Lancaster EPrints

Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3D ERT and TDR.

Koestel, Johannes and Kemna, Andreas and Javaux, Mathieu and Binley, Andrew and Vereecken, Harry (2008) Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3D ERT and TDR. Water Resources Research, 44 (12). ISSN 0043-1397

[img]
Preview
PDF - Published Version
Download (933Kb) | Preview

    Abstract

    Electrical resistivity tomography (ERT) has proved to be a valuable tool for imaging solute transport processes in the subsurface. However, a quantitative interpretation of corresponding ERT results is constrained by a number of factors. One such factor is the nonuniqueness of the ERT inverse problem if no additional constraints are imposed. In the vadose zone, further problems arise from the general ambiguity of the imaged bulk electrical conductivity in terms of water content and solute concentration. In this study we address these issues in detail for a solute tracer experiment conducted in an undisturbed unsaturated soil monolith where the tracer transport was monitored by means of 3-D smoothness-constrained ERT and time domain reflectometry (TDR) measurements. The experimental design allowed the determination of solute tracer concentrations directly from imaged bulk electrical conductivity. Independent TDR data and effluent tracer concentrations provided a “ground truth” for the ERT-derived apparent convection-dispersion equation transport parameters. The apparent transport velocity calculated from the ERT results was consistent with that based on TDR data and the sampled effluent, independent of the degree of smoothness imposed in the ERT inversion. On the other hand, the apparent dispersivity calculated from the ERT results was larger than that estimated from TDR data but smaller than that estimated from the sampled effluent, with the magnitude of deviations dependent on the degree of smoothing. Importantly, no mass balance problems were observed in the ERT results. We believe that this is largely a consequence of the uniform application of the tracer as a front and of the configuration of the electrode array with respect to the main transport direction. In conclusion, the study demonstrates that ERT can yield unprecedented quantitative information about local- and column-scale solute transport characteristics in natural soils.

    Item Type: Article
    Journal or Publication Title: Water Resources Research
    Additional Information: Copyright 2008 by the American Geophysical Union.
    Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
    Departments: UNSPECIFIED
    ID Code: 31448
    Deposited By: Mr Richard Ingham
    Deposited On: 18 Jan 2010 13:17
    Refereed?: Yes
    Published?: Published
    Last Modified: 23 Jul 2014 14:50
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/31448

    Actions (login required)

    View Item