Lancaster EPrints

Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants.

Wild, Edward and Jones, Kevin C. (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science and Technology, 43 (14). pp. 5290-5294. ISSN 0013-936X

Full text not available from this repository.

Abstract

The increasing use of nanomaterials in almost all sectors of society (e.g., health or energy to agriculture and transport) has generated a need for innovative detection methods for nanomaterials, to enable their continued development, environmental and toxicological monitoring, and risk assessment. In vivo nanoparticle visualization is needed to support applications in drug delivery to plant biology where real-time monitoring is essential. Techniques are sought that do not require the addition of molecular tags or nanotags to enhance detection, because these may modify the surface properties or behavior of the nanomaterials. Here two-photon excitation microscopy coupled with plant, nanomaterial, or chemical autofluorescence is used to detect and visualize multiwalled carbon nanotubes (MWCNTs), titanium dioxide, and cerium dioxide in living wheat tissues. The potential of the technique to track chemical−nanomaterial interactions in living tissues is then demonstrated, using phenanthrene as a model compound. MWCNTs were observed to pierce wheat root cell walls and enhance the transport of phenanthrene into the living cells. The ability of this technique to monitor real-time in vivo nanomaterial behavior and its potential applications and limitations for use in various disciplines is highlighted.

Item Type: Article
Journal or Publication Title: Environmental Science and Technology
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments:
ID Code: 28186
Deposited By: Mr Richard Ingham
Deposited On: 13 Nov 2009 15:15
Refereed?: Yes
Published?: Published
Last Modified: 23 Jul 2014 14:49
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/28186

Actions (login required)

View Item