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Abstract. We use drift and diffusion coefficients to reveal interactions between
different oscillatory processes underlying a complex signal and apply the method
to EEG δ and θ frequencies in the brain. By analysis of data recorded from
rats during anæsthesia, we consider the stability and basins of attraction of fixed
points in the phase portrait of the deterministic part of the retrieved stochastic
process. We show that different classes of dynamics are associated with deep
and light anæsthesia, and we demonstrate that the predominant directionality of
the interaction is such that θ drives δ.
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1. Introduction

Complex signals typically contain a great deal of information about the underlying processes
that generate them, but the extraction of such information can be difficult and requires methods
drawn from physics and nonlinear science [1]–[4]. This is especially true of signals derived from
living systems. Their complexity arises in part from nonlinear interactions between subsystems
oscillating on widely differing timescales, and in part from the confusing influence of
seemingly random fluctuations. Electroencephalographic (EEG) recordings of brain activity [1]
exemplify the problem. It has long been appreciated [5] that they exhibit continuous widespread
oscillations, but their origin remains barely understood. As in the case of cardiovascular
signals [6], there are multiple rhythms enclosed within broad-band noise. In dynamical terms,
these oscillations might be attributed to limit-cycle attractors, because analyses of short
segments often reveal spectral peaks in particular frequency ranges. Interactions between the
processes generating some of these EEG waves have been demonstrated [7] but not yet explored
much.

Understanding the interdependences between complex dynamical systems is of quite
general scientific importance, e.g. in physics, chemistry, biology and neuroscience; it can also
be of importance for, e.g. economics and sociology. Often, the underlying equations of motion
are unknown, but a detailed quantitative description of interdependences can nonetheless be
achieved by time-series analysis of experimentally measured observables. In recent years, a
number of methods have been developed that allow one to detect and to quantify the strengths of
the possible interactions [8]. Asymmetric approaches have facilitated the detection of directional
coupling from time series. At some risk of over-simplification they can conveniently be divided
into three main groups: techniques based on interrelationships between parameters of oscillatory
dynamics and, in particular, phase dynamics [9]–[11]; state-space-based methods [12, 13] and
information-theoretic approaches [14, 15].

State-space-based approaches provide strong methods for detecting generalized
synchronization or directionality patterns between two coupled systems. Also, the fact that
there are not many free parameters involved in driving the state-space patterns makes such
measures relatively easy to implement, and robust. Their main challenges are in finding well-
defined quantitative measures of directionality or driver-response and in that it is often difficult
to localize the reconstructed properties in time. Generally, all three groups of methods tend
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Figure 1. Short (3 s) segments of EEG signal for deep (left) compared with light
(right) anaæsthesia.

to make rather strict assumptions about the dynamics of the systems that generate the time
series, e.g. that they should be linear systems, or in the case of self-sustained oscillators that
they should be weakly-coupled. Furthermore, many of the approaches focus preferentially on
the low-dimensional deterministic part of the dynamics. In reality, however, the influences of
noise on nonlinear dynamical systems can be far from trivial [16]–[18] and they constitute a
subject of continuing interest and importance. Real signals frequently result from dissipative
dynamical systems under the influence of noise, and it is often useful to describe them in terms
of Fokker–Planck formalism [19].

In this paper, we combine the multidimensional Fokker–Planck equation [16, 20] with
mathematical modelling of the system dynamics, enabling us to extract model parameters
directly from the measured time series [2, 3, 20]. We concentrate on the interactions
between EEG θ waves and δ waves in anæsthesia, and characterize some of their properties.
Following [20, 21] we apply a two-dimensional (2D) Markov analysis to EEG signals
recorded [22] from rats during deep and light anæsthesia (see examples in figure 1); and we
carry out a stability analysis of the deterministic part of the derived equations. We find in these
experiments that the dynamics falls into different universality classes for the states of deep and
light anæsthesia, enabling us to distinguish robustly between them. Although we treat brain
dynamics explicitly, the method is applicable to complex systems quite generally.

In section 2, we describe succinctly how our experimental data were acquired from rats
and pre-processed prior to analysis. Section 3 describes the basic method used for the analysis,
and section 4 discusses how we applied it to the rat EEG signals and considers the results that
emerge. Section 5 describes some simple tests undertaken to eliminate artifacts and to check the
validity of the results. Finally, in section 6, we summarize and consider the main results, and
draw conclusions.

2. Experimental methods and data acquisition

A full description of how the signals were measured has already been given elsewhere [22],
so here we just summarize the salient features. The experiments were performed on 10
adults, male Wistar rats weighing 250–300 g. The animals were each anæsthetized with a
single intraperitoneal injection of ketamine hydrochloride (45 mg (kg body wt)−1) and xylazine
hydrochloride (7 mg (kg body wt)−1). (Measurements were also carried out on a second group
of rats anæsthetized with pentobarbital [22] but these are not discussed here.) As soon
as the rat could no longer hold its upright posture, 10–15 min after administration of the
drug, it was placed in a darkened Faraday cage where sensors were mounted and recording
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started immediately. The EEG was recorded over the left and right parietal cortex with three
hypodermic needles inserted under the animal’s scalp to serve as electrodes. The EEG was
differentially amplified by 103

× and low-pass filtered with a cut-off frequency of 300 Hz. The
resultant signal was fed through a signal conditioning system, digitized at 1 kHz with 16-bit
resolution, and stored on the hard disk of a laptop computer.

Depth of anaesthesia was assessed at 5 min intervals by a nociceptive stimulus, the skin-
pinch test, applied to the sole of the animal’s front paw [23]. The recording started with a
negative test response, i.e. when the rat stopped responding with a reflex withdrawal of the
limb. The monitoring was terminated on the reappearance of a positive pinch-test response,
as the animal immediately started to move thereby terminating reliable data recording. The
duration of recording varied from rat to rat and was on average 87 min. The measurements were
at a constant room temperature of 24 ± 1◦C.

The EEG power spectrum is conventionally divided [24] into the frequency bands:
δ (0.5–3.5 Hz); θ (3.5–7.5 Hz); α (7.5–12.5 Hz); β (12.5–25 Hz); γ1 (25–35 Hz); γ2 (35–50 Hz);
and γ3 (50–100 Hz). We calculated the time evolution within each band by application of
the continuous wavelet transform [6]. The EEG signal was bandpass-filtered, but only after
extensive investigation of its time-frequency content by wavelet analysis, and particular care
taken to avoid any introduction of phase lags.

The transition from deep to light anaesthesia was determined by application of several
criteria: as the times when both cardiac and respiratory frequencies significantly increased
and became significantly more variable [22]; as the times when the amplitude of δ-waves
dramatically decreased; and as the times when the amplitudes of θ and γ significantly increased.
These different criteria yielded consistent results. The transition is most probably associated
with the effects of the ketamine wearing off faster that those of xylazine so that in the light
phase the effect of xylazine is dominant.

3. Fokker–Planck analysis

We define a state vector q = {δ(t), θ(t)} composed of the signals of the δ and θ bands,
hypothesize that it follows a stochastic process of form

∂tqi = D(1)

i (q, t) +
2∑

j=1

√
D(2)

i j (q, t)0j(t),

and approximate the fluctuations 0j(t) by Gaussian white noise. We suppose that the process is
Markovian, an assumption that can subsequently be validated by data analysis. The drift vector
D(1) describing the deterministic part of the dynamics, and the diffusion matrix D(2) determining
the strength of the driving noise, are

D(1)

i (q, t) = limτM→0
1

τM
〈(qi(t + τM) − qi(t)) | q, t〉,

D(2)

i j (q, t) = limτM→0
1

2τM
〈(qi(t + τM) − qi(t))(q j(t + τM) − q j(t))|q, t〉.

(1)

We have used the Itô interpretation of the stochastic integral and conditional expectation values
〈·〉 that can be determined from the experimental data;

√
D(2) is to be calculated by diagonalizing

the matrix D(2), taking the square root of each of its elements, and transforming the result back
into the original system of coordinates [16].
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Figure 2. Plots of χ 2 to test the Markov property of (a) δ and (b) θ fluctuations
in a rat’s EEG as a function of timescale, τ . The minimum value of χ2 occurs
around τM ' 0.1 s, corresponding to the Markov timescale within a σ confidence
level. The insets plot short samples of the signals being analysed.

The Markov condition requires an n-point conditional probability function (CPF) P(q(t +
nτ)|q(t + (n − 1)τ ), . . . , q(t + τ), q(t)) to be equal to a two-point CPF P(q(t + nτ)|q(t + (n −

1)τ )). The timescale τ in which this condition is fulfilled is the Markov timescale (τM).
For multidimensional stochastic variables, it is hardly possible to check the Markov condition
directly by means of n-point CPFs. We therefore use three-point CPFs, for which the Markov
condition corresponds [25] to

χ2
=

∫ ( 3∏
i=1

dxi

)
[P(x3, x2, x1) − P(x3|x2)P(x2, x1)]2

σ 2
J + σ 2

M

(2)

being zero. Here,

x3 = x3(t + 2τ), x2 = x2(t + τ), x1 = x1(t),

and x represents one of the components of q, i.e. qi . σ 2
J and σ 2

M are the variances of P(x3, x2, x1)

and P(x3|x2)P(x2, x1), respectively. Figure 2 shows χ 2 calculated for both δ and θ waves from
a rat EEG signal as a function of the timescale τ . In both cases, the minimum value of χ2 occurs
just after 0.1 s, after which it hardly changes, corresponding to τM with one σ confidence level.

Using equation (1) with this value of τM, we can estimate the drift and diffusion coefficients
from δ(t) and θ(t) as shown in figure 3. In doing so, we used 1D coefficients, i.e. in deriving
the drift and diffusion coefficients for each variable, the effect of the other variable was
integrated. Both coefficients can be well-approximated by low-order polynomials. The D(1)

i
with i = δ, θ indicate an overall damping behaviour, as shown earlier [26]. Moreover, the
behaviour of D(2)

δδ and D(2)
θθ implies that the noise is multiplicative in character: constant

diffusion coefficients represent additive noise whereas, for multiplicative noise, the diffusion
coefficients are functions of the dynamical variables. We tested whether the deviation from
additive behaviour is attributable to the finiteness of τM [27] by consideration [28] of a Taylor
expansion of the drift coefficients. We conclude that the effect of the higher order terms in τM

cannot explain the apparently multiplicative nature of the estimated second coefficient, which
implies that the noise strengths are functions of the dynamical variables.
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Figure 3. Plots of the derived drift, diffusion and fourth-order Kramers–Moyal
coefficients for the EEG of a typical rat in the deeply and lightly anæsthetized
states (indicated by da and la, respectively). (a) Drift coefficient for the EEG
δ band. (b) Drift coefficient for the θ band. (c) Diffusion and fourth-order
Kramers–Moyal coefficients related to the δ band. (d) Diffusion and fourth-
order Kramers–Moyal coefficients related to the θ band. The results of (a) and
(c) clearly demonstrate different functionality for both the drift and diffusion
coefficients during deep as compared with light anæsthesia.

4. Application to δ and θ brain waves in anæsthesia

Figures 3(a) and (c) show that there are significant differences in the δ waves between deep and
light anæsthesia, consistent with earlier work [22]. On the other hand, panels (b) and (d) show
that little change occurs in the θ waves. The functionality of D(2)

δδ changes markedly between
the two states as can be seen in figure 3(c): in the light phase, a parabola fits this coefficient
very well, while for deep anæsthesia we must use a fourth-order function to describe the central
peak.

4.1. Stationary solution for retrieved drift and diffusion coefficients

We can also examine qualitatively the stationary solution of the Fokker–Planck equation around
the different extrema in D2(δ). The solution is Pstationary =

N0
D2(δ)

exp(−
∫

dδ D(1)

D(2) ), where the
integration constant N0 can be derived by normalization of Pstationary. For simplicity, we suppose
that D(1)

δ is well approximated by a line (D(1)
δ = −bδ where b > 0). In light anæsthesia, D(2)

δδ

has a minimum at δ = 0, whereas in the deep state there is a local maximum there. Focusing on
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the region around this point, D(2)
δδ can be approximated as D(2)

δδ ' D(2)
δδ (0) ∓

1
2 |D

(2)′′

δδ |δ2, where
′ denotes d/dδ. It is evident that the contribution of D(2)

δδ to the stationary solution of the
Fokker–Planck equation changes between deep and light anæsthesia. Two additional extrema
(minima) appear in D(2)

δδ during deep anæsthesia (figure 3(c)), causing a double-humped PDF in
deep anæsthesia (cf the single-humped PDF during light anæsthesia).

To test whether the behaviour of the system deviates from a Langevin description, we
calculated the fourth-order coefficients D(4)(x) = limτM→0

1
24τM

〈(x(t + τ) − x(t))4
〉 for x = δ

and θ , allowing us to determine whether the driving noise process 0j(t) exhibits deviations
from a Gaussian distribution [16]. Only if D(4) vanishes is 0j(t) white Gaussian. The
probability density function (PDF) of the process then evolves according to a Fokker–Planck
or, equivalently, Langevin equation [16]. Figure 3 shows that D(4)

δ is slightly above zero, but the
magnitude of this coefficient is less than one-fifth of the second coefficient D(2)

δδ , for both deep
and light anæsthesia. The fluctuations for the case of light anæsthesia are larger than for the deep
state. This can be seen from the observation that, in the domain of [−3σ, 3σ ] in figure 3(c), the
D(4)

δ terms are bigger in the light case, which indicates greater fluctuation amplitude. In contrast,
for the θ band signals, D(4)

θ compared with D(2)
θθ was clearly above zero for both deep and light

anæsthesia suggesting that a 1D Langevin description may be inadequate for modelling δ–θ

activities.
In a 1D Langevin model, the effects of other components are integrated, e.g. the

2D drift and diffusion coefficients can be integrated to yield the 1D ones as D(1)

i (x ′

i) =∫
D(1)

i (xi , x j)P(xi |x ′

i , x j)dx j and D(2)

i i (x ′

i) =
∫

D(2)

i i (xi , x j)P(xi |x ′

i , x j)dx j . Obviously, the
information about interactions and their directionality is lost. This is an important point:
although we have clearly different functionality for D(2)

δδ and a different pattern for D(1)
δ , the

differences are unclear in the case of the θ component and we should not thoughtlessly integrate
out the effects of the other variable. So, next, we derive the drift and diffusion coefficients as
functions of both δ and θ . Figure 4 shows all the coefficients calculated for deep anæsthesia.
Figures 4(a) and (b) plot D(1)

δ (δ, θ) and D(1)
θ (δ, θ). The θ -component of the drift vector shows

an almost linear dependence on θ and only weak variations with δ. But interestingly, the
δ-component of the drift vector has strong functionality in both δ and θ (see figure 4(a)).
We used a 2D least-squares method to derive the functionality of the coefficients. In the case of
θ , we have D(1)

θ (δ, θ) = a + bδ + cθ with good precision and the value of b is small (|c/b| ' 10
for all rats), while in the case of δ the situation changes dramatically. The best fit available is a
third-order polynomial with respect to δ and θ , D(1)

δ (δ, θ) =
∑

m,n am
n δmθ n(m + n = 0, 1, 2, 3).

In figures 4(c) and (d), we plot the coefficients D(2)
δδ and D(2)

θθ of the diffusion matrix. It is
evident that D(2)

θθ , like D(1)
θ , depends weakly on δ. In both cases, a second-order polynomial

of δ and θ such as
∑

m,n am
n δmθ n(m + n = 0, 1, 2) can describe the functionality of the two

diffusion components. In case of light anæsthesia, we find similar functionality albeit with
different parameters for the diffusion coefficients; but we find different functionality for the
δ-component of the drift coefficient, which has a much weaker dependence on θ . It was found
that these same patterns were repeated for all ten rats. Thus, they can be used to characterize the
dynamical behaviour of the δ and θ brain activities.

The fact that D(1)
δ and D(2)

δδ have strong dependence on both δ and θ , whereas the D(1)
θ and

D(2)
θθ hardly vary at all with δ, shows that the EEG θ component influences the δ-component but

not vice versa. This situation persists regardless of depth of anæsthesia.
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Figure 4. 2D drift, diffusion and fourth-order Kramers–Moyal coefficients for
the deeply anæsthetized state of the same rat as in figure 3. (a) Drift coefficient
for the EEG δ band and (b) for the θ band. (c) The δδ-component of the diffusion
matrix and (d) its θθ -component. In all four figures, the amplitudes are increasing
from dark blue to dark red. D(1)

δ and D(2)
δδ have strong dependences on both

δ and θ , whereas the dependence of D(1)
θ and D(2)

θθ on δ is weak.

4.2. Dynamics and fixed points (FPs)

To complete the analysis we need to derive a more quantitative description of the patterns
appearing in the drift and diffusion coefficients. The generated Langevin equations give the
deterministic and stochastic parts of dynamics, which can be written as ∂tqi = ∂ D

t qi + ∂ S
t qi , of

which ∂ D
t qi = D(1)

i is the deterministic part of the dynamics and ∂ S
t qi =

∑2
j=1

√
D(2)

i j 0j . Because
of the finite noise we do not have clear control of the stochastic term so, for simplicity, we just
compare the dynamics arising from the deterministic terms: we can derive the FPs and the
stability exponents in the phase diagram from the deterministic parts of the δ and θ trends. We
note that another way to determine asymmetries in coupling is from measures based on the drift
and diffusion coefficients [29].

In carrying out these analyses, we used all data we had for each rat [22], i.e. for a
measurement of duration 30 min we had 30 × 60 × 1000 = 1.8 × 106 sample data for our
sampling frequency of 1000 Hz. Thus the results related to D(1), D(2), and D(4) are all supported
by a good level of statistics. However, we have also checked our results by using different
portions of data. We found that 5 min worth of data (300 k data samples) was sufficient to
give us a robust estimation of D(1), D(2) and D(4). In relation to the Markov length scale τM

we found that, although the results were obtained for τM = 0.1 (100 sample data), a range of
80–120 samples gave the same results. Diverging from this range, however, would drive us into
a regime where modelling based on the Markov process is no longer valid.

To examine the FPs and flows in the δ–θ phase space, we have to solve together:

∂ D
t qδ = D(1)

δ (δ, θ),

∂ D
t qθ = D(1)

θ (δ, θ),
(3)
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Figure 5. Comparison of the flow diagrams related to (a) deep and (b) light
anæsthesia, derived from the deterministic part of the dynamics. Insets show in
more detail the areas around the stable FPs (shown as blue dots) and unstable
fixed point (red dot). The figure illustrates the different universality classes
corresponding to deep and light anæsthesia. (c) and (d) show the joint PDF for
deep and light regimes, Pdeep(δ, θ) and Plight(δ, θ), respectively. The PDFs are
evidently consistent with the results derived from the stability analyses shown in
(a) and (b). The amplitudes of PDF plots are increasing from minimum in dark
blue (zero) to maximum value at dark red.

for both deep and light anæsthesia. We find that there are two distinct regimes. Firstly, for eight
out of ten rats during deep anæsthesia there are three nontrivial FPs. Two of them are stable in
both the δ and θ directions, and the third one is unstable in the δ but stable in the θ direction.
Figure 5(a) shows the flow diagrams related to equation (3) for a typical rat. There is a region
outside the two stable FPs in δ–θ space in which the flows take any initial point to one of
the stable FPs. However, when δ or θ are small enough that the initial point is close to the
unstable fixed point, a small change in δ could take the flow to a different stable fixed point,
hence implying that the joint PDF of the δ and θ , Pdeep(δ, θ), must have two distinctive peaks.
Secondly, for all ten rats during light anæsthesia, we have only one attracting FP. Figure 5(b)
shows that, for a typical rat, over the whole interval of δ and θ flows take any initial point to
the stable fixed point. Hence, in this case, the system appears homogeneous at large timescales
and we must have one peak for Plight(δ, θ), unlike the previous case. To test this prediction,
we plot in figures 5(c) and (d) the directly calculated PDFs Pdeep(δ, θ) and Plight(δ, θ). They are
in full agreement with the results of our stability analysis of drift coefficients. At least in the
present experiments, therefore, we may conclude that the dynamics of δ–θ activity falls into
different universality classes for the states of deep and light anæsthesia. However, this finding
needs further investigation and will be a subject of our future work.
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5. Tests of the validity of the results

We now describe some tests that we carried out to confirm that our results relate to the real
dynamics of the system, and are not just artifacts of filtering. To do so, we processed a dummy
signal consisting of Ornstein–Uhlenbeck noise [30] by filtration in the δ and θ bands and then
repeated the whole analysis procedure. We used standard Ornstein–Uhlenbeck noise with an
added sinusoidal interaction to simulate the external oscillatory components. The equation for
the dynamical variable is

v̇ = −v(t) + A sin(ωt) +
√

ξ η(t) (4)

where A corresponds to the coupling strength of the external oscillatory components, ξ is the
noise strength, and η is the white Gaussian noise.

We always obtained one attracting FP, implying the damping structure of the system.
Moreover, when analysing the empirical data with 5 min moving windows for the δ and θ bands
of the real signals, we observed that the change of pattern between deep (3 FPs) to light (1 FP)
anæsthesia occurs very sharply: we estimated the D(1), D(2) for one window of data, and then
repeated the whole process explained in sections 4.1 and 4.2 by first deriving the functionality
of D(1) and D(2) based on the dynamical variables, and then applying stability analysis to
the deterministic parts of the processes (similar to the procedure explained in section 4.2).
Interestingly we found that even with the short 5 min data windows, we could distinguish clearly
between two different phases, having 3 and 1 FPs for deep and light anæsthesia, respectively,
the transition from one to the other being related to the transition from deep to light anæsthesia,
which occurs very sharply (∼1–2 min).

Finally, we investigated the question of whether or not the same results can be derived
from the phase dynamics of the variables δ and θ . We used the Hilbert transform [31] to detect
the corresponding phases; we calculated the time interval for each period of the phase; and we
inverted these time series to derive new signals in frequency space. Note that the phases of δ and
θ are defined only in a statistical sense because both waves are relatively broad in frequency.
It is only δ waves in deep anaesthesia that are relatively localized in frequency. For further
details see [22].

We then processed the δ and θ phases using the Fokker–Planck formalism. Reassuringly,
but unsurprisingly, there were no significant differences between the drift and diffusion
coefficients corresponding to the δ and θ phases in deep and light anæsthesia (not shown here).

6. Concluding remarks

In conclusion, our Fokker–Planck analysis of EEG signals has provided evidence of interactions
between the EEG δ and θ wave activities in rats in deep and light anæsthesia. We have
characterized the functionalities of δ and θ and shown that the functionality of δ alters
with changes in depth of anæsthesia. It is commonly accepted that sleep or anaesthetic-
induced unconsciousness arises through changes in the conduction of ion channels. Ketamine
inhibits [32] NMDA4 and Muscarinic ACh-sensitive5 channels, which may occur through two

4 NMDA stands for N-methyl D-aspartate. Activation of NMDA receptors results in the opening of the ion
channel.
5 ACh stands for acetylcholine. Activation of Muscarinic ACh-sensitive receptors results in the opening of the ion
channel.
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distinct mechanisms: (i) ketamine blocks open channels thereby reducing their mean open
time; or (ii) it decreases the frequency of channel opening. Either mechanism would lead to
neuronal hyperpolarization and reduce the activation of action potentials. The consequence of
the hyperpolarization is that the function of neurons is blocked. Where exactly this occurs
is currently unknown. Specific suppression of activity in the regional-thalamic and mid-
brain reticular formation and hyperpolarization blockage of thalamocortical neurons has been
discussed [33]. On the other hand, ketamine is considered as a drug that does not reduce
cortical metabolism and glutamate release or depress sensory information flow through the
thalamus [34]. Our observation that θ drives δ, regardless of depth of anæsthesia is consistent
with this picture. It is an important result, suggesting that the changes in δ-activity during
deep anæsthesia or sleep are mainly due to reduced sensory information from the spinal cord
to the thalamus, rather than on account of reduced thalamocortical interactions. However, the
physiological and neurological implications of this finding remain to be further investigated.
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[6] Stefanovska A and Bračič M 1999 Physics of the human cardiovascular system Contemp. Phys. 40 31–55
[7] Gans F, Schumann A Y, Kantelhardt J W, Penzel T and Fietze I 2009 Cross-modulated amplitudes and

frequencies characterize interacting components in complex systems Phys. Rev. Lett. 102 098701
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