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Abstract. We present a Bayesian framework for parameter inferenceigymon-stationary, non-
linear, dynamical systems. The technique is implementédardistinct ways:

(i) Lightweight implementation: to be used for on-line analysis, allowing multiple paraenedsti-
mation, optimal compensation for dynamical noise, andmsttaction by integration of the hidden
dynamical variables, but with some limitations on how thesa@ppears in the dynamics ;

(ii) Full scale implementation: of the technique with extensive numerical simulations ({C),
allowing for more sophisticated reconstruction of hiddgnamical trajectories and dealing better
with sources of noise external to the dynamics (measurenmansge).
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Developing earlier works [1, 2], we consider the following M-dimensional time-
series? = {yn =Yy(tn)} (tn = nh), representing\ observations of the system

x(t) =f(xjc) +VDE(t),  y(t) =g(xlb)+VMn(t). 1)

The first eq.s(1) defines the-dimensional underlying stochastic dynamics (with
white uncorrelated noise source) and the second one defieeshiserved variable
% (with an extra observational noise source). Our task is ferithe unknown
model parameters, their time variations, the noise intessiand .2 -trajectory:

A = {c(t),b(t),D,M, {xn} .

The form of the likelihood depends on the approximationseftheory. For an Euler
approximation of the dinamios, 1 = Xn+ hf(xj|c) + v hD¢&,,, with X;; = (Xn+1+Xn) /2,
the minus log-likelihood functio®= —In¢(#/|.# ) can be written as: (see [3, 1])

hN-1 (Xn |c . N .
In|D| > -+ [Xn—f(Xplc)]" D7 [Xn —f(XpC)]
Z){ j ’
In|M|—|— > Z 9(Xn|D)]" M1 [yn — g(yn, Xn|b)] + (L +M)NIn(27th),

wherex, = 2" and summation ovekis implicit in the term—a(f(;;z'c)".



Let us assume for a moment thét is given. In this case, by the parameterising the
vector fieldf(x;|c) = U(x},)c = Unc, linearly in respect of its parameters, and assuming
a multivariate normal prior PDF far, the posterior is also normal, and its mean is given

by [3]:
N-1 -1/ N-1
Cpost = (h ZOUID_lUn> <h Z)
n=

h N—-1 -
=y ZO —Unc] [Xn—Unc] .

The obtained result holds uniquely in presence of additousenD© constant). If this was
not the case, then an extra parameterisation of the noisédshave been employed, and
heavy approximation and assumptions made in order to makertiblem algebraically
treatable.

When 2" is not observable, a global optimization technique shoumldyeneral, be
employed. In the next two following sections two exampld i discussed. In the first
one, a ‘lightweight’ implementation will be used and the o§global optimization will
be avoided. In the second example the most probable statieefalynamical space will
be obtained thanks to an MCMC techinique.
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LIGHTWEIGHT IMPLEMENTATION

In our first example, we decode the parameters of a systemuodng modelled by an
L-dimensional system of FitzHugh-Nagumo (FHN) oscillai&is

Vi = —Vj (VJ a,)( ) q,+l71+\/ﬁfj, (4)
g = —Baj+tyvis  (§OE&X)) =a;0(t-t), ()
Yi = XjVvj. i,j=1,...,L. (6)

wherev; models the membrane potentials amjchre slow recovery variables. Parame-
tersn; control the potential threshold for the self-excited dymancontrolling the firing
rate, and they will be considered as time-varying pararaeWe assume that neither
nor g; are read directly (i.e. ‘hidden’ variables), but that theasiwements are made
through anunknown measurement matriX in eq.(6). Our tasks are to: (i) reconstruct
coefficients appearing in Eq.(4-5); (ii) reconstruct theimg matrix X; (iii) reconstruct
the hidden variables;; (iv) perform tasks (i)-(iii) taking into account that sorparam-
eters might have explicit time dependence. We assume naunggasnt noise in eq.(6):
indeed in such systems the measurement noise is often indégkgnd in this way we can
avoid global optimization and better estimate the perfarceaof the Bayesian inference
itself. Following [2], a convenient way to treat this proilés by integration of the slow
recovery variableg; and to substitute it into the top equation in eq.(4), and equently

in eq.(6) we obtain the explicit form for the dynamics of tkadout variable:

Vi = i + @iy} + ik, Yia Vi, + Cikalo Vi Y5,
+e PG — [oeP Ty yidT+4/Dij&i (1), (7)



where parameters of the gtransformed dynamics in eq.(7juaction of the original
parameters and the matrk. This explicit dependence is given in [2]. Although the
number of base function¥, for the mixed dynamic is much larger than the number
of polynomial terms in eq.s(4-5) the inferencial algoritlexibits good performances
and high speed in inferring parameters even when few of themexsplicetelly time
dependent. Some results are presentented on Fig. 1.
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FIGURE 1. Inference ofn; andn; from eq.(4) for a 2-FHN system, while smoothly varying in the
presence of noise. No prior knowledge of the model paramétesssumed. (a) The inferred values of
N1 (dashed red lines) are compared with their true values ifful lines); here the ability in detecting
continuous evolution of the control parameters in the aatialiimit is demonstrated. (b) The recontructed
time-trace of the hidden coordinatg(t). (c) Typical convergence of the control parametgisas
functions of the measurement tirhiequalitative behaviour of the biggest eigenvalues of theadance
matrix is given in the box. In [2] a detailed discussion isgemted.

MCMC IN AN ECOLOGICAL SYSTEMS

In ecological problems the emphases are on the off-lineviesgoof hidden population
dynamics. We therefore consider a general MCMC approach.dieider an example
of predator-prey dynamics, also considered in [6, 7, 8],n@Htlee cycling dynamics of
the vole population in Finnish Lapland can be modelled byfttlewing equations for
the fluctuating densities of rodentsand their predator® (weasels, foxes, owls, and
others). Dynamical inference method cannot be applieds’a®ithe model of autors
of [6, 7, 8] because: (i) the noise terms are multiplicat{ig;the predator trajectory
is hidden; and (iii) the prey dynamics is measured togeth#r some measurement
noise. If the first problem can be overcome by makingadioc change of variables,
the second and third problem are more complex and can bedsoiwdifferent ways
accordingly to the approximations that one can introdueehis respect, some ways
has been investigated in [4]. Here, the aim is to show how an I@G&thinique can
be employed for the reconstruction of the hidden dynamiaaie. In particular it is
very useful to analyse what happen in a one-dimensionabappation. For a detailed
discussion of how to reduce to this system and what are th@zipmations involved see
[4, 8, 7]. The resulting one-dimesional systems considbaestthe form:

. . _ ged az 1

% =r (1—egsin(2mt + yp)) — Fet — 2o eadt ronén(t),  (8)

7— gSit—2cog2nt) (Co+83 tiesiﬂr%,cos(zﬂ'r)) : (9)
to N(T)

y(t) = X1 (t) + Tobsn (1)- (10)



where the only observable igt). For the sake of simplicity we assume the noise
intensities to be fixed and introduce an abbreviated vedtdh@ unknown parame-
ters .# = {c,{xx}}. The MCMC algorithm can be briefly summarized as follows:
(i) Take an initial guess forZ© = {c© {x”1}: (i) Sample a trajectory from
p(xk|xk_1,xk+1,/2,D,oobs,yt) for k=0,...,K using Gibbs sampler with Metropolis-
Hastings (M-H) steps; (iii) Sample model parameters frp(oZ|{%},D, Oobs, {¥t})
using M-H algorithm; (iv) Repeat steps (ii)-(iv) until commgence is achieved.

A graphical results is summarised on Fig.2.
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FIGURE 2. Inference parameters from eq.(8); (a) Typical evolutiothefsolution of the optimization
problem starting from some initial values and descendiegiyperplane of the cost function defined by
the posterior minus-log-likelihood; (b) Results of the MCMalculations: convergence of the unknown
predator trajectories from an initial guess (solid blagteliat the bottom of the figure) to the actual
trajectory (solid blue line at the top of the figure) is showndashed red lines. The arrow indicates
the direction of convergence as a function of number of iiena.

CONCLUSIONS

We have considered the problem of dynamical inference isgoree of noise and pro-
vided different approaches for a fast implementation {pe-&pplications), investigating
the boundaries of the resolution for slowly varying paramgtand for more computa-
tionally demanding problem of global reconstruction whie heavy use of MCMC for
discovering the latent state variables for the extreme chsessing data.
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