
observed in systems where the frequencies of excitation (energy pumping)
and energy dissipation are widely spaced in frequency.

Studies of energy propagation in such systems have included capillary
waves on the surface of liquid, which are of great interest from the stand-
point of both fundamental nonlinear physics and practical applications. The
theory of weak, or wave, turbulence was developed in the late 1960s (see the
monograph17 and references therein). However, despite many experimental
investigations of the nonlinear dynamics of surface waves, only a few exper-
imental observations of isotropic spectra of capillary waves on the surface of
water have been reported20–23, the results of which might be compared with
the theoretical predictions.

We review below the results of our recent investigations5–14 of nonlinear
capillary waves on the surface of liquid hydrogen. Liquid hydrogen is an
especially suitable object for such experiments because it is characterised
by relatively low values of density ρ and kinematic viscosity ν, and by a
high value of the coefficient V ∝ (α/ρ3)1/4 that describes the nonlinearity
of capillary waves. For hydrogen at a temperature T = 15 K, it is known
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that α = 2.7 dyn/cm, ρ = 0.076 g/cm3, ν = 2.6 × 10−3 cm2/s and V = 9
cm3/4/sg, and the capillary length λ = 1.2 cm. For water at T = 293
K, α = 77 dyn/cm, ρ = 1.0 g/cm3, ν = 10−2 cm2/s, V = 3 cm3/4/sg,
and λ = 1.8 cm which is not so different. This enables us to examine the
turbulent mode in liquid hydrogen in a cell with the inner diameter of a few
centimetres over a wide frequency range from 10 Hz to 10 kHz. In addition,
on account of the low density, the external force required to excite oscillations
on the surface of liquid hydrogen is several times less than that in the case of
water. This fact proved to be decisive when exciting waves on the surface by
means of electric forces. Previous experiments had revealed1 that one can
charge the surface of liquid hydrogen with charges injected initially into the
bulk of the liquid, hold the charges in the vicinity of the surface for a long
period of time, and excite surface waves using ac electric field. An important
advantage of this procedure for the observation of capillary turbulence is the
possibility of directly affecting the surface of a liquid by an external force,
virtually without acting on the bulk of the liquid, as well as the high degree
of isotropy of the exciting force, enabling one to study the turbulence under
well-controlled experimental conditions.

2. THEORETICAL BACKGROUND

Capillary waves on the surface of a liquid represent an example of a non-
linear interacting system. The theory of homogeneous capillary turbulence
was described by Zakharov and Filonenko19 who showed that an ensem-
ble of weakly interacting capillary waves may be described within a kinetic
equation, similar to the Boltzmann equation of gas dynamics.

The evolution with time t of the occupation numbers nk = 〈ak(t)a∗k(t)〉
for capillary waves, where ak(t) is the time-dependant canonical amplitude
of the wave with the wave vector k, is described by the kinetic equation

∂nk

∂t
= St(nk)− 2γknk + Fk(t). (3)

The canonical amplitudes of the waves are expressed via the space Fourier
components of the liquid surface elevation ηk(t) and of the fluid velocity
potential Ψk(t) taken at the liquid surface, as follows18,19

ak =

√
αk2

ωk
ηk + i

√
ρk

2ωk
Ψk. (4)

The collision integral in Eq. (3) is equal to

St(nk) =
∫

dk1dk2 (Rk,k1,k2 −Rk1,k,k2 −Rk1,k2,k) .
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Here,
Rk,k1,k2 = π|Vk,k1,k2 |2δ(k− k1 − k2)δ(ωk − ωk1 − ωk2)

× [nk1nk2 − nknk1 − nknk2 ] ,

Vk,k1,k2 =
(

1
8π

) (
α

4ρ3

)1/4
[
(k1k2 + k1k2)

(
k1k2

k

)1/4

+ (kk1 − kk1)
(

kk1

k2

)1/4

+ (kk2 − kk2)
(

kk2

k1

)1/4
]

is the amplitude of the nonlinear interaction between capillary waves, γk =
2νk2 is the viscous damping coefficient for capillary waves, and Fk(t) is the
external driving force.

The main problem in the investigation of wave turbulence is that of
finding the energy distribution law in terms of frequency, i.e. the stationary
spectrum of the turbulent energy Eω. The energy E per unit surface of
liquid may be written in the form

E =
∫

ωknkdk =
∫

Eωdω, (5)

where ωk is the frequency of a wave with the vector k. The capillary wave
dispersion law

ω = (α/ρ)1/2k3/2 (6)

is of the decay type (ω′′ > 0). The main contribution to the wave interaction
is therefore made by three-wave processes, such as the decay of a wave into
two waves with conservation of the overall wave vector and overall frequency,
as well as the reverse process of the confluence of two waves into one wave.
For a system of capillary waves on the surface of a liquid, there exists a
so-called inertial frequency range in which the energy distribution Eω has
the power-law-like form

Eω ∼ ωs.

Here s is an exponent that can be estimated from experimental results.
The inertial range is limited from below by the pumping frequency ωp,

and at high frequencies by viscous damping. According to the currently
accepted theory17,19, when the surface of a liquid is excited at low frequencies
within a fairly wide band ωp±∆ω (“wide-band pumping”, ∆ω ≈ ωp), there
is a constant energy flux Q towards high frequencies, i.e. a direct cascade
in K-space. The theory of homogeneous capillary turbulence predicts the
power law dependence on frequency for the wave distribution function nk
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and the energy distribution Eω (Kolmogorov spectrum) within the inertial
range, which corresponds to

nk = AQ1/2ρ3/4α−1/4k−17/4 (7)

in terms of k. Here A is a numerical coefficient. The distribution is an exact
solution of the kinetic equation (3) in the inertial range of frequencies, where
direct excitation of waves by driving is absent, Fk = 0, and viscous loss is
so small that it can be neglected19.

The steady-state distribution of the energy of surface waves in the iner-
tial range may also be equivalently described in terms of the pair correlation
function in the Fourier representation

Iω = 〈|ηω|2〉) (8)

of a departure of the surface from the planar state η(r, t). From the ex-
perimental standpoint, it is most convenient to investigate the correlation
function Iω rather than the energy distribution Eω, because the deviations
of the surface from the planar state η(r, t) can be measured directly. When
surface oscillations are excited over a wide frequency range, the correlation
function is predicted by the theory17–19 to be

Iω = const× ω−17/6. (9)

Here the dispersion law (6) was used for changing the representation from
K-space to ω-space. The theoretical prediction of relation (7) is supported
by the results of numerical calculations of the evolution of nonlinear capillary
waves, performed directly from the first principles using the hydrodynamic
equations24,25.

In the case of “narrow-band pumping” (∆ω < ωp), it was demonstrated
by numerical calculations in Ref. 27 that a system of equidistant spectral
peaks is formed on the Iω curve at multiples of the pumping frequency. The
frequency dependence of the peak height is described by a power-law-like
function with an exponent of (−7/2),

Iω = const× ω−7/2. (10)

Note that the relations (9) and (10) were derived for systems of capillary
waves with continuous spectra of wave vectors, i.e. for an idealised infinite
surface of liquid. The limited size of an actual experimental cell means,
however, that the ω(k) spectrum must in reality be discrete. This fact must
be taken into account when comparing the real correlation function with
theoretical prediction. The effect of discreteness decreases with increasing



G.V. Kolmakov et al.

frequency ω because the resonance width, determined by the quality Q fac-
tor and by nonlinear broadening of the resonance, increases faster than the
distance between the resonances: the spectrum becomes quasi-continuous.
In Refs. 25,26 the authors used numerical methods to demonstrate that a
discrete system of resonances at a fairly high level of excitation can be well
approximated as a quasi-continuous one.

As already mentioned above, the inertial range is limited at high fre-
quencies by a change in the dominant mechanism of energy transfer, from
nonlinear wave transformation to viscous damping. The high-frequency edge
of the inertial range (boundary frequency) can be defined as the frequency
ωb at which the viscous damping time τv becomes comparable in order of
magnitude with the characteristic time τn of nonlinear interaction (the ki-
netic relaxation time in the turbulent wave system), τv ∼ C τn, where C is
some dimensionless constant. The time τn is defined by the parameters of
the liquid, as well as by the capillary wave distribution function n(ω), and
may be estimated as

1/τn ∼ |Vk|2nkk
2/ωk = |Vω|2n(ω) (11)

where Vω = α−1/2ω3/2 is the coefficient of interaction of three capillary
waves, whose frequencies are close to each other. The value of τn defines the
characteristic timescales for the relaxation of perturbations over the cascade.
It is known16 that the viscous damping time of capillary waves decreases with
increasing frequency as

1/τv = 2νω4/3(α/ρ)2/3. (12)

Relations (11) and (12) enable us to derive the dependence of the wave
frequency ωb on the wave amplitude ηp at the pumping frequency ωp (narrow
pumping)

ωb ∼ η4/3
p ω23/9. (13)

The values of the exponents in this equation correspond to the frequency
dependence of the correlation function27

Iω ∝ η2
p(ω/ωp)−7/2. (14)

Our investigations have shown5 that a power law dependence on frequency is
observed for the correlation function in the frequency range from 100 Hz to
10 kHz when the charged surface of liquid hydrogen is excited by an external
periodic electric force at the resonance frequency of the cell. In this case,
the exponent in the correlation function was close to (−3.7±0.3). When the
surface was excited simultaneously at two resonant frequencies, the exponent
decreased in magnitude and amounted6 to (−2.8± 0.2).
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The boundary frequency of the upper edge of the inertial range was
determined experimentally for the first time in Ref. 7. As the wave amplitude
ηp at the pumping frequency ωp increases, the boundary frequency is found
to shift towards high frequencies according to the power law (13), with an
exponent 4/3, as is to be expected when pumping in a narrow band9.

Quasi-adiabatic decay of capillary turbulence was observed experimen-
tally in Refs. 10,11, and it was investigated theoretically and numerically in
Ref. 14. Comparison of these results with the observations of the capillary
turbulence formation process12 have shown that the formation of turbulence,
and its decay, are controlled by the same relaxation mechanisms.

For the case of spectrally narrow pumping, it was found13 that, after
an additional low frequency pumping was switched on, the wave amplitude
in the high-frequency part of the turbulent spectrum decreased and that
the inertial frequency range consequently became narrower. Inversely, after
switching off the additional low frequency pumping the inertial range ex-
pands to higher frequencies. The damping is caused by an increase of num-
ber of the wave modes (harmonics) involved in the nonlinear energy transfer
from the low- to the high-frequency domain, and by the redistribution of
wave energy among these modes.

3. EXPERIMENTAL PROCEDURE

Experiments were performed in the optical cell located within a helium
cryostat8. The arrangement is shown schematically in Fig. 1. The cell
contains a horizontal plane capacitor. A radioactive plate was located on
the bottom capacitor plate. Hydrogen was condensed into a cup formed by
the bottom capacitor plate and a guard ring. In the preliminary experiments,
the cylindrical container was of diameter 25 mm, depth 3 mm (the narrow
cell). Most of the data presented here were obtained from a wider cell with a
container 60 mm in diameter and 6 mm in depth. The gap between the fluid
surface and the capacitor plate was 4 mm in both cells. The temperature of
the liquid was held at 15.5 K.

The free surface of liquid was charged as the result of β-particle (elec-
tron) emission from the radioactive plate located in the bulk of the liquid.
These electrons ionised a thin layer of liquid in the vicinity of this plate.
A dc voltage U was applied between the capacitor plates. Its polarity de-
termined the sign of the charge that formed a quasi-two-dimensional layer
below the surface of the liquid. In these experiments, the oscillation of a
positively charged surface was studied. The metal guard ring around the
radioactive plate prevented escape of charge from under the surface to the
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container walls. Oscillations of the surface of the liquid hydrogen (standing
waves) were excited by application of an ac voltage to the guard ring at one
of the resonant frequencies, in addition to the dc voltage. These oscillations
were detected through variations of the power of a laser beam reflected from
the surface. The reflected light was focused by a lens onto a photodetec-
tor. The voltage across the photodetector was directly proportional to the
beam power P (t). It was digitized with the aid of a high-speed 12- or 16-bit
analog-to-digital converter, and recorded over several seconds duration onto
the hard disc of a computer. We analysed the frequency spectrum Pω of
the total power of the reflected laser beam, which was obtained by Fourier
transformation in time of the P (t) dependence recorded.

The laser beam used in the experiments was ∼0.5 mm in diameter, and
was incident on the surface of the liquid at a grazing angle of about 0.2
rad. The major and minor axes of the elliptical light spot on the surface of
the liquid were 2.5 and 0.5 mm. The procedures for excitation of surface
oscillation and its recording, as well as the procedure used for processing
the experimental data, are described in Ref. 8. As pointed in that paper,
given this size of light spot, the square of the Fourier amplitude of the
signal measured for frequencies above 50 Hz is directly proportional to the
correlation function in the frequency representation, Iω ∼ P 2

ω .

4. EXPERIMENTAL RESULTS

4.1. Free Decay of Capillary Turbulence

In this Section, we describe experiments on the decay of turbulent oscil-
lations of the charged surface of liquid hydrogen after a steplike switching-off
of the harmonic pumping, and the resultant change in the correlation func-
tion Iω.

The surface waves were excited by harmonic pumping at a fixed fre-
quency ωp for ∼10 s, which was sufficient to establish a steady-state turbu-
lent distribution in the system of capillary waves. The pumping was then
switched off, and the relaxation of free surface oscillations with time was ob-
served. The time of observations was varied from 2 to 10 s. Measurements
were carried out for various pump frequencies ωp/2π in the range from 20
to 400 Hz.

In Fig. 3, sections of the time-dependent photodetector signals P (t)
recorded at a pump frequency of (a) ωp/2π = 98 Hz in the narrow cell and
(b) 97 Hz in the wide cell are shown. The harmonic pumping is switched off
at time t = 0, and the oscillation amplitude then starts to decrease. The low-
frequency modulation of the signals shown in Fig. 3 is due to uncontrolled
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surface oscillations attributable to cryostat vibrations. One can see in Fig. 3
that the decay in the narrow cell proceeds appreciably faster than in the wide
one. Clearly, the specific energy loss by friction on the container bottom and
walls is much stronger than in the wide cell. For this reason, the detailed
measurements of the relaxation processes were carried out with the wide cell.

Fig. 3. Relaxation of the liquid-hydrogen surface oscillations after switching
off the pumping at frequency ωp/2π at time t = 0: (a) narrow cell with
ωp/2π = 98 Hz; and (b) wide cell with ωp/2π = 97 Hz.

In Fig. 4, the time dependences of the signal amplitudes P (t) for pump
frequencies of (a) 97 and (b) 173 Hz are obtained by averaging the absolute
value of P (t) over a time interval that is a multiple of a half-period of the
fundamental frequency. It turned out that the decrease in signal amplitude
with time after switching off the pumping can be described by an exponential
law P (t) ∼ exp(−t/τ), where the time constant is equal to τ = (0.3±0.03) s
for the frequency ωp/2π = 97 Hz and is near twice shorter, τ = (0.15±0.02)
s, for a pump frequency of 173 Hz.

To study the time evolution of the spectrum Iω of the correlation func-
tion, we used the short-time windowed Fourier transform procedure28, which
is applicable because the experimentally observed signal time decay is much
longer than the period of the harmonic force exciting the surface; i.e. τ À
2π/ωp. This allows the choice of a time window with a size smaller than the
signal time decay but much larger than the period of the exciting force. By
shifting the window position in time, we succeeded in studying the evolu-
tion of the turbulent cascade after switching off the pumping. The surface
oscillation spectra P 2

ω for a pump frequency of 97 Hz are shown in Fig. 5 at
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Fig. 4. Time dependence of the signal amplitude P (t) recorded in the wide
cell. The pump frequency ωp/2π was (a) 97 and (b) 173 Hz.

various instants of time after switching off the pumping: after (a) 0.031, (b)
0.49, and (c) 1.07 s.

Immediately after switching off the pumping, the spectrum Iω ∼ P 2
ω of

the correlation function (Fig. 5a) is still close to the steady-state distribu-
tion of the nonlinear surface oscillations during the narrow-band pumping9.
The fundamental peak is positioned at the pump frequency of 97 Hz, while
the higher harmonics form a cascade whose peak heights are described by
a power-law frequency dependence P 2

ω ∼ ω−3.5. The arrow indicates the
position of the high-frequency edge ωb ≈ 5 kHz of the inertial range. At
time ∆t = 0.49 s after switching off the pumping (Fig. 5b), the wave am-
plitude at frequency ωp has decreased by approximately a factor of 3, as
compared to Fig. 5a, while the boundary frequency ωb has decreased to ≈ 2
kHz. The final decay stage after ∆t = 1.07 s, when only a few harmonics
are excited, is shown in Fig. 5c. It is remarkable that, over a rather long
time interval ∆t ≤ 0.6 s after switching off pumping, the high-frequency
portion of the spectrum can be described by the distribution Pω ∼ ω−3.5,
which is typical of the steady-state cascade; i.e. the shape of the spectrum
is retained during vibrational relaxation, but the oscillations start to decay
on the high-frequency domain of the spectrum.

This observation of a quasi-stationary spectrum over a rather long time
after switching off the pumping allows one to infer that the nonlinear-inter-
action time of the capillary waves is much shorter than the viscous-damping
time of a linear wave at the pump frequency ωp. This must still be the case,
even where the surface-oscillation amplitude at pump frequency ωp/2π = 97
Hz has become one order of magnitude smaller than its initial value: it de-
creases from 0.02 mm 0.03 s after switching off pumping to 0.002 mm after
0.6 s (Figs. 5a,b). As a result, the relatively intense energy exchange between
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Fig. 5. Instantaneous spectra of the liquid-hydrogen surface oscillations in
the wide cell at different times after switching off the pumping at frequency
ω/2π = 97 Hz: after ∆t = (a) 0.031, (b) 0.49, and (c) 1.07 s. The solid line
corresponds to the power law P 2

ω ∼ ω−7/2. The arrows in plots (a) and (b)
mark the position of the high-frequency edge ωb of the inertial range.

waves with frequencies lying in the inertial range results in a stabilisation of
the power-law spectrum in the low-frequency region ω < ωb. At the same
time, it follows from the experiment (see Fig. 5 and Fig. 7 below) that
the characteristic relaxation time of surface oscillations is determined by the
viscous damping of waves at the pump frequency, and decay of the cascade is
accompanied by a shift of the high-frequency edge ωb of the inertial range to-
wards lower frequencies. Hence, when describing the relaxation of nonlinear
fluid-surface oscillations within the framework of the kinetic equation (3),
one should not ignore viscous loss even at larger surface-oscillation ampli-
tudes. For our experiment these correspond to kηp ≤ 0.04 rad, or ηp ≤ 0.02
mm for a pump frequency of 97 Hz.
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4.2. Formation of Capillary Turbulence

Fig. 6 shows the instantaneous spectra P 2
ω calculated for times (a) t =

0 s, (b) t = 0.58 s and (c) t = 1.51 s after switching on the driving force
at a frequency ωp/2π = 56 Hz. Fig. 6a thus corresponds to the spectrum of
surface oscillations caused by low-level external noise (mechanical vibration
of the cryostat). Figs. 6b,c demonstrate the formation of the turbulent
spectrum at subsequent moments of time.

Fig. 6. Instantaneous spectra of surface oscillations calculated for different
time intervals after switching on the driving force at the frequency ωp/2π =
56 Hz: (a) t = 0 s (at the moment of time immediately before the switching
on the driving force), (b) t = 0.58 s, and (c) t = 1.51 s.

It can be seen from Figs. 5 and 6 that, at each moment of time after
switching the driving force off and on, the spectra of surface oscillations are
similar to the steady-state spectra observed in our previous experiments at
sufficiently large amplitudes. This implies that both the processes of decay,
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and the processes of formation, of turbulence are controlled by the same
relaxation mechanisms.

It was shown in Sec. 4.1. that the decreasing signal amplitude follow-
ing removal of the driving force could be well-described by an exponential
function P (t) ∼ exp(−t/τ), where τ is the effective relaxation time. The
dependence of τ on frequency ωp/2π is shown by open circles in Fig. 7. The
straight line shows the dependence of the viscous (linear) damping time for
capillary waves τv defined by Eq. (12), at frequency ω = ωp, calculated from
the known parameters29 of liquid hydrogen at 15.5 K. It is clearly evident
from Fig. 7 that the measured relaxation time τ for the decay of the tur-
bulent cascade is close to the viscous damping time τv of the waves. The
triangles in Fig. 7 shows the characteristic time of formation of turbulent
cascade after switching on the driving force at the frequency range from 20
to 300 Hz. It is clear from Fig. 7 that the time of formation is close to the
time of decay and to the time of viscous attenuation of the surface waves at
the frequency ωp.

Fig. 7. Effective relaxation time τ of the surface oscillations plotted as
a function of the driving frequency ωp after removal of the driving force
(open circles) and switching on the driving force (triangles). The solid line
corresponds to the viscous damping time for a capillary wave τv of frequency
ω = ωp, calculated from known parameters of liquid hydrogen.
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4.3. Suppression of High-Frequency Turbulent Oscillations of
the Fluid Surface by Additional Low-Frequency Pumping

In this Section, we describe investigations of how the spectrum of capil-
lary turbulence on the surface of liquid hydrogen evolves when an additional
low-frequency pumping is switched off/on. It was found that, when the ad-
ditional pumping was switched on, turbulence in the high-frequency range
was suppressed and the inertial frequency range decreased. When the addi-
tional pumping was switched off, the amplitudes of high-frequency turbulent
oscillations increased again and the inertial range expanded.

Fig. 8. Stationary spectrum of the oscillations of the fluid surface upon
pumping (a) simultaneously at two resonance frequencies ω1/2π = 61 Hz and
ω2/2π = 274 Hz and (b) only at the main resonant frequency ω2/2π = 274
Hz.

Thus there were two types of measurement. In the first, waves on the
fluid surface were excited by pumping simultaneously at two different res-
onant frequencies of the cell. After the formation of the steady turbulent
distribution, pumping at one of the frequencies (additional frequency) was
stepwise switched off, whereas the intensity of pumping at the other (main)
frequency remained unchanged. In measurements of the second type, waves
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on the fluid surface were first excited at one of the resonant frequencies of
the cell and then an additional pumping at another resonant frequency was
switched on. In each case a transient process in the turbulent system of
capillary waves was studied, after the additional pumping was switched off
or on respectively.

Fig. 9. Time dependence of the amplitude squared for waves on the surface
of liquid hydrogen at the main (circles) and additional (squares) frequencies
when the additional pumping is switched off at the time t = 0.

Figure 8 shows the steady-state spectra of liquid hydrogen surface oscil-
lations before and after the additional pumping is switched off: (a) for simul-
taneous pumping at two resonant frequencies of the cell: main ω2/2π = 274
Hz and an additional ω1/2π = 61 Hz; and (b) after pumping at the addi-
tional frequency ω1 is switched off. It is worth noting that the wave energy
Eω1 ∝ |ηω1 |2 at the frequency ω1 is an order of magnitude lower than the
wave energy Eω2 at the frequency ω2. For this reason, the oscillation spec-
trum in Fig. 8a can be treated as the capillary-turbulence spectrum that is
generated by the main harmonic pumping at the frequency ω2/2π = 274 Hz
and is perturbed by the additional pumping at the frequency ω1/2π = 61
Hz. Correspondingly, near the relatively high peaks at frequencies that are
multiples of ω2, relatively low peaks at combination frequencies are located
on both sides of the harmonics of the main frequency at a distance of the
frequency ω1 from it. The distribution in Fig. 8b is the stationary spectrum
of capillary turbulence generated by the harmonic force at the frequency ω2:
the amplitude of peaks at frequencies that are multiples of the frequency
ω2 decreases in a power law as the frequency increases. It is seen that the
amplitudes of the high-frequency peaks generated by pumping at one fre-
quency (Fig. 8b) are noticeably larger than those generated by pumping at
two frequencies (Fig. 8a).
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Fig. 10. Time dependence of the amplitude squared for peaks at frequencies
that are multiples of the main pumping frequency ω2 when the additional
pumping at the frequency ω1 is switched off at time t = 0. The triangles,
closed squares, open squares, and circles correspond to the 13th (3.57 kHz),
16th (4.49 kHz), 19th (5.19 kHz), and 29th (7.96 kHz) harmonics of the main
frequency ω2, respectively. The positions of the corresponding harmonics are
shown by arrows in Fig. 8.

Figure 9 shows the time dependence of the amplitude squared for waves
on the surface of liquid hydrogen at the main (circles) and additional (squares)
frequencies: recall that P 2

ω ∝ |ηω|2 according to Eq. (8). Pumping at the
additional frequency ω1 is switched off at time t = 0, whereas the pumping
amplitude at the main frequency ω2 remains unchanged. As is seen in the
figure, the amplitude of the wave with the frequency ω1 decreases almost
exponentially with time and, in agreement with our previous consideration,
the characteristic decay time nearly coincides with the viscous damping time
τv ∼ γ−1

ω1
of the capillary wave with the frequency ω1.

Figure 10 shows the time dependence of the amplitude squared for peaks
at frequencies that are multiples of the main pumping frequency ω2 when
the additional pumping is switched off at the time t = 0. The triangles,
closed squares, open squares, and circles correspond to the 13th (3.57 kHz),
16th (4.49 kHz), 19th (5.19 kHz), and 29th (7.96 kHz) harmonics of the main
frequency ω2, respectively. The positions of the corresponding harmonics are
shown by arrows in Fig. 8. As seen in Fig. 10, after the additional pumping
is switched off, the amplitudes of the high-frequency harmonics increase by
a large factor in a time comparable with the damping time for the wave at
the frequency ω1 (Fig. 9).
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Analysis of the evolution of the spectrum of the fluid-surface oscillations
shows that, when the additional pumping is switched on at the time t = 0,
the amplitudes of the high-frequency oscillations decrease at t > 0. Thus,
the observed evolution of the turbulent spectrum is completely reversible.

5. THEORETICAL CONSIDERATION OF THE DECAY OF
CAPILLARY TURBULENCE

5.1. Self-similar Decay of Capillary Turbulence

We now present a brief theoretical discussion14 of the decay of capillary
turbulence on the surface of a viscous liquid after the stepwise removal of ex-
ternal pumping. In our subsequent analyses we suppose that the viscosity of
the liquid is sufficiently small that the boundary frequency ωb of the inertial
range is much higher than the pumping frequency ωp. In view of experi-
mental observations and numerical calculations10,11, it is natural to assume
that the decay of turbulence is self-similar due to the significant difference
between the characteristic dissipative and pumping frequency scales.

It can be shown14 that a nonstationary self-similar solution of the kinetic
equation (3) describing the decay of the turbulent cascade after the stepwise
removal of external pumping (i.e. free decay) takes the following form

nk = 4νk−3
b (t) g(ξ), (15)

where kb(t) is the time-dependent high-frequency boundary of the inertial
range defined in terms of wavenumber, and g(ξ) is some function of the
self-similar variable ξ = k/kb(t). We assume that the external pumping is
stepwise switched off at time t = 0; i.e. Fk(t) = 0 for t ≥ 0. The numerical
factor on the right-hand side of Eq. (15) is separated for the convenience of
further calculations.

The substitution of Eq. (15) into kinetic equation (3) yields an equation
for the self-similar function g(ξ)

−(1/4ν)(3g(ξ) + ξg′(ξ))kb(t)−3k̇b(t) = I(ξ)− ξ2g(ξ), (16)

where the dot stands for differentiation with respect to time, the prime
means differentiation with respect to the variable ξ, and I(ξ) is an integral
operator that is quadratic in g(ξ) and is defined by the equality

St(nk(t)) = kb(t)−1I(ξ).

The boundary of the instantaneous inertial range kb(t) must satisfy the equa-
tion

k−3
b k̇b = −C, (17)
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where C is a certain constant that is positive in accordance with the shift
of the edge of the inertial range to lower frequencies with increasing time.
From Eq. (17) it follows that

kb(t) =
kb(0)√
1 + t/τ

, (18)

where kb(0) is the position of the edge of the inertial range at the time t = 0
of removal of the external pumping and τ = 1/2Ckb(0) is the characteristic
turbulence decay time. The time dependence of the boundary frequency of
the inertial range is described by the expression

ωb(t) =
ωb(0)

(1 + t/τ)3/4
, (19)

where ωb(0) is the initial boundary frequency. For t À τ , the boundary
frequency of the inertial range depends on time as ωb(t) ∼ t−3/4.

The boundary conditions for the integro-differential equation (16) have
the form

Qk → 0 at k → 0, (20)

g(ξ) → 0 at ξ →∞, (21)

where

Qk = −2π

∫ k

0
dk′k′ωk′St(nk′) (22)

is the energy flux in the K space towards the larger wave number domain17.
Condition (20) corresponds to the absence of low-frequency external pump-
ing at t > 0.

Asymptotic expressions for the occupation numbers of waves found in
subsequent analyses of Eqs. (15) and (16) in the case of relatively high
amplitude waves, i.e. for a sufficiently wide instantaneous inertial range, are
as follows:

nk = const k−3 for k ¿ kb(t) (23)

nk(t) = const kb(t)5/4k−17/4 for k ∼ kb(t), (24)

nk(t) = const k−3 exp

(
− k2

2kb(t)2

)
for k À kb(t) (25)

It can be shown by direct calculation that the solution given by Eqs. (23)–
(25) satisfies the boundary conditions (20), (21).

In the experiments on the decay of capillary turbulence on the surface of
liquid hydrogen described in Sec. 4.1. the relative width of the inertial range
is equal to ωb/ωp ∼ 50−100 at the time of removal of the external pumping.
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As follows from Eqs. (7) and (11), for the case of the low-frequency noise
pumping, the characteristic time of the nonlinear interaction between waves
with the characteristic frequency ω is τn ∼ ω−1/2, whereas the characteristic
time of the viscous damping of waves with the same frequency given by
Eq. (12) is τv ∼ ω−4/3. Their ratio is τv/τn ∼ ω−5/6. If, according to the
results described in Sec. 4.1., we suppose that this ratio for frequencies ω on
the order of the boundary frequency ωb of the inertial range is τv/τn ∼ 1,
then this ratio for frequencies on the order of the pumping frequency is
τv/τn ∼ (ωb/ωp)5/6 ∼ 25 − 50 at the time of the pumping removal and
decreases rapidly in the process of the decay of turbulence. For the case
of pumping at one resonant frequency, the stationary spectrum of capillary
turbulence is given by Eq. (10). In this case the characteristic time of the
nonlinear interaction is τn ∼ ω1/6, and the nonlinear-to-viscous time ratio at
the pumping frequency is τv/τn ∼ (ωb/ωp)3/2 ∼ 102−103. Thus, even at the
comparatively large ratio τv/τn, the viscosity is of significant importance for
the decay of turbulence on the surface of liquid hydrogen. We see also from
Eq. (24) that inside the inertial range the distribution of capillary waves
is close to the stationary distribution given by (7) which is in qualitative
agreement with our experimental observations described in Sec. 4.1.

5.2. Direct Numerical Study of Capillary Turbulence Decay

We have also modelled directly the decay of capillary turbulence after
a stepwise removal of the driving force. The full kinetic equation (3) with a
dissipative term was solved numerically. The calculations were carried out
in two steps. First, the driving force was switched on and we waited for some
time until a steady-state distribution has been established in the system of
waves. The driving force was then removed and we observed the decay of
the turbulent spectrum.

Studies of the decay of capillary turbulence formed under the action
of both wide-band and narrow-band pumping have been performed. The
results of calculations obtained in the case of wide-band pumping was similar
to those was described in our earlier paper10, where we used the local model
of capillary turbulence.

The results of numerical calculations of the decay of turbulence following
the removal of a narrow-band driving force, for times corresponding to the
experimental observations in plots (a) and (b) in Fig. 5, are presented in
Fig. 11. The frequency ω and the correlation function P 2

ω are given in
dimensionless units. The driving frequency was close to ωp ≈ 100. It can be
seen in Fig. 11 that our calculations are in qualitative agreement with the
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Fig. 11. Results of numerical calculations of the decay of the turbulent
spectrum after the removal of the narrow-band driving force, for times cor-
responding to the experimental observations shown in plots (a) and (b) in
Fig. 5.

experimental results (Sec. 4.1.) and theoretical analyses (Sec. 5.1.).

6. CONCLUSION

Investigations of the evolution in shape of an equipotentially charg-
ed surface of liquid in an external dc electric field have demonstrated the
possibility of observing a reconstruction phenomenon – the formation of a
stationary solitary wave on the flat charged surface (a hump in case of the
positively charged surface of liquid hydrogen and a dimple in case of the
negatively charged surface of superfluid He II). For hydrogen, it occurs at a
critical value of electric field where, assuming conditions of total screening of
the electric field from the bulk of the liquid by the surface charge. The critical
voltage Uc1 corresponds to the situation where the applied electric force
exactly compensates the gravitational force (where the effective acceleration
due to gravity tends to zero).

Measurements made with ac electric fields have permitted us to study
the propagation and transformation of nonlinear capillary waves on the sur-
face of liquid hydrogen. It has been demonstrated that a weak turbulence
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state (Kolmogorov spectrum) is formed in a system of capillary waves over
wide range of frequencies higher than the driving frequency ωp.

Quasi-stationary decay of the turbulent cascade of capillary waves has
been observed experimentally on the liquid-hydrogen surface after a step-
wise switching-off of the low-frequency pumping. The decay starts from
high frequencies and ends close to the reciprocal viscous-damping time of a
wave at the pump frequency. The energy-containing part of the spectrum
(maximum of the distribution Iω) is retained at low frequencies during the
entire decay process. This indicates that viscous losses at all frequencies
are of central importance for the correct interpretation of decay processes
in such a system of nonlinearly interacting capillary waves. Observations
of the formation of the cascade and the results of analytical studies of self-
similar decay of turbulence, as well as of direct numerical modelling, are in
satisfactory agreement with those conclusions.

Relaxation of the turbulent oscillations on the surface of liquid hydrogen
has been studied for the case where an additional low-frequency perturba-
tion is switched on/off. For the case of spectrally narrow pumping it was
found that, after the additional pumping was switched off, the wave ampli-
tudes in the high-frequency part of the turbulent spectrum increased, thereby
causing the inertial frequency range to expand. The observed evolution of
the spectrum is reversible: after the additional perturbation is switched on,
the wave amplitudes in the high-frequency part of the turbulent spectrum
decrease and the inertial range narrows. It has thus been shown that high-
frequency turbulent oscillations on the liquid surface can be suppressed by
the addition of an extra low-frequency pump force.
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