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Abstract

We study fluctuational transitions in a discrete dy-
namical system having two co-existing attractors in
phase space, separated by a fractal basin boundary.
It is shown that transitions occur via a unique ac-
cessible point on the boundary. The complicated
structure of the paths inside the fractal boundary is
determined by a hierarchy of homoclinic original sad-
dles. By exploiting an analogy between the control
problem and the concept of an optimal fluctuational
path, we identify the optimal deterministic control
function as being equivalent to the optimal fluctu-
ational force obtained from a numerical analysis of
the fluctuational transitions between two states.

1 Introduction

The stability of nonlinear multistable systems in the
presence of noise, and methods allowing transitions
to be steered between different co-existing attractors
in such systems, are of great importance for practi-
cal applications and of obvious interdisciplinary in-
terest. From the general point of view, there are two
distinct reasons why unpredictable and complex be-
havior may occur in a dynamical system. The first
reason is the presence of limit sets with complex ge-
ometrical structure in phase space, and the second
one is complex structure of the basins of attraction,
which may be fractal. Two of the most challenging
and difficult problems that we face is how a fluctu-
ational transition takes place across a fractal basin
boundary (FBB), and how the same transition can
be effected in the absence of fluctuations using a con-
trol force of minimum energy.

The problem of deterministic energy-optimal migra-
tion from the basin of an attractor has remained un-
solved for a long time, even in the simplest case of
smooth basin boundaries separating co-existing at-

tractors [1]. The known approaches to the control
of complex and chaotic dynamics [2] include entrain-
ing to a chosen “goal attractor” that requires large
modifications of the original system’s dynamics [3, 4],
and a variety of minimal forms of interaction which
have been restricted by the linear approximations
adopted [5, 6, 7].

A promising approach to the problem of steering
transitions between co-existing stable states in the
presence of an FBB is based on an analogy between
the variational formulations of the deterministic con-
trol problem and the concept of the optimal fluctua-
tional path [8]. This recent approach [9] searches for
the optimal control function via a statistical anal-
ysis of the fluctuational trajectories of a dynamical
system in the presence of small random perturba-
tions. It was introduced as the result of a joint con-
sideration of the two different kinds of problem men-
tioned above. The first one deals with deterministic
switching from the basin of an attractor induced by
an external force, whereas the second is devoted to
noise-induced escape from the basin of attraction.
In the limit of small noise intensity, a stochastic
dynamical system fluctuates to remote states along
certain most probable deterministic paths [10, 11],
corresponding to rays in the WKB-like asymptotic
solution of the Fokker-Planck equation [12]. The
possibility of extending such an approach to chaotic
continuous and discrete systems was established ear-
lier [13, 14, 15, 16]. The recent studies of escape in
the presence of homoclinic tangencies, which are the
reason for fractalization of the basins, have shown
that they lead to a decrease of the activation en-
ergy [17]. However, there are still no theoretical pre-
dictions about the mechanism of escape in the case
of an FBB. The problems of the uniqueness of the
escape path, and of the form of the boundary condi-
tions on the FBB, have also remained unsolved. In
this paper, we show that the energy-optimal control
function able to effect switching between co-existing
attractors separated by an FBB can be found via a
simple analysis of fluctuational trajectories.



2 Optimal control function

Let us start from the general formulation of the prob-
lem under study and consider a N -dimensional mul-
tistable discrete dynamical system excited by a con-
trol signal vn:

xn+1 = f(xn) + vn. (1)

The energy-optimal path for the control function is
given by that path which minimises the following
sum:

S = inf
v∈V

1
2

N∑
n=1

vT
n vn, (2)

where V is the control set of functions (control sig-
nals) that are able to move the system from one at-
tractor to the other. The extremal problem can eas-
ily be solved by taking (1) into account by means of
Lagrangian multipliers λn [15]. We thus obtain the
following “Lagrangian” for minimization:

L =
1
2

N∑
n=1

vT
n vn +

N∑
n=1

λT
n (xn+1 − f(xn)− vn).

Further, varying L with respect to vn and xn we get
the following 2N -dimensional map:

xn+1 = f(xn) + λn (3)
λn+1 = f−1(xn+1)λn.

Equations (3) should be supplemented by the bound-
ary conditions

lim
n→−∞

λn = 0, x0
n ∈ attractor, x1

n ∈ FBB. (4)

The optimal control function vopt
n corresponds to a

unique trajectory in phase space of (3) connecting
x0
n and x1

n: it is that for which our energy functional
S takes its minimal value. This optimal trajectory
can readily be found by the use of a shooting method
with a properly chosen (but very small) initial vec-
tor (xn, λn), and consequent selection of the trajec-
tory that minimizes S. The paths emanating from
an initial saddle point are a two-parameter set on
its two-dimensional unstable manifold. In a small
neighbourhood of the initial state, the manifold is a
plane spanned by the two unstable eigenvectors of
the linearised map (3). Initial values for the coordi-
nates can be parameterised by the distance from the
initial state and angular position; the initial values
for the λn are obtained by using the equations for
the linearised manifold. During the evolution of the
system (3) far from its initial state, we collect the val-
ues Sn+1 = Sn +1/2 λT

n λn and plot Sn as a function
of the two parameters. Thus, the global minimum
of the activation energy gives us the parameters cor-
responding to the optimal escape path. We want
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Figure 1: The co-existing stable points of period 4
(filled black circles) and their basins of at-
traction shown in grey and white respec-
tively. The accessible boundary saddle
points of period 3 are shown as the filled
black circles S3. Their stable manifolds are
shown as solid black lines.

to emphasise here that the optimal trajectory is not
just a mathematical abstraction. In fact, when the
system (1) is driven by noise those intensity tends to
zero, the escape events become exponentially rare,
but they take place in an almost deterministic way
following very closely the deterministic trajectory of
(3).

3 The model and results of simulations

One of the simplest and most convenient systems
of the class in which we are interested is the two-
dimensional map introduced by Holmes [21]. Its
generic features allow us to believe that the mech-
anism of escape that we reveal is typical of a wide
class of maps in two dimensions, and typical of many
continuous systems as well. The Holmes map is

xn+1 = yn (5)
yn+1 = −b xn + d yn − y3

n + vn.

Here vn is the control function. Due to symmetry,
the system (5) has pairs of co-existing attractors for
b = 0.2 and 2.0 ≤ d ≤ 2.745. Their basins are sep-
arated by a boundary that may be either smooth
or fractal depending on the chosen parameter val-
ues. We chose for our studies b = 0.2 and d = 2.65,
which corresponds to there being two co-existing sta-
ble points of period 4 whose basins are separated by
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Figure 2: (a) The most probable escape path (dashed line) connecting the stable point of period 4 with the period-
3 saddle cycle lying on the fractal boundary obtained from the numerical simulations with D = 10−5.
The optimal path found by the solution of the boundary-value problem is shown as a solid line; (b) a
two-dimensional plot of the paths presented in the previous figure.

a locally disconnected FBB (see Fig. 1). The fractal
dimension of the boundary has been determined nu-
merically as dim = 1.8451 by using the “uncertainty
exponent” technique introduced in [22].

Applying the above approach to (5) we get the fol-
lowing four-dimensional area-preserving map:

xn+1 = yn

yn+1 = −b xn + d yn − y3
n + λy

n (6)
λx

n+1 = (d− 3x2
n+1)λx

n/b− λy
n/b

λy
n+1 = λx

n

In fact, the unique energy-optimal trajectory along
which S takes its minimal value is a heteroclinic tra-
jectory in four-dimensional phase space connecting
the stable point of period 4 with a point on the
boundary. Thus, to find the optimal control func-
tion, we first need to solve the boundary-value prob-
lem, i.e. define the boundary conditions on the FBB.
To find these boundary conditions and the optimal
control function, we will make use of the analogy,
mentioned above, between the energy-optimal con-
trol and noise-induced escape from a basin of attrac-
tion. The function S in (2) coincides with the defi-
nition of the activation energy for fluctuational tran-
sitions between co-existing attractors if the control
signal vn in (5) is replaced by white Gaussian noise
such that 〈 ξn 〉 = 0 and 〈ξnξm〉 = 2D δnm. Thus, the
optimal control signal can be identified with the opti-
mal fluctuational force which drives the system from
one attractor to the other, which can be found ex-

perimentally. When the system (5) is driven by noise
those intesity tends to zero, it will occasionally fluc-
tuate to the FBB following very closely the determin-
istic trajectory of (6). The method we used involves
monitoring the system continuously and collecting
all successful realizations, moving it from one stable
point to the other. From these realizations, a time-
dependent prehistory distribution is built [18, 19].
This distribution is characterized by a sequence of
narrow spikes, as the noise intensity is decreased, al-
lowing us to define an approximate solution for the
control function. A typical optimal escape path ob-
tained by averaging a few hundred successive trajec-
tories, is shown in Fig. 2(a). A simple analysis of the
optimal path shows that the system (5) leaves the
stable point of period 4 and moves to the FBB cross-
ing it at a point of period 3 located near, or directly
on, the FBB (see Fig. 2(a)). Simple calculations have
shown that a saddle point of period 3 (S3 in Fig. 1
and Fig. 2(b) with multipliers µ1 = 0.001218 and
µ2 = 6.566269) does exist for the chosen parame-
ter values and that it lies on the boundary. More-
over, its stable manifold (solid black line in Fig. 1) is
dense in the boundary and detaches the open neigh-
borhood including the attractor from the FBB itself,
which allows us to classify it as an accessible bound-
ary point [23].

At this stage, we know the boundary condition on
the FBB, and we are ready to solve the correspond-
ing boundary-value problem for the system (6) nu-
merically. This can be done via a procedure involv-
ing shooting from a very small neighbourhood of the
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Figure 3: The optimal control function obtained from
numerical simulations.

chosen saddle point, parameterizing the initial con-
ditions as points lying on a two-dimensional unsta-
ble manifold of this saddle point, characterized by
the appropriate radius r and angle φ, and with sub-
sequent selection of a trajectory minimizing S. As
clearly seen from Fig. 2, the phase trajectory in (6)
along which S takes its minimal value coincides with
the most probable escape path obtained by taking
an ensemble average of successful trajectories. Hence
we can indeed identify the optimal control function
with the optimal fluctuational force driving the sys-
tem to the FBB. Note that no action is required to
bring the system to the other attractor after it has
hit the FBB, and neither is there any possibility of
controlling the motion inside FBB. Our numerical
calculations have shown that the control force v(n)
pictured in Fig. 3 really is optimal in that it min-
imises the energy of the control function steering the
system (5) through the FBB. It was found also that
the system is very sensitive to small variations in
the control function: any deviation from the shape
of v(n) leads to a substantial increase in the energy
required to perform transition.

Analysis of the structure of escape paths inside the
FBB has shown that homoclinic saddle points play a
key role in its formation. In the system (5), we ob-
serve an infinite sequence of saddle-node bifurcations
of period 3, 4, 5, 6..., occurring at parameter values
d3 < d4 < d5 < d6... and caused by the sequent tan-
gencies of the stable and unstable manifolds of the
saddle point O at (0, 0). The homoclinic orbits ap-
pearing as the result of these bifurcations were classi-
fied earlier as original saddles, and it was also shown
that their stable and unstable manifolds cross each
other in hierarchical sequence [23]. To characterize

this hierarchical relationship between original sad-
dles it is reasonable to use the pointwise dimension
defined as

Dp(S) = 1− log λu (S)
log λs (S)

, (7)

where λu (S) and λs (S) are the stable and unsta-
ble eigenvalues of the Jacobian matrix of (5) at
the saddle point S [24]. The pointwise dimensions
Dp(Si) calculated for the original saddles with pe-
riods 3, 4, 5, 6... demonstrate the following hierar-
chical interrelation: Dp(S3) = 1.28045, Dp(S4) =
1.30294, Dp(S5) = 1.30771, Dp(S6) = 1.31825. It is
known that unstable periodic orbits embedded into
chaotic saddle define a distribution of the natural
measure on it both for hyperbolic and nonhyperbolic
dynamical systems [24, 25]. It is the natural measure
being distributed nonuniformly on a chaotic saddle
that leads to the difference in probabilities of arrival
into the neighbourhoods of the different original sad-
dles. A statistical analysis of escape trajectories has
shown that these probabilities demonstrate a hierar-
chical interrelation [26], which is in a good agreement
with the distribution of the natural measure on the
chaotic saddle O forming the fractal basin bound-
aries.

4 Conclusions

In conclusion, we have shown that energy-optimal
control of migration between co-existing attractors
is possible even where the dynamics of a system is
highly sensitive to initial conditions on account of
a fractality of the basins of attraction. By using a
statistical analysis of fluctuational trajectories, we
solved the boundary-value problem for the case of
co-existing stable points separated by a locally dis-
connected FBB, and we found the optimal control
function moving the system (5) from one attractor to
the other. It was observed that the original saddles
forming the homoclinic structure of the system (5)
play a key role in the formation of the escape paths
inside the FBB, and that the difference in their local
stability defines the hierarchical relationship between
them. The results obtained can be applied directly
to flows having the same type of FBB, because the
Holmes map was originally introduced as an approx-
imation of the Póıncare section of the Duffing oscil-
lator [21]. It should be noted that the existence of a
locally disconnected FBB in an actual physical sys-
tem was verified in full-scale experiments and that
an FBB has also been observed in a discrete model
of the CO2 laser [27].
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