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 2 

ABSTRACT 1 

 2 
Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi 3 

River watershed has resulted in a 3-fold increase in the nitrate load of the river since the 4 

early 1950’s. One way to reduce this nitrate load is to restore wetlands at suitable 5 

locations between croplands and receiving waters to remove run-off nitrate through 6 

denitrification. This research investigated denitrification potential (DP) of different land 7 

uses and its controlling factors in an agricultural watershed in the lower Mississippi 8 

valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil 9 

samples collected from seven land-use types of an agricultural watershed during spring, 10 

summer, fall and winter were incubated in the laboratory for DP determination. Low-11 

elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-12 

elevation silt loam and low-elevation clay soils in croplands, respectively. DP of 13 

vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, 14 

respectively.  Soil carbon and nitrogen availability, bulk density, and soil moisture 15 

significantly affected DP. These factors were significantly influenced in turn by 16 

landscape position and land-use type of the watershed. It is evident from these results that 17 

low-elevation, fine-textured soils under natural wetlands are the best locations for 18 

mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and 19 

land-use types can be used as indices for the assessment/modeling of denitrification 20 

potential and identification of sites for restoration for nitrate removal in agricultural 21 

watersheds.  22 

23 
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1. INTRODUCTION 1 

The primary source of increased nitrate in surface waters is nitrogen (N) fertilizer 2 

applied to croplands (USEPA 1996). An increase in the nitrate concentration of water 3 

bodies is correlated with increased agricultural activity in river watersheds (Smith et al. 4 

1987; Galloway et al. 2003). Nitrogen fertilizer use in the US increased by 300% from 5 

1961 to 1999 and current usage consumes 13% of the inorganic N fertilizer used globally 6 

(Howarth et al. 2002). Thus, expansion of agricultural activities coupled with an 7 

increased use of synthetic N fertilizer in the US has resulted in excessive accumulations 8 

of reactive N in environments external to croplands (Galloway 2002; Howarth et al. 9 

2002). 10 

Extensive agricultural development and N fertilizer use over the past 200 years in 11 

the Mississippi River basin has increased nitrate loading into the river and the northern 12 

Gulf of Mexico (Turner and Rabalais 2003). Since the 1950’s,  N fertilizer use has 13 

increased 20-fold in the basin (Battaglin and Goolsby 1996), which has contributed to a 14 

3-fold increase in the nitrate load of the Mississippi River (Turner and Rabalais 1994; 15 

Donner 2004). Agricultural run-off contributes about 74% of the current nitrate  loading 16 

carried by the Mississippi River (Rabalais et al. 2002) and the increased nitrate loading is 17 

cited as one of the major causes of the extensive hypoxia in the northern Gulf of Mexico 18 

(Rabalais et al. 2002). A 30% reduction of the N load delivered by the Mississippi River 19 

has been recommended to reduce the hypoxia (EPA 2001; Mitsch et al. 2001). 20 

The Lower Mississippi Alluvial Valley (LMV) has lost about 80% of its 21 

bottomland hardwood forests to other land uses primarily agriculture (Allen et al. 2001). 22 

The LMV was the largest floodplain ecosystem in the US covering about 23,300-km
2
 23 
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area. Bottomland hardwood forests covered this floodplain and were flooded seasonally 1 

as a result of over-bank flooding by the Mississippi River. Due to growth in agriculture, 2 

the bottomland hardwoods were cleared, drained, ditched and cultivated for decades for 3 

row crop cultivation. This practice not only led to the loss of the NO3 sinks in the form of 4 

greater denitrification rates of bottomland wetlands (Hunter and Faulkner 2001), but 5 

enhanced its potential of loading additional nitrate into surface waters including the 6 

Mississippi River through N fertilizer use, soil erosion (Mitsch et al. 2005; Rebich 2001; 7 

ARS 2001), mineralization of organic nitrogen, and direct drainage of the cultivated 8 

lands. 9 

Measures and research recommended by Mitsch et al. (2001) and Mitsch and Day 10 

(2006) for reducing the NO3 loading of the Gulf of Mexico from the Mississippi River 11 

basin include a) on-farm soil and N fertilizer management to enhance N use efficiency, b) 12 

alternative cropping and management systems for reducing N loss from croplands, and c) 13 

creation or restoration of wetlands and riparian ecosystems at suitable locations between 14 

croplands and water bodies to remove run-off nitrate before its outfall into the river. Like 15 

elsewhere in the basin, restoration of forested and riparian wetlands to reduce run-off 16 

nitrate through plant uptake and denitrification (Lowrance et al. 1984, Comin et al. 1997) 17 

in the LMV is recommended (Lindau et al. 1994). Moreover, re-connecting forested and 18 

riparian wetlands with the rivers for over-bank flooding is another measure suggested for 19 

nitrate removal from river water in the LMV (Mitsch and Day 2006; Lindau et al. 1994; 20 

Lowrance et al. 1997). Denitrification is one of the major biological processes for nitrate 21 

removal from soil and water. Soil organic carbon and NO3 contents, moisture, 22 

temperature and texture affect the rate and extent of denitrification (Galloway et al. 23 
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2003). The status of these physicochemical soil properties are the result of interactions of 1 

topography, soil hydrology and soil management at basin and sub-watershed scales in the 2 

landscape (Florinsky et al. 2004; Lowrance et al. 1997; Peterjohn and Correll 1984). 3 

Therefore, it is important to discern the effects of topographic and landuse attributes on 4 

denitrification potential of agricultural watersheds. 5 

Agricultural watersheds in the LMV are not homogenous croplands, but are a 6 

mosaic of land uses including well, moderately and poorly drained soils under row crop 7 

cultivation, a network of drainage ditches and access roads, patches of bottomland 8 

hardwood forests and depressional wetlands. Based on the current land use, hydrology, 9 

and landscape position, these different land use types can either enhance or retard 10 

denitrification. Maintaining environmentally sound crop production in the LMV and 11 

reducing nitrate loading into aquatic ecosystems warrants investigation of landscape and 12 

environmental factors regulating denitrification potential in agricultural watersheds.  13 

Such research-based information is important for the assessment/modeling of 14 

denitrification potential at watershed scale and identification of sites for wetland 15 

restoration (White and Fennessy 2005) in the LMV. To our knowledge, there are no 16 

scientific studies available on this topic in the LMV. Our objectives were to 1) determine 17 

denitrification potential of different land use types of an agricultural watershed in the 18 

LMV, and 2) identify some of the environmental and landscape/land-use management 19 

factors regulating the denitrification potentials. 20 

2. MATERIAL AND METHODS 21 

2.1 Study Area 22 

 The study area is the 8.5 km
2
 Beasley Lake watershed in Sunflower County, 23 

Mississippi (Figure 1) in which about 0.25 km
2 

area is covered by the Beasley Lake. The 24 
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watershed is part of the Yazoo delta region of Northwestern Mississippi formed by the 1 

alluvial deposits of the Mississippi River and its tributaries (Fisk 1951). Soils of the 2 

watershed range from coarse-textured silty-loam and loam deposits to fine-textured clay 3 

alluvium. Dominant soil series of the watershed are Sharkey clay (non-acidic 4 

montmorrilinitic, Vertic Haplaquept), Dowling (Very-fine, smectitic, nonacid, thermic 5 

Vertic Endoaquept), Alligator (Very-fine, smectitic, thermic Chromic Dystraquert), 6 

Dundee (Fine-silty, mixed, active, thermic Typic Endoaqualf), Dubbs silt loam (Fine-7 

silty, mixed, active, thermic Typic Hapludalf), and Forestdale (Fine, smectitic, thermic 8 

Typic Endoaqualf), (NRCS 1959).  9 

The elevation gradient between the highest and lowest points in the watershed is 5.5 10 

meters. Current land uses consist of high (Ag-high) and low (Ag-low) elevation 11 

croplands, vegetated ditches (veg-ditches), un-vegetated ditches (unveg-ditches), natural 12 

forested wetland and depressional wetlands.  Forested wetlands are dominated by 13 

bottomland hardwood tree species such as American elm (Ulmus americana), Water oak 14 

(Quercus nigra), Pin oak (Quercus phellos), Green ash (Fraxinus pensylvanica) Red 15 

maple (Acer ruburum), and Hackberry (Celtis leavigata). FW cover about 1.2 km
2
 area in 16 

the watershed.  Depressional wetlands (~0.1 km
2
 area) are small depressions next to 17 

Beasley Lake, which remain ponded during winter and spring and are dominated by 18 

submerged and emergent wetland vegetation such as Potamogeton spp., Sagittaria spp., 19 

Scirpus spp. Typha spp., Nymphaea spp. Andropogon and Panicum species usually grow 20 

on the drier banks of the depressions. These depressions are the remnants of the swale 21 

and ridge topographic features of an ox-bow lake watershed where the swales developed 22 

into depressional wetlands. Ag-high (~5.3 km
2
) landuse covers mainly well-drained soils 23 
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while Ag-low ( ~ 1.5 km
2
) covers poorly drained soils next to depressional wetlands and 1 

forested wetlands. A low elevation natural ditch next to the forested wetland was 2 

developed into a constructed wetland (~0.01 km
2
) in spring of 2002 through excavation 3 

and installation of a water control structure to increase the aerial extent of the flooded 4 

soil. About 0.2 km
2
 high and low-elevation croplands of the watershed drained into the 5 

constructed wetland.  The heavy clay soil of the constructed wetland was similar to that 6 

of the nearby natural wetlands. The Sharky and Dowling clay soil of the constructed 7 

wetland supported Potamogton spp., Sagittaria spp.  Typha spp. Panicum spp., and 8 

Andropogon spp. The constructed wetland remained ponded in spring, fall and winter like 9 

that of depressional wetlands.  10 

The major management activity in the watershed is crop cultivation. Cotton and corn 11 

are grown in the Ag.high croplands while soybean is grown in the Ag-low croplands with 12 

conventional tillage system. Recreational land uses include fishing and hunting in the 13 

Beasley Lake and in forested wetlands. Overhead irrigation is applied as needed for crop 14 

cultivation. Irrigation run-off and rain water are drained through the ditches into Beasley 15 

Lake. Due to cultivation and the shunting of agricultural runoff directly to the lake, 16 

sedimentation in the lake has increased to a degree where it now threatens its ecology 17 

(ARS 2001). Maintaining ditches under grass cover is one of the best management 18 

practices (BMP) implemented in the watershed by USDA to help reduce sedimentation in 19 

Beasley Lake (Rebich 2001). The dimension of the ditches ranges from 1 to 3 meters 20 

wide and 1-2 meter deep in the high-elevation areas and upto 5 meters wide and 4 meters 21 

deep in the low-elevation areas of the watershed. The banks of the veg.ditches are 22 

stabilized by planting and maintaining switch grass (Panincum spp.) 23 
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Seven land use types of the watershed were selected for this research (Ag-high, Ag-1 

low, veg-ditches, unveg-ditches, forested wetlands, depressional wetlands and the 2 

constructed wetland). Eight sampling points were selected randomly in each land use 3 

type. Four soil cores (0-10 cm deep; 3 cm dia.) were collected from each sampling point 4 

of the seven land-use types of the watershed using a hand auger in March 2002, July 5 

2002, October 2002 and January 2003. The four cores from each sampling point were 6 

composited and were transferred to the laboratory on ice and refrigerated at 4 
o
C under 7 

their original moisture content levels (field-moisture condition) for further analysis. 8 

2.2 Denitrification Potential (DP) 9 

 The inherent capacity of a soil to reduce and denitrify nitrate to N2 gas under an 10 

unlimited supply of nitrate using organic carbon as an energy source under anaerobic 11 

conditions is called denitrification enzyme assay (Beauchamp and Bergstrom 1993; 12 

Groffman et al.1999). This assay measures the amount of denitrification enzymes 13 

available at the time of soil sampling. We modified this procedure by amending the soil 14 

slurries only with nitrate as we were interested in the denitrification potential (DP) of the 15 

different land use types under their existing soil carbon contents using the C2H2 block 16 

technique (Hill and Cardaci 2004). It is well established that adding carbon to nitrate 17 

amended slurries will increase denitrification rates (Hunter and Faulkner 2001; Groffman 18 

and Crawford 2003), however there is no practical way of increasing soil carbon at the 19 

landscape scale. Therefore, this approach is a more realistic evaluation of the existing 20 

ability of the different landscape units to remove nitrate from surface or ground water.  21 

For the purpose of this study DP is defined as the capacity of soil slurries to denitrify 22 

nitrate under anoxic conditions at room temperature (22 degress Celcius). Field moist 23 
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soils were thoroughly homogenized by hand and brought to room temperature overnight 1 

before incubation. The next morning, six sub samples (moist equivalent of10 g dry soil) 2 

of the homogenized soil from each of the eight soil samples from each of the seven land 3 

use types were weighed into  6 replicate serum bottles (150 mL). Fifteen mL of 10 mg 4 

NO3
-
 L

-1
 solution and 5 ml of de-ionized water were added to three of the six bottles to 5 

deliver 15 µg of NO3
-
 g

-1
 dry soil, while 20 mL of de-ionized water was added to the 6 

remaining three bottles. The bottles were then capped airtight and purged with O2-free N2 7 

gas for 20 minutes to induce anaerobic conditions. Ten percent of the serum bottle 8 

headspace was replaced with cleaned C2H2 gas to block the bacterial conversion of N2O 9 

to N2 gas. The bottles were then wrapped in Al foil and put on a reciprocating shaker for 10 

continuous shaking at room temperature (22 to 25 
o
C). Headspace gas samples were 11 

collected at 2, 4 and 6 hours with a syringe and stored in Beckton Dikinson 12 

Vacutainers®. The gas samples were analyzed on a Tremetrics 9001GC having a 13 

porapack Q column with ECD detector for N2O concentration determination. The rate of 14 

N2O production was calculated in ug N-N2O g
-1

 h
-1

 using the 3 gas sample readings 15 

during the 6 hour incubation. Adjustments were made for soluble N2O in the bottles using 16 

a Bunsen absorption coefficient of 0.54 at 25 
o
C.  17 

2.3 Anaerobically Mineralizable Organic Carbon (AMOC) 18 

 Denitrification depends directly on the amount of mineralizable organic C 19 

available to the denitrifier population under anaerobic conditions (Singh et al. 1988; Gale 20 

et al. 1992). Since denitrification is an anaerobic process, the amount of mineralizable 21 

organic C available under anaerobic conditions would help explain any trend in the DP 22 

among different land use types. Field moist soil (equivalents of 5 g oven-dried soil) from 23 
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each soil sample were weighed into 150 mL duplicate serum bottles. Twenty ml of 50 mg 1 

NO3
-
 L

-1
 solution was added into each bottle, which delivered 200 µg NO3

-
 g

-1
 soil. The 2 

bottles were capped airtight and purged with oxygen-free N2 gas for 20 minutes to induce 3 

anaerobic conditions. After purging, the bottles were wrapped in aluminum foil and were 4 

shaken for 15 minutes on a reciprocating shaker. After shaking, the bottles were stored at 5 

room temperature (22-25 
o
C). The headspaces of the bottles were sampled with a syringe 6 

at 1, 24, 48 and 72 hours of incubation and stored in 5-mL Beckton Dikinson 7 

Vacutainers®. The gas samples were analyzed on a Tremetric 9001 GC fitted with a 8 

methanizer and an FID detector for CO2 concentration determination (Ullah et al. 2005). 9 

The gas production over the length of incubation remained linear in all the landuse types. 10 

The amount of CO2 produced was calculated as µg C-CO2 g
-1

 h
-1

. Corrections were made 11 

for soluble CO2 in the incubation bottles by using the Bunsen Adsorption coefficient of 12 

0.752 at 25 
o
C. 13 

2.4 Total soil carbon and nitrogen 14 

 Total soil carbon (C) and nitrogen (N) were determined using a Thermo Finnigan 15 

CNS Analyzer. Soil samples were oven dried, pulverized and thoroughly homogenized.   16 

A sub-sample of about 35 mg was weighed into a tin capsule for automated analysis to 17 

determine concentrations of organic C and total N.  These values and bulk density 18 

measurements were used to calculate Mt of C and N ha
-1

. 19 

2.5 Soil nitrate, bulk density, porosity, water-filled pore space and texture  20 

Field-moist soil equivalents of 5 g oven-dried soil were weighed into 250 mL 21 

duplicate bottles. Fifty mL of 2M KCL solution was added to each bottle. The bottles 22 

were put on a reciprocating shaker for continuous shaking for 1 hour. After shaking, the 23 
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bottles were centrifuged at 3000 rpm for 5 min and were then filtered into 20 mL 1 

scintillation vials through a No. 42 Whatman filter paper. The samples were stored in a 2 

freezer until analysis for nitrate on a Lachat automated flow injection analyzer. Average 3 

values for each soil sample were determined and reported in mg N Kg
-1

 oven-dried soil. 4 

At each land use type eight intact soil cores ( 2.5 cm dia. x 10 cm long) were taken and 5 

transferred to the lab for the determination of soil moisture and bulk density. Soil 6 

porosity was determined using the equation of 1- (bulk density/particle density). Percent 7 

water-filled pore space (WFPS) was determined  for each landuse type for all season 8 

according to Ullah et al. (2005). Soil particle size distribution was determined by the 9 

filtration method according to Sheldrick and Wang (1993).  10 

2.6 Statistical Analysis 11 

Differences in DP among the landscape units within each season were analyzed 12 

by a two-way analysis of variance using the General Linear Model in SAS (SAS Institute 13 

1998). Landscape was treated as main effect, nitrate amendment was treated as a sub-plot 14 

effect and season was treated as repeated measures variable in the ANOVA model. Post 15 

ANOVA tests were conducted with Fisher’s protected LSD at 5% significance level. 16 

Linear regression of the yearly averaged DP on total soil C, N, and bulk density of the 7 17 

land use types was done using SAS. Significant differences in physio-chemical properties 18 

of soils of the 7 land use types were determined using one-way ANOVA.  Pearson 19 

correlation coefficients among DP, AMOC and soil moisture were calculated for each 20 

season. The data were analyzed for normality and homogeneity of variance of the 21 

residuals using the proc univariate procedure in SAS and Shapiro-wilk test of normality 22 

of the residual at p> 0.05. 23 
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 1 

3. RESULTS 2 

3.1 Landscape position and Landuse type effects on Denitrification Potential 3 

The natural and constructed wetlands had significantly greater (p < 0.05) DP than 4 

the Ag-high and Ag-low sites in all seasons (Figures 2). Forested wetlands showed the 5 

highest DP while Ag-high showed the lowest during the four seasons when additional 6 

NO3 was added during the assay compared to their unamended soils (Figures 2 and 3). 7 

The DP of forested wetlands was 4.5 to 11 times greater than the Ag-high during the 8 

year. Similarly, the forested wetlands showed 2.4 to 4.3 times greater DP than the Ag-low 9 

sites in all the seasons. Except in summer, Ag-high and Ag-low had similar DP values (p 10 

> 0.05).  On average, forested wetlands exhibited 3.0 and 2.7 times greater DP than those 11 

of veg-ditches and unveg-ditches, respectively (Table 1). 12 

 Depressional and constructed wetlands showed similar DPs, except in summer 13 

when depressional wetlands had 1.5 times greater DP than the constructed wetland. On 14 

average both depressional and constructed wetlands had 3.7 to 7.4 and 1.2 to 3.7 times 15 

greater (p < 0.05) DP than that of the Ag-high and Ag-low respectively during the four 16 

seasons. Depressional and constructed wetlands also showed 1.2 and 1.6 times greater DP 17 

than veg.ditches and unveg-ditches, respectively, but were less than the DP of forested 18 

wetlands (Table 1). 19 

  When the DP of individual land use types were averaged for the four seasons 20 

(Table 1), the DP of veg-ditches was 4.1 times of the Ag-high (p <0.05) and 1.7 times of 21 

Ag-low, although statistically not significant (p > 0.05). Moreover, veg-ditches had 1.3 22 

times greater DP than unveg-ditches. On the whole forested wetlands exhibited 23 
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significantly greater DP (p <0.05) than the rest of the land use types. Similarly, 1 

depressional and constructed wetlands had higher DP than unveg-ditches, Ag-high and 2 

Ag-low sites (Table 1), but had lower DP than the forested wetlands. The DP of veg-3 

ditches was more variable and thus was not significantly different than Ag-low, unveg-4 

ditches, constructed and depressional wetlands (p > 0.05). 5 

3.2 Environmental variables and Denitrification Potential 6 

Among the environmental variables measured, nitrate amendment, season, 7 

organic carbon availability, bulk density and %WFSP contents significantly influenced 8 

DP of all the land use types. When amended with additional nitrate, forested and 9 

depressional wetland soils showed 55% and 67% greater DP compared to the DP of soil 10 

without nitrate additions (Figures 2 and 3). Constructed wetland and unveg-ditches 11 

showed an increase in DP with NO3 enrichment during fall and winter only while veg-12 

ditches responded to nitrate addition in summer and fall. Ag-high and Ag-low soil did not 13 

respond in terms of increased DP to nitrate amendment during the four seasons (Table 1), 14 

which shows that their DPs were limited by factors other than nitrate, probably by the 15 

availability of organic C and lack of anaerobosis. 16 

 Season significantly affected the DPs of all the land uses except Ag-high and 17 

unveg-ditches (Table 1). When the DPs of all the land use types were averaged together 18 

and tested for a seasonal effect, the winter DP was found the lowest than the rest of the 19 

seasons. Lower winter soil temperatures are speculated to have limited the denitrifier 20 

activity. Similar seasonal effect on denitrification potential of forested wetland soils in 21 

the LMV was observed by Hunter and Faulkner (2001). 22 



 14 

Significant differences in a number of soil properties among the different land use 1 

types were observed (Table 2). Wetlands had 1.8 times greater total soil organic C than 2 

the cultivated soils. Higher soil organic C in wetlands contributed to improved soil 3 

structure resulting in lower bulk densities and high soil porosities in wetlands than the 4 

Ag-high and Ag-low sites.  Anaerobic incubation of soils from the 7 land use types 5 

showed that the amount of anaerobically mineralizable organic carbon (AMOC) in 6 

wetlands soil was 1.4 times those of the cultivated soils (Table 3). Similarly, veg-ditch 7 

soil had a relatively lower soil bulk density, higher porosity (Table 2) and 1.3 time 8 

greater AMOC values compared to those of the cultivated soils. Unveg-ditches had 9 

similar soil bulk density, porosity and AMOC values to those of the cultivated soils. High 10 

AMOC values observed in the wetland and veg-ditch soils supported greater DP 11 

compared to those in the cultivated soils. AMOC showed a significant correlation with 12 

DP of nitrate amended soils during the four seasons (p<0.05).  AMOC values of the 13 

spring, summer, fall and winter significantly correlated with DP (p <0.05) with r value of 14 

0.51, 0.57, 0.75 and 0.81, respectively (Table 3).  Simple linear regression identified 15 

significant influence of total soil N, C and bulk density on DP of the nitrate amended 16 

soils with r
2
 values of 0.80 0.78, and 0.80 respectively. Soil moisture content also 17 

correlated significantly with DP in each of the four seasons (Table 4). The Pearson’s 18 

correlation coefficients of spring, summer, fall and winter soil moisture with DP were 19 

0.46, 0.44, 0.69 and 0.57 respectively at p <0.05. 20 

4. DISCUSSION 21 

Significant differences in the DPs of nitrate ameneded soils of different land use 22 

types (Figures 2 ) are attributed to differences in the position and management of 23 
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different land use types in the watershed. Low-lying heavy clay soil (Sharkey, Dowling 1 

and Alligator soil series) under forested and depressional wetlands showed 6.3-fold 2 

greater DPs than the Ag-high silt-loam soils. Groffman and Tiedje (1989) reported 3 

similar observation of significant influence of soil texture and drainage (surrogates for 4 

landscape position) class in forest soils on denitrification potentials. Mohn et al. (2000) 5 

also found low denitrification rates in drained mounds compared to wetland soils. Our 6 

data shows that landscape position is a significant regulator of DP in soils as poorly-7 

drained, fine-textured soils in natural wetlands supported higher denitrifier activity than 8 

the coarse textured Ag-high soils. It is worthy to note that Ag-low soil had an average 2.5 9 

times higher DP than that of Ag-high soils, which implies that topographic position led to 10 

the explicit differences in DP of these sites. 11 

As expected, forested, depressional and constructed wetlands exhibited 3.0, 2.0 12 

and 2.1 times greater DP than the pedogenically similar (Table 2) Ag-low soils, 13 

respectively. Drainage and cultivation of the Ag-low soils over the years led to lower 14 

available organic C substrate (Table 2) and moisture contents (Table 4), which resulted in 15 

lower denitrifier activity compared to similar soils under wetlands in the watershed. In 16 

another study in the same watershed, we observed significantly greater denitrification 17 

rates in forested wetlands  than the rates of an adjacent cultivated site under variable soil 18 

moisture contents (Ullah et al. 2005), demonstrating that cultivation diminished the 19 

capacity of these soils to denitrify nitrate at rates similar to forested wetlands. The natural 20 

vegetation cover and the resulting soil litter production in forested and depressional 21 

wetlands provide higher organic carbon substrate for supporting greater denitrifier 22 

activity than similar textured Ag-low soils. This observation implies that pedogenically 23 
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similar soils at the same elevation in a watershed under row crops cultivation sustain 1 

lower denitrification potential than under wetlands. 2 

The higher denitrifier activity in the veg-ditches is attributed to its maintenance as 3 

a grassed waterway, which resulted in maintaining high soil moisture regime and 4 

producing greater AMOC contents compared to croplands and unveg-ditches. This 5 

finding supports the current practices of maintaining veg-ditches as a BMP for erosion 6 

control and water quality improvement as recommended by the USDA (ARS 2001) in the 7 

region. 8 

The DPs observed in spring, summer and fall of all the land use types were 9 

significantly greater (p <0.05) than their DPs of winter except Ag.high and unveg-ditch 10 

soils (Table 2), respectively. This observation suggests that the lower average winter soil 11 

temperatures (ranging from 6 to 9 
o
C) and higher % WFPS substantially reduced soil 12 

denitrifier activity (Table 4). Lower winter temperatures and higher WFPS percentage 13 

compared to the summer values suppressed microbial activity (Magg et al. 1997) and 14 

reduced the supply of mineralizable organic C to denitrifiers (Table 3) (Mohn et al. 2000; 15 

Mogge et al. 1998; Klein and Logtestijn 1996). Even though %WFPS of soils in winter 16 

were relatively lower than the fall %WFPS, lower winter temperature led to significantly 17 

lower AMOC production than the fall values of all the land use types (Table 3). This 18 

indicates that lower soil temperature exerts significant controls over microbial activity.  19 

Lower denitrifier activity may pose greater risk of nitrate loss from agricultural 20 

watersheds in winter. 21 

Unlike the Ag-high and Ag-low soils, nitrate availability was found limiting DPs 22 

in forested and depressional wetlands, because nitrate additions to these soils led to 23 
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increases in DPs during the four seasons  compared to DPs of Ag-high and Ag-low sites 1 

(Figures 2 and 3). When averaged over the four seasons, forested and depressional 2 

wetlands showed 3 and 4-fold increase in DP under additional nitrate compared to the 3 

unamended soils. Higher denitrification rates under additional nitrate can happen, if the 4 

process is not limited by the availability of organic C (Weier et al. 1993). No response of 5 

Ag-high and Ag-low soils to nitrate amendment shows that DP in these land uses was 6 

limited by the availability of organic C (Table 1). Constructed wetland responded with 7 

increased DP to nitrate additions in fall and winter only. The increase in DP of the 8 

constructed wetland in response to nitrate additions after 6-9 months of its construction 9 

demonstrate that wetland restoration on abandoned marginal lands in low-elevation areas 10 

of the watershed can enhance denitrifier activity within and/or after the first growing 11 

season. Veg-ditches also responded with increased DPs to nitrate additions. These results 12 

depicts that wetlands and veg-ditches can denitrify additional nitrate coming from 13 

cultivated soils or other external sources. This finding is in agreement with the findings 14 

of similar studies conducted regarding nitrate removal potential of riparian wetlands and 15 

vegetated buffer-strips in agricultural watersheds (Lindau et al. 1994; Lowrance et al. 16 

1995; Groffman and Crawford 2003; Groffman et al. 2002; Ingrid-Brettar et al. 2002; 17 

Clement et al. 2002; DeLaune, et al. 2005). 18 

As expected, higher total soil carbon, mineralizable organic C, wetter soil 19 

conditions, greater soil porosity and fine-clay texture of natural and constructed wetlands 20 

(Table 2) supported greater denitrifier activity than those observed in the Ag-high and the 21 

pedogenically similar Ag-low and unveg-ditch soils. This result is in agreement with the 22 

findings of Hill and Cardaci (2002), Davidsson  and Stahl (2000), and Groffman and 23 
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Tiedje (1989) who reported significant control of denitrification potential by available 1 

organic carbon, soil moisture contents and soil texture classes. At the biogeochemical 2 

scale, soil moisture content, soil texture, available C and nitrate are the major regulators 3 

of denitrifier activity in soils (Patrick and Reddy, 1976; Myrold et al.1998; Weitz et al. 4 

2001) and the same factors were found significantly affecting DPs in the Beasley 5 

watershed. The status of these biogeochemical scale regulators of DP is a result of the 6 

interaction of soil oxygen diffusion rate/dynamics, landscape position, plant community 7 

structure, physical disruption (landuse), ecosystem type, microbial biomass, and organic 8 

matter production characteristics of a given landscape unit (Myrold et al.1998; Florinsky, 9 

et al. 2004). Florinsky et al. (2004) reported significant control of denitrifier activity in 10 

soils by landscape position of a site and its subsequent influence on soil moisture and 11 

organic carbon availability. The authors concluded that higher denitrifying activity in 12 

low-elevation areas was mostly affected by the redistribution and accumulation of soil 13 

moisture and available organic carbon due to their additional gains from high-elevation 14 

areas along the slope (Florinskey, et al. 2004). In the Beasley watershed, lower elevation 15 

land uses under wetlands maintained higher soil moisture contents, greater soil organic 16 

carbon pools, and lower bulk densities that resulted in higher DP in wetland soils than 17 

either the high elevation or low elevation soils under cultivation. These findings show 18 

that landscape position and landuse type exerts significant controls on denitrifying 19 

activity in a watershed. Any effort to model and predict denitrification potential at 20 

watersheds scale such as the LMV should include topographic and land use aspects of a 21 

watershed as key controllers of DP besides the biogeochemical scale variables in the 22 

modeling process. Such an approach can help compute/predict relatively more realistic 23 
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DPs at watershed scale and identify sites for restoration in large river basins (White and 1 

Fennessy, 2005). Application of digital terrain models for predicting microbial activities 2 

of watersheds based on inputs of both biogeochemical and landscape scale variables into 3 

the model have been found feasible in Canada (Florinsky et al. 2004). 4 

The results of this research demonstrate that denitrification potential in soils is 5 

regulated by more than one biogeochemical scale factor and is significantly influenced by 6 

both the landscape position and land use types in a watershed. Marshal (1999), Groffman 7 

et al. (1999), and Florinsky et al (2004) also reported that denitrification cannot be 8 

predicted on the basis of one factor, rather a combination of factors are involved in the 9 

regulation of the denitrification process. Therefore, it is suggested to consider landscape 10 

scale variables (landscape position and land use type) in addition to biogeochemical scale 11 

variables in assessing/modeling denitrification potential of soils and identification of sites 12 

for wetland restoration for water quality improvement in the LMV. Our findings suggest 13 

that fine-textured low-elevation sites in agricultural watersheds are the best candidates for 14 

wetland restoration for nitrate removal in the LMV. Such sites can accumulate higher soil 15 

organic carbon and retain higher soil moisture for sustaining persistent and enhanced 16 

denitrification rates than coarse-textured Ag-high soils in agricultural watersheds. 17 
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FIGURES LEGEND 1 

Figure 1. Location map of the Beasley Lake watershed, Mississippi, USA. 2 

 3 

Figure 2. Denitrification potential of different land use types amended with nitrate in 4 

spring, summer, fall and winter with standard error of the means (same letters on top of 5 

each bar show no significant differences in DPs among the land uses within each season 6 

at p =0.05). 7 

 8 

Figure 3. Denitrification potential of different unamended land use types in spring, 9 

summer, fall and winter with standard error of the means. 10 
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Table 2.   Mean Physio-chemical properties of soils of the7 land use types in Beasley watershed. Means (S.E of the means) followed 

by the same lower-case letter indicate no significant difference (p > 0.05) among the different land use types. 

 

Soil parameters Forested 

wetland 

 

Dep.wetland 

 
Constructed 

wetland 

 

Veg-ditches 

 
Unveg-

ditches 

Ag-low 

 
Ag-high 

 

Bulk Density (g cm
-3

) 0.90 (0.03) a 0.96 (0.01) a 1.20 (0.2) b 1.17 (0.03) b 1.24 (0.4) b 1.24 (0.9) bc 1.31 (0.4) c 

Porosity cm
3
 cm

-3 0.66 (0.98) a 0.64 (0.99)a 0.55 (0.91)b 0.56 (0.98) b 0.53 (0.98) b 0.53(0.96) bc 0.51(0.98) c 

Clay (%) 51 (0.5) a 47 (1.2) a 45 (1.2) a 51 (2.5) a 45 (5.4) a 48 (2.1) a 23 (0.001) b 

Silt (%) 47 (0.7) a 49 (3) a 45 (1.6) a 44 (3.5) a 33 (2.8)  b 46 (1.3)  a 65 (0.8) c 

pH 5.4 (0.05) a 5.3 (0.03) a 5.5 (0.07) a 5.6 (0.07)  a 5.6 (0.04) a  6.1 (0.05) b 6.3 (0.03) b 

Total C 0-10 cm(Mt ha
-1

) 297 (30) a 167 (18) b 218 (9) b 189 (11) b 156 (44) bc 168 (13) bc 85 (26) c 

Total N 0-10 cm (Mt ha
-1

) 26 (2) a 17 (1.4)  b 23 (0.9)  b 24 (2.2) b 13 (2.6) c 11 (1.0) c 5 (3.5) d 

NO3 (mg kg soil
-1

) 5.7 (1.7) a 6.5 (2.5)  a 6.1 (2.8)  a 7.6 (3.2) a 7.4 (1.9) a 8.0 (1.6) a 7.7 (3.2) a 
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Figure 2. Denitrification potential of different land use types amended with nitrate in 

spring, summer, fall and winter with standard error of the means (same letters on top of 

each bar show no significant differences in DPs among the land uses within each season 

at p =0.05). 
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Figure 3. Denitrification potential of different land use types (no nitrate amended soils) in 

spring, summer, fall and winter with standard error of the means. 
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Table 1. Yearly average denitrification potential (DP) of the 7 landuse types with post-

ANOVA comparisons between 7 land use types. Same lower-case letters following mean 

values shows no significant difference among the different land use types at p = 0.05. 

Effects of NO3 amendment of soil slurries and season on denitrification potential of the 7 

land use types are also shown using pooled variance two-sample t-test and ANOVA, 

respectively at p <0.05. 
Land use types DP of NO3 amended soils   

(ug N g
-1

 h
-1

) 

NO3 addition 

effects on DP 

Seasonal 

effects on DP 

Forested wetland 

 

1.18 (0.13) a * * 

Depressional wetland 

 

0.77 (0.03) b * * 

Constructed wetland 

 

0.82 (0.10)b * * 

Veg-ditches  

 

0.66 (0.17) bc * * 

Unveg-ditches 

 

0.50 (0.09) c * ns 

Low-elevation Agric. 

 

0.40 (0.08) cd ns * 

High-elevation Agric. 

 

0.16 (0.02) d ns ns 

*: significant effect, ns: non-significant effect 
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                Table 3. Mean anaerobically mineralizable organic carbon content of the 7 land use types with standard error of the means  

               and its Pearson’s correlation coefficients with DP 

Season 

 

 

----------------------------------AMOC (µg C-CO2 produced g
-1

 soil h
-1

)--------------------- 

 

Forested 

wetland 

Dep. 

wetland 

Constructed 

wetland 

Veg-

ditches 

Unveg-

ditches 

Ag-low Ag-high 
 

Pearson’s 

correlation with 

DP (n=57) 

Spring 

 

0.78 (0.10) 0.63 (0.07) 0.82 (0.11) 0.77 (0.07) 0.14 (0.03) 0.46 (0.00) 0.35 (0.07) 

 

0.51* 

Summer 

 

1.26 (0.13) 1.29 (0.03) 1.21 (0.05) 0.91 (0.05) 0.85 (0.04) 0.88 (0.03) 0.89 (0.04) 0.57* 

Fall 

 

1.03 (0.02) 1.04 (0.03) 0.99 (0.04) 0.98 (0.05) 0.89 (0.03) 0.91 (0.02) 0.66(0.01) 

 

0.75* 

Winter 

 

0.86 (0.04) 0.70 (0.04) 0.70 (0.04) 0.52  (0.03) 0.62 (0.03) 0.59 (0.06) 0.72 (0.02) 0.81* 

   * Significant difference at p< 0.05 
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Table 4. Seasonal water-filled pore space percentages with standard error of the mean and 

its correlation co-efficient with denitrification potential of the 7 land use types. Last row 

of the table shows seasonal average soil temperatures of Beasley watershed. 

 

Land use Types 

Water-filled pore space (%) 

Spring Summer  Fall  Winter 

Forested wetland 

 

62 (1.0)  48 (0.9) 59 (1.0) 53(1.0) 

Depressional wetland 

 

63 (1.0) 28 (1.0) 52 (1.0) 44 (1.0) 

Constructed wetland 

 

51(1.0) 29 (1.0) 55 (1.0) 48 (1.0) 

Veg-ditches  

 

47 (1.0) 61 (1.0) 68 (.9) 50 (1.0) 

Unveg-ditches  

 

49 (1.0) 60 (1.0) 58 (1.0) 51 (1.0) 

Low-elevation croplands 

 

56 (1.0) 34 (1.0) 56 (1.0) 45 (1.0) 

High-elevation croplands 

 

34 (1.0) 28 (1.0) 45 (1.0) 32 (1.0) 

Correlation of soil moisture 

with DP  

0.46* 0.44* 0.69* 0.57* 

Soil Temp. 
o
C 22 

 

28 21 9 

*Significant at p < 0.05, and n= 56 

 


