1	ISOTOPIC ARCHIVES OF SULPHATE IN SPELEOTHEMS
2	
3	Peter M. Wynn ^a *, Ian. J. Fairchild ^b , Andy Baker ^b , James U.L. Baldini ^c ,
4	Frank McDermott ^d
5	^a Department of Geography, University of Lancaster, Lancaster, LA1 4YQ, UK
6	^b School of Geography, Earth and Environmental Sciences, University of Birmingham,
7	Birmingham, Edgbaston, B15 2TT, UK
8	^c Department of Earth Sciences, University of Durham, Durham, DH1 3LE, UK
9	
10	^d School of Geological Sciences, University College, Dublin, Belfield, D4, Ireland
11	
12	* Corresponding author. Tel. +44(0)1524 510235. E-mail address: p.wynn@lancaster.ac.uk
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	ABSTRACT

27	The hemispheric impact of industrial emissions upon atmospheric sulphur loading is
28	reflected in the sulphur depositional history recorded in cores from ice sheets.
29	However, these do not reveal regional variations. Recently deposited speleothems are
30	used here as archives of regional sulphur depositional history at two locations within
31	the United Kingdom and Ireland. $\delta^{34}S$ -so ₄ and $\delta^{18}O$ -so ₄ present within speleothem
32	carbonate are measured for the first time as part of a dual isotope approach to decode
33	the speleothem sulphur record. The largely refractory nature of $\delta^{34}S\text{-so}_4$ under
34	oxidising conditions enables source provenance of atmospheric SO ₂ , whereas the
35	complex cycles of isotopic exchange and fractionation during incorporation of oxygen
36	into sulphate molecules enable δ^{18} O-so ₄ signatures to yield insights into ambient
37	environmental conditions and biogeochemical cycling in the ecosystem above the
38	cave. δ^{34} S-so ₄ values extracted from speleothem carbonate formed within Browns
39	Folly Mine, UK, range from +3.5 to +5.5 ‰ and δ^{18} O-so ₄ +10.3 to +13.7 ‰. Both
40	signatures lie within the range expected from sulphate deposition in industrial
41	locations and reflect the transfer of sulphate into speleothem calcite with little
42	fractionation. However, δ^{18} O-so ₄ signatures at Crag Cave, western Ireland, are
43	isotopically heavier than expected and approach isotopic equilibrium with $\delta^{18}\text{O-}\text{H}_{2}\text{O}$
44	under reducing conditions. Dual isotope analysis of $\delta^{34}S\text{-so}_4$ and $\delta^{18}O\text{-so}_4$ optimises the
45	correct identification of sulphur sources and biogeochemical cycling prior to
46	incorporation into the speleothem record. At carefully selected cave sites where drip
47	water flowpaths into the cave remain oxic, speleothems hold the potential to retain
48	records of atmospheric sulphur loading at the local and regional scale.
49	Keywords: Sulphur isotopes, Sulphate-oxygen isotopes, speleothems, atmospheric
50	sulphur

76	Anthropogenic emissions of SO ₂ have risen since 1850 due to increased industrial
77	activity (LeFohn et al., 1999), rendering atmospheric sulphate aerosols key agents in
78	forcing recent climate (e.g. Smith et al., 2001). Such increased emissions are
79	documented in ice core records of sulphate deposition, which are currently considered
80	the premier archive of past atmospheric sulphur concentrations (e.g., Patris et al.,
81	2000, 2002; Isaakson et al., 2005). However, ice core localities are frequently distal
82	from sources of SO ₂ emissions and reflect a relatively clean atmospheric boundary
83	layer. Due to the relatively short lifetime of sulphate aerosols in the atmosphere, the
84	impact of anthropogenic sulphur emissions on the climate and biogeochemistry of
85	sulphur cycling is most acute at local and regional scales. Historical quantification of
86	sulphur inputs to terrestrial environments has been demonstrated through sulphur
87	isotope ratios in archived soil and herbage samples from the UK (Zhao et al., 1998),
88	from wood of coniferous trees in Japan (Kawamura et al., 2006) and from lake and
89	peat sediment cores in Europe (Bottrell and Coulson, 2003; Coulson et al., 2005;
90	Novak et al., 2005) and Canada (Mayer et al., 2007).
91	
92	Speleothems can yield multi-proxy, high resolution records of the palaeoenvironment,
93	and are formed through the carbonation of host carbonate bedrocks and re-
94	precipitation of calcite within cave environments (see review by Fairchild et al.,
95	2006a). The incorporation of trace elements, organic molecules and specific stable
96	isotope signatures in speleothem carbonate provides a suite of geochemical
97	parameters capable of capturing a cave's response to the external environment. Thus,
98	trace amounts of sulphur discovered as sulphate in speleothems suggest that
99	stalagmites may record key aspects of atmospheric variability in sulphate content at
100	local and regional scales (Frisia et al., 2005; Fairchild et al., 2006a). Sulphate is

101	inferred to be present in speleothem calcite as Carbonate Associated Sulphate (CAS)
102	identified in the geological record of marine carbonates (e.g. Bottrell and Newton,
103	2006). XANES analysis has been used in both marine (Pingitore et al., 1995) and
104	speleothem carbonate (Frisia et al., 2005) to identify the oxidation state of the
105	constituent sulphur as sulphate, implying its presence within the calcite lattice as a
106	structural substitution for carbonate. However, sulphur concentration data alone
107	cannot directly identify the source of speleothem CAS (Wadleigh et al., 1996; Frisia
108	et al., 2005). Atmospheric variability in sulphate content is controlled by natural as
109	well as anthropogenic sources of sulphur and may be modified by biogeochemical
110	cycling and additional sources of sulphur stored within the surrounding bedrock and
111	soil waters (Figure 1). The sulphate content of cave drip waters and associated
112	stalagmites may thus represent a mixed signal, reflecting not only the local variability
113	in atmospheric sulphate content, but also biogeochemical cycling in the ecosystem
114	above the cave. Sulphur and oxygen isotope systematics of sulphate differ markedly,
115	and in principle should enable the provenance of sulphate within speleothems to be
116	established permitting further deconvolution of the mixed atmospheric /
117	biogeochemical signal archived within speleothems.
118	
119	2. THEORETICAL BACKGROUND
120	
121	Figure 1 summarises the potential sources of sulphate contributing to speleothem
122	CAS with characteristic δ^{34} S compositions. Primary sea-salt aerosols released into the
123	atmosphere from sea spray are derived from the well-mixed reservoir of marine
124	sulphate and have a δ^{34} S value identical to that of sea water (~+21 ‰). Biogenic
125	sources of secondary sulphate aerosol are derived from marine emissions of

126	dimethylsulphide (DMS) and are generally depleted in ³⁴ S relative to seawater
127	sulphate, with reported δ^{34} S values of +15.6 ±3.1 ‰ (Calhoun et al., 1991).
128	Continental emissions of sulphate aerosol can be divided into anthropogenic and
129	biogenic emissions. In the northern hemisphere, sulphate in precipitation sourced
130	predominantly from anthropogenic emissions is usually assigned an average $\delta^{34}S$
131	value between -3 and +9 ‰ (Mayer, 1998), despite the δ^{34} S composition of the source
132	materials varying beyond this range (see compilation of source material values in
133	Nielson, 1974). Continental biogenic emissions of sulphur consist predominantly of
134	gaseous organic sulphides from the decomposition of organic matter associated with
135	plants and soils. Such emissions have a wide range of $\delta^{34}S$ values depending upon the
136	redox status under which they are formed. Under oxidising conditions, their isotopic
137	composition should be similar to that of local precursor sulphate derived from
138	precipitation, groundwater and lithogenic sources. This is quoted to have an average
139	δ^{34} S value close to 0 ‰ (Nielson, 1974), although reducing conditions induce
140	extensive fractionation to the source compounds. This fractionation varies with
141	environmental conditions although when the size of the substrate pool is unlimited,
142	gaseous organic sulphides may be fractionated so they are up to 70 ‰ lighter than the
143	precursor sulphate (Brunner and Bernasconi, 2005).
144	

145 Due to the widely differing source composition of oxygen isotopes involved in the 146 oxidation of sulphur compounds to sulphate, the oxygen isotopic composition of 147 sulphate in speleothems should enable the distinction between sulphate which is 148 sourced directly from the atmosphere and that produced by nutrient cycling in 149 terrestrial ecosystems (e.g.: Mayer et al., 1995a, b; Likens et al., 2002), thus aiding 150 process- identification as well as source provenance. Published values for the δ^{18} O

151 composition of atmospheric sulphate range from -3 to +41.7 % VSMOW (see 152 compilation of published values in Jamieson and Wadleigh, 1999; Jenkins and Bao, 153 2006). This wide range reflects the different reaction pathways of gaseous sulphide 154 oxidation in the atmosphere, the oxygen isotopic composition of the oxidants involved 155 and the mixing ratio between aerosols formed at source as sulphate (primary aerosols) 156 and those produced in the atmosphere from gaseous precursors (secondary aerosols) 157 (see review by Holt and Kumar, 1991). Secondary aerosols formed from gaseous 158 precursors do not carry oxygen isotopic signatures indicative of source provenance, 159 but reflect only the pathways of sulphide oxidation in the atmosphere due to a rapid 160 isotopic equilibration between reduced sulphoxy intermediate species and H₂O. Source provenance signatures of δ^{18} O in reduced sulphur compounds emitted into the 161 162 atmosphere are thus erased during oxidation to secondary aerosol species. Primary sulphate aerosols retain their source δ^{18} O-so₄ composition during transport through the 163 164 atmosphere. These can be sourced from sea spray (+9.7 ‰; Lloyd, 1967) or from industrial activity with δ^{18} O-so₄ signatures up to +45 ‰ (Holt et al., 1982; Jamieson 165 166 and Wadleigh 1999). The proportion of primary aerosol present in the atmosphere thus significantly influences the value of bulk δ^{18} O-so₄ aerosol deposition. 167 168 169 Subsequent to sulphate aerosol deposition, biogeochemical cycling of sulphur resets

the oxygen isotopic composition of atmospheric-derived sulphate according to
environmental conditions. Where aerobic oxidising conditions prevail in the overlying
cave soils, biogeochemical cycling of deposited sulphate may induce assimilatory
sulphate reduction to organic-S compounds and mineralisation back into the inorganic
phase. This causes only minimal fractionation to ³⁴S/³²S ratios compared to precursor
sulphate derived from precipitation, groundwater and lithogenic sources. Sulphate

¹⁸O/¹⁶O ratios however, are a product of incorporating four oxygen atoms obtained in
varying proportions from the surrounding soil water and atmospheric oxygen
(Equation 1).

179

180
$$\delta^{18}$$
O-so₄ = [(δ^{18} Oatm o₂ - ϵ so₄-atm) × f_{O2} atm] + (δ^{18} Owater ×1- f_{O2} atm) (1)

181

182 where $f_{O_2 atm}$ and 1- $f_{O_2 atm}$ represent the fraction of oxygen obtained from the 183 atmosphere and soil water respectively, and $\delta^{18}O_{-atm}O_2$ and $\delta^{18}O_{-water}$ represent the 184 oxygen isotopic compositions of atmospheric O₂ (+23.88 ‰; Barkan and Lus, 2005) 185 and water. ε so₄-atm is the isotopic enrichment associated with the incorporation of 186 atmospheric O₂ into sulphate, demonstrated experimentally to have a value of -8.7 ‰ 187 (Lloyd, 1968).

188

189 Sulphoxy intermediate compounds (SO, SO₂, HSO₃⁻) can be exposed to rapid isotopic 190 equilibration with the surrounding water. The isotopic composition of the constituent 191 oxygen can thus be reset such that up to 75% of the oxygen in the final sulphate 192 molecule has an isotopic composition controlled by meteoric water (Holt, 1981). 193 Where mineralisation of organic compounds to sulphate is sufficiently rapid such that 194 sulphoxy intermediate species do not become fully equilibrated with meteoric water, 195 the final sulphate molecule may contain a greater proportion of oxygen sourced from atmospheric O₂ (Bottrell, 2007). The δ^{18} O-cas contained within speleothem calcite is 196 197 thus sensitive to the relative proportions of atmospheric O_2 and water oxygen 198 incorporated into the sulphate molecule. Isotopic signatures may therefore have a 199 theoretical upper end-member composition of +14.8 ‰ where all four oxygen atoms 200 are derived from atmospheric O₂ (Bottrell and Newton, 2006) and range towards the

201	oxygen isotopic composition of the ambient water where equilibration with meteoric
202	water imparts up to 75% of the isotopic composition. Where sulphur is contained
203	within organic matter as ester sulphate compounds and liberated through enzyme
204	hydrolysis (e.g. Fitzgerald, 1976), at least three of the oxygen atoms in the newly
205	mineralised sulphate are sourced directly from the organically bound sulphate
206	molecule. As such, a depletion of only 2-3 ‰ is observed in oxygen isotope
207	composition compared to the original sulphate ester compound (Mayer et al., 1995b).
208	
209	Under reducing conditions, processes of microbial sulphate reduction may cause
210	extensive kinetic fractionation of δ^{34} S. Fractionation of δ^{18} O-so ₄ however, is manifest
211	as an equilibrium isotopic exchange between the ambient water and the residual
212	sulphate pool such that an enrichment factor of +29 ‰ at 5 °C may be apparent if
213	equilibrium is approached (Fritz et al., 1989; Brunner et al., 2005; Wortmann et al.,
214	2007). During initial stages of sulphate reduction, $\delta^{34}S$ -so ₄ and $\delta^{18}O$ -so ₄ signatures
215	demonstrate a linear fractionation relationship, typical of a kinetic reaction
216	mechanism. When sulphate reduction reaches an advanced state however, residual
217	$\delta^{18}O\text{-}_{SO^4}$ signatures approach a constant equilibrium value and $\delta^{34}S\text{-}_{SO_4}$ residual
218	signatures continue to become enriched in ³⁴ S according to a typical Rayleigh
219	fractionation trajectory (Brunner et al., 2005). Where cyclical reduction - re-oxidation
220	of sulphate occurs within the same environment, values of $\delta^{18}\text{O-so}_4$ may display an
221	offset between the equilibrium oxygen isotope signature and the measured values. Re-
222	oxidation of sulphite to sulphate involves the incorporation of one additional oxygen
223	from an external source such as water (enrichment factor = $+4$ %; cf.Taylor et al.,
224	1984). The resulting oxygen isotope composition in the residual sulphate can be
225	approximated as;

226

227
$$\delta^{18}\text{O-so}_4 = [0.75 \times (\delta^{18}\text{OH}_2\text{O} + \varepsilon \text{ so}_4\text{-H}_2\text{O})] + 0.25 \times (\delta^{18}\text{OH}_2\text{O} + 4\%)]$$
 (2)

228

where ε so₄-H₂O is the equilibrium isotopic enrichment between δ^{18} O in the residual 229 230 sulphate pool and that in the surrounding water (after Brunner et al., 2005). The influence of re-oxidation upon ³⁴S values however will be to retain a signature similar 231 232 to the initial products if isotope mass balance is maintained (e.g., Barker et al., 1998). The extraction and analysis of δ^{34} S and δ^{18} O from speleothem CAS thus holds the 233 234 potential to record the sulphur sources and biogeochemical transformations present 235 along the flow pathways of speleothem-feeding drips. 236 237 Traditional methods used for the extraction and analysis of SO₄-S and SO₄-O from 238 carbonates rely on the acid digestion of large quantities of material (typically 100 to 239 300 g) and the extraction of sulphate as barium sulphate (e.g. Gellatly and Lyons, 240 2005). The large volumes of carbonate material required have thus frequently 241 constrained the type of samples analysed for sulphate isotopic composition. Where 242 geological carbonates are present in abundance or contain significant quantities of 243 sulphur, such constraints are not applicable. However, in speleothem carbonate, 244 sulphur content is low and the material available for analysis is necessarily limited. 245 New methods to reduce the sample size of carbonate material required for the extraction and analysis of δ^{34} S-so₄ and δ^{18} O-so₄ have been developed as a part of this 246 247 study, thus enabling the sulphur isotopic characterisation of speleothem archives. Here we report the first determinations of ${}^{34}S/{}^{32}S$ and ${}^{18}O/{}^{16}O$ ratios of CAS extracted 248 249 from speleothems. The samples originate from two cave sites in contrasting locations, 250 demonstrating the power of the dual isotope approach for palaeoenvironmental

251 interpretation. We compare modern time series of a stalagmite collected from within 252 Browns Folly Mine, UK, where values of δ^{34} S-cAs illustrate a dominant control by 253 anthropogenic SO₂ emissions, with that of a stalagmite from Crag Cave, S.W Ireland, 254 yielding δ^{34} S-cAs and δ^{18} O-cAs signatures representative of sulphate reduction and re-255 oxidation in the soils above the cave.

256

3. SITE AND SAMPLE DESCRIPTION

258

5. SITE AND SAMELE DESCRIPTION

Browns Folly Mine, Bathford, SW England, was developed in the 19th century for the 259 260 extraction of building stone from the surrounding limestone (the Bath Oolite member 261 of the Jurassic Great Oolite series) (for cross section of mine site see Baldini et al., 262 2005; Fairchild et al., 2006b). Mining activity commenced in 1836 and continued 263 until the mines were abandoned in 1886, thus constraining the maximum possible age 264 of the associated speleothems. The mines remained closed for approximately 100 265 years until re-opened by cavers in the 1970s (Baker et al., 1998, 1999). Lithologies of 266 the overlying Middle Jurassic bedrock are mainly oolitic and skeletal limestones, 267 containing a minor sand and clay component and a porosity of 0 to 40 % (Fairchild et 268 al., 2006b), with an absence of pyrite and other sulphide minerals. Vertical fractures 269 dissect the horizontally stratified limestone formations providing a route for rapid 270 fissure flow of groundwater into the mine system. Slower seepage flow is fed by 271 minor fissures and water stored within the porous limestone matrix (Baker et al., 1999; Fairchild et al., 2006b). Vegetation has gradually re-established itself over the 272 273 study site since the cessation of mining operations in 1886 such that secondary 274 deciduous forest of mixed ash, sycamore and oak is now prevalent (Baldini et al., 275 2005). The sampled stalagmite (BFM-Boss) was extracted in 1996 from a chamber

276 approximately 300 m from the mine entrance (Baldini et al., 2005) and represents a 277 continuous deposition of calcite in annual couplets of clear and inclusion-rich 278 laminae. Three independent lamina thickness counts established 77±3 annual couplets 279 at the central growth axis suggesting that BFM-Boss nucleated no later than 1916. 280 Annual calcite deposition rates remained low until 1975, when couplet thicknesses 281 increase dramatically, indicating an increase in growth rate. The nucleation of BFM-282 Boss approximately 30 years after the closure of the mines is thought to reflect either 283 the time taken for the development of a stable hydrological system subsequent to the 284 cessation of mining activity, or the slow rate of vegetation establishment above the 285 cave site. Baldini et al., (2005) showed that vegetation development had a strong influence on the δ^{13} C and δ^{18} O record of this sample. 286

287

288 Crag Cave, located in County Kerry, Ireland, is developed in Lower Carboniferous 289 limestone some 20 km from the Atlantic coast of SW Ireland (McDermott et al., 290 1999) (for site details see Tooth and Fairchild 2003; Baldini et al., 2006). Discovered 291 in 1981, parts of the relatively shallow cave system (c. 20m deep) were opened as a 292 tourist cave in 1985, although restricted access to the cave interior has ensured the 293 maintenance of near-pristine conditions, rendering it ideal for hydrochemical studies 294 (Baldini et al., 2006). The surrounding bedrock, belonging to the Lower 295 Carboniferous Cloonagh Formation is dominantly limestone, with small amounts of 296 dolomite and some pyrite (Tooth and Fairchild, 2003). Till deposits overlying the 297 cave are of variable thickness (0.1-2.5m thickness) belonging to the Munsterian 298 (Marine Isotope Stage 6) glaciation. The low permeability of the fine grained clay 299 matrix encourages saturation and a constant supply of water to the stalagmite-feeding 300 drips, and streaks of iron oxide staining demonstrate the presence of oxidising

301	conditions in isolated zones and hence the existence of redox cycling. The presence of
302	a crack and fissure network allows the till deposits to be regarded as a dual-porosity
303	system, facilitating both rapid water throughput via fracture flow and a more constant
304	matrix seepage flow supplied from the large storage capacity of the micropores
305	(Tooth and Fairchild, 2003). The sampled stalagmite, CC-Bil, was removed from a
306	passage 30 m below the ground surface in 2002. The drip that fed stalagmite CC-Bil
307	formed on the tip of a 1m long soda straw stalactite and is classed as a 'seepage flow
308	site' under the classification of Smart and Friederich (1986). Drip rates at this site and
309	others in close proximity are low (site CC-Bil = 0.08 ml/min) and show very little
310	variation through time (site CC-Bil drip rate CV = 5.4 %) (Tooth and Fairchild, 2003;
311	Baldini et al., 2006). Based on visible calcite deposition on loggers underneath the
312	drip feeding stalagmite CC-Bil, this stalagmite was actively growing when collected
313	in 2002. U-series dating demonstrates a basal mean ICP-MS U-Th age of 1752 AD
314	(+/- 7 years) and an approximately linear growth rate over the past 260 years.
315	
316	4. METHODOLOGY
317	4.1. Sulphate extraction
318	
319	Sulphur concentrations in each of the stalagmites were determined by high resolution inductively
320	coupled plasma mass spectrometric analysis (HR-ICPMS) of calcite powders at Kingston University,
321	UK, drilled in 2 mg aliquots from the central axis of the stalagmite and digested in 8 ml of 2 % HNO ₃
322	(Aristar grade). Depending upon the concentration of CAS, larger aliquots of calcite (~200 mg) were
323	prepared for sulphur and oxygen isotope analysis by sampling in a continuous fashion down the
324	stalagmite central growth axis, each sample aggregating several years of growth. Using the
325	concentration data obtained through HR-ICPMS analysis, the size of each carbonate sample was
326	calculated to yield a minimum of 35 μ g of sulphur, representing the quantity of sulphur required for
327	analysis by CF-IRMS (continuous flow isotope ratio mass spectrometry) given the instrumental

328 configuration outlined below. Parallel sampling tracks enabled the integrity of δ^{34} S and δ^{18} O analyses 329 to be assessed through sample replication. The methodological approach to sulphur and oxygen isotope 330 extraction was based upon procedures reported in Newton et al. (2004), albeit simplified as the relative 331 purity of stalagmite carbonate precluded the need for pre-treatment with sodium hypochlorite and 332 bromine water to remove organic contaminants and trace amounts of pyrite, respectively. Given the 333 small quantities of sulphur extracted per sample, the following protocol was designed to minimise 334 sample handling and contamination in all steps of the procedure.

335

336 Drilled stalagmite powders were digested overnight in 1 ml of 4M hydrochloric acid (Aristar grade) 337 within polyethylene syringes, capped with Luer tips. Syringe filtration through pre-rinsed 0.2µm nylon 338 filter capsules (Puradisc, Whatman[®]) enabled sample transfer between vessels with the minimum of 339 product loss. The extraction of sulphate as barium sulphate was undertaken following precipitation 340 using barium chloride solution. Two different techniques of precipitate concentration were used to 341 collect the barium sulphate from solution: filtration and centrifugation. Where filtration was the method 342 employed, 0.5 ml of 1 M barium chloride solution was added to the filtered carbonate digest solution 343 within the housing of a second polyethylene syringe. Samples were left to precipitate and mature for 2 344 -3 days, prior to syringe filtration through quartz microfibre filters using an in-line filter capsule 345 (Swinnex, millipore) modified to hold filter papers 7 mm in diameter. Each filter loaded with 35 µg of 346 S (~250 µg BaSO₄) was transferred into a tin capsule, dried at 70 °C and stored in a desiccator prior to 347 mass spectrometric analysis (Figure 2).

348

349 However, based upon the decomposition of quartz above 700 °C and the release of constituent oxygen, 350 the use of quartz microfibre filters as a means of pre-concentrating barium sulphate precluded analysis 351 for δ^{18} O-SO₄ by this method. Centrifugation in association with an inert medium was thus employed as 352 the method of pre-concentration for the remainder of the study. Carbonate digest solutions were 353 syringe-filtered into 1.5 ml centrifuge vials and precipitated as barium sulphate following addition of 354 0.2 ml of 1M barium chloride solution. Contact time between free sulphate ions in solution with strong 355 acid was minimised to ~ 1 hour to prevent potential oxygen isotopic exchange between sulphate and 356 water under acidic conditions (e.g. Gellatly and Lyons, 2005; Newton et al., 2004; Hurtgen et al., 357 2002). Addition of quartz powder (~ 2 mg; EuroVector isotopic grade) served as an inert medium onto

358	which barium sulphate could precipitate, thus increasing the mass of product and enabling ease of
359	handling. Sulphate for δ^{18} O analysis was precipitated onto powdered glassy carbon (~ 0.5 mg, Euro
360	Vector isotopic grade) as the inert medium. Samples of barium sulphate were left to mature for \sim 72
361	hours prior to repeated centrifuging and washing with de-ionised water to remove excess barium. The
362	resultant pellets of quartz powder with barium sulphate and glassy carbon with barium sulphate were
363	oven dried at 70 °C and transferred to tin or silver capsules for $\delta^{34}S$ and $\delta^{18}O$ analysis respectively
364	(Figure 2).
365	
366	To overcome possible problems associated with oxygen release during the decomposition of quartz
367	powder contributing to SO_2 beam intensities and thus influencing $\delta^{34}S$ measurements (e.g. Fry et al.,
368	2002), similar quantities of quartz powder were added to standard materials as well as samples prior to
369	combustion. This effectively supplied a large reservoir of oxygen in the form of quartz powder,
370	buffering the oxygen composition of the SO ₂ gas for both samples and standards.
371	
372	4.2. Mass spectrometric analysis
373	
374	34 S/ 32 S and 18 O/ 16 O ratios of product barium sulphate were determined using a EuroVector elemental
375	analyser linked to a GV Isoprime continuous flow mass spectrometer at the University of Birmingham.
376	Combustion of samples within tin capsules in the presence of vanadium pentoxide at 1030 °C yielded

377 SO₂ for determination of δ^{34} S-SO₄ and pyrolysis within silver capsules in the presence of nickelised

378 carbon at 1250 °C yielded CO for determination of δ^{18} O-SO₄. δ^{34} S values were corrected against CDT

 $379 \qquad \text{using within run analyses of international standard NBS-127 and SO5 (assuming <math display="inline">\delta^{34}S$ values of +20.3

380 % and +0.5 % respectively (IAEA, 2004)) and $\delta^{18}O$ was corrected to VSMOW using NBS-127 and

381 SO6 (assuming δ^{18} O values of +9.3 ‰ and -11.3 ‰ respectively (IAEA, 2004)). Within-run standard

382 replication (1 SD) was <0.3 ‰ for both sulphur and oxygen. Sample replication from two parallel

383 sample tracks drilled in stalagmite BFM-Boss were < 0.4 ‰ (1 SD) for δ^{34} S values and < 0.5 ‰ for

 $384 \qquad \delta^{18}$ O values based on sample replication in stalagmite CC-Bil.

385

386 Procedural standard solutions of calcium sulphate and sodium sulphate were used to test the integrity of 387 the methodology for precipitation and analysis of small quantities of barium sulphate for δ^{34} S and δ^{18} O

500	determinations respectively. Calcium sulphate solution precipitated as barium sulphate under acidified
389	conditions and analysed according to the above methodology using quartz microfibre filters, yielded
390	δ^{34} S-SO ₄ signatures of +3.2 ‰ (0.3 ‰ 1 SD, <i>n</i> = 20) compared to δ^{34} S values of +2.9 ‰ (0.3 ‰ 1 SD,
391	n = 13) for analysis of raw calcium sulphate powder. Where centrifuging with quartz powder was used
392	as the method of pre-concentration, analyses of standard calcium sulphate solution precipitated as
393	barium sulphate, yielded δ^{34} S-so ₄ isotopic values of +2.6 ‰ (0.3 ‰ 1 SD, <i>n</i> = 12). Sodium sulphate
394	solution precipitated as a bulk quantity of barium sulphate yielded δ^{18} O-SO ₄ isotopic signatures of +12.6
395	$(0.4 \ \% \ 1 \ \text{SD}, n = 8)$ compared to analyses obtained following the centrifuging method of pre-
396	concentration under analogous acidified conditions, of +13.0 $\%$ (0.7 $\%$ 1 SD, $n = 6$).
397	
398	Blank contamination associated with $\delta^{34}S$ determinations were zero. A small blank signal associated
399	with oxygen analysis is most likely associated with trace levels of oxides on the glassy carbon and
400	nickelised carbon catalyst, but was too small to determine accurately. To overcome the potential impact
401	of blank contribution upon reported δ^{18} O values, standard materials and samples were analysed using
402	the same quantities of glassy carbon powder and nickelised carbon catalyst.
403	
404	5. RESULTS
405	
406	5.1. BFM-Boss
406 407	5.1. BFM-Boss
406 407 408	5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ^{34} S and δ^{18} O values of carbonate
406 407 408	5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ^{34} S and δ^{18} O values of carbonate
406 407 408 409	5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ^{34} S and δ^{18} O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150
406 407 408 409 410	5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ^{34} S and δ^{18} O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150 to 250 ppm (Table 1) and are coincidentally similar to those of the surrounding
406 407 408 409 410 411	 5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ³⁴S and δ¹⁸O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150 to 250 ppm (Table 1) and are coincidentally similar to those of the surrounding bedrock (range 156 to 312 ppm) (Table 2). The δ³⁴S-cAs values associated with BFM-
406 407 408 409 410 411 412	 5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ³⁴S and δ¹⁸O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150 to 250 ppm (Table 1) and are coincidentally similar to those of the surrounding bedrock (range 156 to 312 ppm) (Table 2). The δ³⁴S-cAs values associated with BFM- Boss are between +3.5 and +5.5 ‰ and significantly lower than those contained
406 407 408 409 410 411 412 413	 5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ³⁴S and δ¹⁸O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150 to 250 ppm (Table 1) and are coincidentally similar to those of the surrounding bedrock (range 156 to 312 ppm) (Table 2). The δ³⁴S-cAs values associated with BFM- Boss are between +3.5 and +5.5 ‰ and significantly lower than those contained within the surrounding bedrock (+17.9 to +22.0 ‰). δ¹⁸O-cAs signatures within the
406 407 408 409 410 411 412 413 414	 5.1. BFM-Boss Figure 3 displays sulphur concentrations and δ³⁴S and δ¹⁸O values of carbonate associated sulphate in stalagmite BFM-Boss. Sulphur concentrations are between 150 to 250 ppm (Table 1) and are coincidentally similar to those of the surrounding bedrock (range 156 to 312 ppm) (Table 2). The δ³⁴S-cAs values associated with BFM-Boss are between +3.5 and +5.5 ‰ and significantly lower than those contained within the surrounding bedrock (+17.9 to +22.0 ‰). δ¹⁸O-cAs signatures within the speleothem range between +10.3 ‰ to +13.7 ‰. Table 3 displays the ionic

416 concentrations displayed as a percentage sea-salt sulphate (% SSS) are calculated on 417 the assumption that sea spray has a molar SO_4/Cl ratio of 0.0516 and is the source of 418 all Cl⁻ in the drip waters (after Holland, 1978), such that 29 % (1 SD = 15%) of all 419 sulphate is calculated to be of inorganic marine provenance. Further, sulphate 420 concentrations within drip waters comprise just 1.4 % sulphate sourced from the 421 bedrock based on Ca/SO₄ ratios given in Table 2 (equation 3). 422 % bedrock SO₄ = $[1 / (^{bedrock} Ca: SO_4 / ^{dripwater} Ca) / ^{dripwater} SO_4] \times 100$ 423 (3) 424 425 This assumes all calcium in the cave drip waters is sourced from dissolution of the 426 karst bedrock, with negligible contribution from dissolution of calcareous dust 427 particulates in the atmosphere, and assumes ratios are unaffected through chemical 428 evolution associated with limited levels of prior calcite precipitation (Tooth and 429 Fairchild, 2003).

430

431 **5.2. CC-Bil**

432

433 Sulphur concentrations within stalagmite CC-Bil are between 100 and 200 ppm and values of δ^{34} S-_{CAS} range between +16.8 and +19.1 ‰ and δ^{18} O-_{CAS} between +19.2 and 434 +23.9 ‰ (Table 4, Fig 4). Bedrock concentrations of sulphur are low and range 435 between 51 and 92 ppm (Table 2), and isotopes of δ^{34} S and δ^{18} O within the lower 436 437 Carboniferous limestone within which Crag Cave is formed are reported to range between +13 to +15 % for δ^{34} S based on CAS-derived S isotopes and +14 to +19 %438 for δ^{18} O based on marine evaporites (Bottrell and Newton, 2006). Drip sites feeding 439 440 and immediately adjacent to stalagmite CC-Bil display sulphate concentrations which

are consistently between 7.9 to 8.5 ppm. % SSS consistently accounts for 36 % of the
measured drip water sulphate and % bedrock-derived sulphate represents just 1.1 % of
drip water sulphate composition (Table 4).

444

445 **6. DISCUSSION**

446

447 6.1. Browns Folly Mine; BFM-Boss

448

449 On the understanding that the chloride content of cave drip waters can be used as an 450 indicator of primary sea spray aerosol content at each site, apportionment of speleothem CAS between the remaining sources is possible using the δ^{34} S end 451 member compositions and δ^{18} O process information outlined above. Based on the 452 453 %SSS content and ratio of calcium to sulphate in cave drip waters feeding stalagmite 454 BFM-Boss (Table 3), 29 % of the constituent sulphate appears to be of primary marine origin and just 1.4 % is sourced from the carbonate bedrock. As the δ^{34} S 455 456 marine end-member value for primary sea salt aerosol is +21‰ and the bedrock has an average δ^{34} S composition of +20 ‰, mass balance suggests the additional source 457 of sulphur contributing to contemporary speleothem CAS must have a δ^{34} S value 458 close to -3 % (actual measured δ^{34} S composition +3.5 to +5.5 %). On the basis that 459 460 anthropogenic emissions of sulphur in precipitation are documented to reside between 461 -3 and +9 % in industrialised countries of the northern hemisphere (Mayer, 1998), 462 this would suggest the non sea salt sulphur within stalagmite BFM BOSS is derived 463 predominantly from anthropogenic pollution (e.g., Zhao et al., 1998) (Fig. 5). Such an 464 interpretation is consistent with the industrial nature of the region surrounding this 465 particular site. Continental biogenic emissions of reduced sulphur compounds may

466	also have $\delta^{34}S$ values within the range required to account for the additional source of
467	sulphur contributing to speleothem CAS. However, oxidation of such biogenic
468	emissions within the atmosphere would render the constituent oxygen isotopes too
469	light to account for the source of speleothem sulphate (see Figure 5). Bedrock-derived
470	CAS δ^{34} S values (+17.8 to +21.9 ‰) are considerably higher than sulphate
471	structurally bound within stalagmite calcite. Release of this heavy bedrock sulphate
472	into groundwaters may contribute an additional source of sulphate to the drip water,
473	although in the most recently deposited speleothem calcite, bedrock sulphate
474	contributes just 1.4 % of the total stalagmite CAS composition. $\delta^{34}S$ values are stable
475	between 1960 to 1992 at ~ +3.6 ‰, although calcite deposited prior to 1962 hosts
476	δ^{34} S- _{CAS} values up to +5.5 ‰. This may reflect lower sulphur emissions from
477	industrial activity during the early 20 th C and relatively greater contributions from
478	marine and bedrock derived sources with heavier sulphur isotopic composition. The
479	lack of co variation between sulphur concentrations and sulphur isotopes post 1960
480	may reflect the dominant source of anthropogenic sulphur in the atmosphere. The
481	minimal relative contribution from additional sulphur sources may cause little
482	perturbation from pollution end-member compositions.
483	

484 δ^{18} O-cas signatures range from +10.3 ‰ to +13.7 ‰, with the heavier isotopic values 485 found during the earlier growth phases of the stalagmite. These signatures fall in a 486 range where interpretations of sulphur cycling in the sediments and biomass above the 487 cave are somewhat ambiguous. The δ^{18} O-cas compositions are similar to those 488 expected in atmospheric sulphate deposition (Figure 5) and could represent a direct 489 transfer of atmospheric precipitation into the cave environment via rapid flow routing, 490 having undergone very little biogeochemical transformation. Based on 29 % sea salt sulphate contribution as primary marine aerosol (δ^{18} O-SO₄ of primary marine aerosol is +9.7 ‰ (Lloyd, 1967)), the remaining non sea salt sulphate (NSS) in the youngest part of the stalagmite is calculated to have an end member composition of +10.9 ‰, typical for atmospheric sulphate deposition of mixed primary anthropgenic and secondary aerosol sulphate origin.

496

To produce drip water sulphate with ${}^{18}O/{}^{16}O$ ratios identical to those found in 497 498 speleothem CAS via biogeochemical mineralisation of organic sulphur would require 499 approximately 80 % of the constituent oxygen to be sourced from atmospheric O_2 500 (assuming fractionation during the mineralisation and incorporation of atmospheric oxygen into sulphate to be -8.7 % (Lloyd, 1968) and an average drip water δ^{18} O-H₂O 501 502 composition of -5 ‰. However, given that experimental data have demonstrated 503 biological reaction pathways may produce sulphate containing a maximum of 55 % 504 atmospheric O_2 only under exceptional circumstances (Toran and Harris, 1989), the 505 biogeochemical mineralisation of organic sulphur compounds to sulphate is not 506 considered to be apparent in the drip water flow pathway feeding this stalagmite (Fig. 507 5). 508 509 If the main source of sulphate contained within organic matter is present as organic

ester sulphate compounds, hydrolysis may produce free sulphate ions within a 2-3 ‰
range of the oxygen isotopic composition of the original sulphate compound (Mayer
et al., 1995b). This would give an initial oxygen isotopic composition of
approximately 12-13 ‰, consistent with an atmospheric aerosol source.

515 There is clear evidence at this cave site for both a long term hydrological storage 516 component and a very rapid flow route at times of high rainfall (Fairchild et al., 517 2006b), thus both mechanisms (ester sulphate hydrolysis and rapid flow routing) 518 remain possible contributors to the observed δ^{18} O-cas signatures at this site. 519

- 520 **6.2.** Crag Cave; CC-Bil
- 521

522 Crag Cave presents a contrasting case in being largely isolated from sources of 523 anthropogenic SO₂ emissions and the large scale combustion of fossil fuels due to a 524 predominantly westerly airflow and its position on the western periphery of Europe 525 (Aherne and Farrell, 2002). Prevailing westerly winds typically provide the main 526 source of atmospheric sulphur transporting aerosol of primary sea salt origin onto the 527 continental margin (Aherne and Farrell, 2002; Jordan, 1997).

528

529 Ratios of sulphate to chloride in atmospheric deposition from the region typically 530 define a sea salt component of ~80 % (Aherne and Farrell, 2002; Jordan, 1997), of 531 which the remaining 20% could be sourced from DMS, distal sources of pollution, or 532 continental biogenic emissions. This contrasts with ratios to chloride in drip waters 533 feeding stalagmite CC-Bil, where just 35% of sulphate is of sea salt origin. This 534 suggests an additional source of sulphur is obtained from somewhere along the drip water flow path. Values of δ^{34} S-cas in recent speleothem calcite are +18.6 ‰ (Table 535 536 4), leaving an end-member non sea salt sulphate composition of +17.2 %. This value 537 appears typical of measured atmospheric deposition in the region (Bottrell and Novak, 538 1997; quoted average value of +17.8 ‰) although could represent any mixture of 539 atmospheric sources stored within the soil profile as organic sulphur, prior to re540 mineralisation and release into the drip water flow path. Based on a comparison of 541 Ca/SO₄ ratios in bedrocks and drip waters, carbonation and release of sulphate from 542 the surrounding bedrock appears to contribute just 1.1 % of sulphate to the drip water 543 composition and is thus insufficient to account for the additional sulphate source. 544 Signatures of δ^{18} O-CAS are used below to try and identify the nature of this additional 545 non sea salt sulphate.

546

Values of δ^{18} O-cas are isotopically enriched in ¹⁸O beyond that expected for values of 547 548 atmospheric sulphate in an environment distal from extensive inputs of industrial pollution. δ^{18} O-cas values are also in excess of sulphate oxygen signatures produced 549 550 through 1) biogeochemical mineralisation of sulphur to sulphate under oxidising 551 conditions; 2) oxidation of continental biogenic emissions released into the 552 atmosphere; 3) oxidation of marine DMS compounds; or 4) the release of primary 553 seasalt aerosol (Figure 6). The only feasible mechanism of obtaining oxygen isotopes so enriched in ¹⁸O would entail a degree of sulphate reduction. During initial stages of 554 555 sulphate reduction, δ^{34} S-so₄ and δ^{18} O-so₄ signatures demonstrate a linear fractionation 556 relationship, typical of a kinetic reaction mechanism. However at an advanced stage 557 of sulphate reduction, equilibrium oxygen isotope exchange between reduced sulphur compounds and ambient water enables enrichment of ¹⁸O in residual sulphur 558 559 compounds dependent upon the temperature and isotopic composition of the 560 surrounding water (enrichment ~ +28 ‰ at cave temperature of 10.4°C; cf. Fritz et al., 1989). Given that the average δ^{18} O-H₂O composition of the drip water feeding 561 562 stalagmite CC-Bil has a value of -5.4 ‰, equilibrium isotopic exchange during 563 sulphate reduction would thus impart an oxygen isotopic composition approaching 564 +23 ‰ in the residual sulphate, similar to that measured in stalagmite CC-Bil (Table

4). The offset between the lowest measured δ^{18} O-_{CAS} composition and the proposed equilibrium value of +23 ‰ may indicate a small contribution from the re-oxidation of sulphur compounds and the direct incorporation of an oxygen atom from water during sulphite oxidation. The range in δ^{18} O-cAS signatures through time is thus likely explained through differences in the oxygen isotope exchange rates according to changes in the oxygen isotope composition of ambient water, temperature variations and the degree of re-oxidation (Brunner et al., 2005).

572

573 Given the extent of sulphate reduction inferred to occur along the drip water flow 574 path, provenancing the source of additional sulphate using isotopic end member 575 analysis is not possible. The following two mechanisms may produce drip waters at 576 Crag Cave with sulphate isotopic compositions similar to those measured in CC-Bil. 577 1) The oxidation of pyrite to sulphate would typically contribute a source of 578 isotopically light sulphur. Subsequent reduction of sulphate may produce residual sulphate enriched in ³⁴S and ¹⁸O. Such a mechanism would have to occur under a 579 580 system where regions of reduction are spatially isolated from areas of sulphide oxidation, thus allowing kinetic fractionation and enrichment of ³⁴S in the residual 581 582 sulphate pool. Given the local presence of pyrite within bedrock horizons sampled 583 from elsewhere within the cave (Tooth and Fairchild, 2003), this remains a potential 584 source and cannot be disregarded conclusively. 2) Alternatively, the mineralisation of 585 organic sulphur compounds to sulphate may contribute an additional source of 586 sulphur with similar isotopic composition to that found in atmospheric precipitation. 587 Extensive cyclical sulphate reduction/re-oxidation will enrich oxygen isotopes to a 588 few per mille lighter than the equilibrium value of +23 ‰, whilst sulphur isotopes 589 will undergo very little net fractionation between atmospheric deposition and drip

590	water composition as isotope mass balance is maintained. Net fractionation of sulphur
591	isotopes would be close to unity and reduction/oxidation would have to take place
592	without extensive product loss from the reactant pool. The sulphur isotopic
593	composition of speleothem CAS should thus reflect the isotopic composition of
594	atmospheric sulphur deposition, assuming minimal fractionation during uptake and
595	cycling through vegetation. The soil and vegetation thus acts as a store of organic
596	sulphur which is slowly released into dripwater flowpaths and speleothem calcite (cf.
597	Einsiedel et al., 2006).

598

Thus, based on δ^{34} S and δ^{18} O signatures obtained from speleothem CAS at Crag 599 600 Cave, the drip water feeding stalagmite CC-Bil appears to be subjected to reducing 601 conditions along the flowpath, mostly likely within the till. The water-saturated nature 602 of the fine grained, clay rich till above the cave provides the necessary conditions for 603 sulphate reduction, whilst patches of iron staining and soil pH as low as 3.5 may be 604 indicative of sulphide oxidation utilising FeIII as an oxidising agent under sub-oxic 605 conditions (Soil profile descriptions obtained from Tooth, 2000). For pyrite oxidation 606 and subsequent reduction to produce isotopic values similar to those observed in 607 speleothem CAS, processes of oxidation and reduction must be spatially separate. 608 Where cyclical sulphate reduction/re-oxidation is apparent, the re-oxidation of reduced sulphur compounds draws the δ^{18} O composition of the residual sulphate away 609 610 from the equilibrium value and may be extensive enough to reverse the kinetic isotopic enrichment of ³⁴S such that there is very little net fractionation of source 611 612 sulphur compounds. 613

615	
616	7. CONCLUSIONS
617	
618	There is currently very limited knowledge regarding the historical impacts of
619	increased SO ₂ emissions from anthropogenic pollution at the local and regional scale.
620	Here, stalagmites have been demonstrated to contain sulphur in the form of calcite
621	associated sulphate which can be readily extracted and analysed for $\delta^{34}S\text{-so}_4$ and $\delta^{18}O\text{-}$
622	so4 signatures. Using the techniques established above, sulphur and oxygen isotope
623	measurements are conducted using approximately 200 mg of calcite powder
624	(equivalent to just 35 μ g of S) to obtain a time series record of sulphur inputs to the
625	karst system. Source partitioning of the constituent sulphate using end-member
626	isotopic analysis, sea salt ratios to chloride and bedrock ratios of Ca/SO ₄ , has
627	identified the dominant component of sulphur at Browns Folly Mine to be of
628	anthropogenic origin reflecting the industrial nature of the surrounding region.
629	Sulphur and oxygen isotope ratios of speleothem CAS at Crag Cave, W. Ireland,
630	reflect processes of sulphate reduction along drip water flow paths and are therefore
631	unsuitable for directly obtaining atmospheric sulphur records. Thus the potential for
632	speleothems to be used as archives of atmospheric sulphur pollution appears
633	encouraging where sediments overlying the cave system are oxidising throughout, as
634	might be expected where thin brown earth soils are found in many temperate and
635	Mediterranean climate zones. Where stalagmites are fed by drip waters of low redox
636	status, for example at high latitudes where clay rich tills or peat soils are frequently
637	found, their use as archives of atmospheric sulphur pollution appears limited due to
638	the extensive fractionation associated with processes of sulphate reduction. However,
639	use of sulphate sulphur and oxygen isotopes as indicators of reducing status may have

important implications in future speleothem studies for the interpretation of additional
palaeoclimatic variables. At carefully selected cave sites, speleothems hold the
potential to record short term variability in atmospheric sulphur loading and thereby
enable an understanding of the local and regional significance of anthropogenic versus
natural sulphur aerosols in forcing climatic change.

646	8. ACKNOWLEDGEMENTS
647	The authors would like to thank the UK Natural Environment Research Council
648	(NERC) for funding this work (Grant NE/C511805/1). Thanks to Drs. K. Jarvis and
649	K. Linge at the NERC ICP-MS facility, Kingston University for assistance with
650	sulphur analysis. Dr. L. Baldini provided data for the average drip water oxygen
651	isotopic composition at Crag cave and Dr. Dominique Genty supplied data for the
652	average drip water oxygen isotopic composition at Browns Folly Mine. Dr. Rob
653	Newton and two anonymous referees provided valuable comments and suggestions
654	which helped improve this paper.
655	
656	
657	
658	
659	
660	
661	9. REFERENCES
662	

663	Aherne, J and Farrell, E.P. (2002) Deposition of sulphur, nitrogen and acidity in
664	precipitation over Ireland: chemistry, spatial distribution and long-term trends.
665	Atmospheric Environment, 36 , 1379-1389.
666	
667	Baker, A., Genty, D., Dreybodt, W., Barnes, W., Mockler, N and Grapes, J. (1998)
668	Testing theoretically predicted stalagmite growth rate with recently annually
669	laminated samples: Implications for past stalagmite deposition. Geochimica et
670	Cosmochimica Acta, 62, 393-404.
671	
672	Baker, A., Mockler, N., Barnes, W. (1999) Fluorescence intensity variations of
673	speleothem forming groundwaters: Implications for paleoclimate
674	reconstruction. Water Resources Research, 35, 407-413.
675	
676	Baldini, J.U.L, McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P and Railsback.,
677	L.B. (2005) Biomass effects on stalagmite growth and isotope ratios: A 20^{th}
678	century analogue from Wiltshire, England. Earth and Planetary Science
679	Letters, 240 , 486-494.
680	
681	Baldini, J.U.L., McDermott, F. and Fairchild, I.J. (2006) Spatial variability in cave
682	drip water hydrochemistry: Implications for stalagmite palaeoclimate records.
683	<i>Chemical Geology</i> , 235 , 390-404.
684	
685	Barkan, E. and Luz, B. (2005) High precision measurements of ${}^{17}O/{}^{16}O$ and
686	$^{18}\text{O}/^{16}\text{O}$ ratios in H ₂ O. <i>Rapid communications in Mass Spectrometry</i> , 19
687	(24), 3737-3742
688	

689	Barker, A.P., Newton, R.J., Bottrell, S.H. and Tellam. J.H. (1998) Processes affecting
690	groundwater chemistry in a zone of saline intrusion into an urban sandstone
691	aquifer. Applied Geochemistry, 13, 735-749.
692	
693	Bottrell, S.H. and Novak, M. (1997) Sulphur isotopic study of two pristine sphagnum
694	bogs in the western British Isles. The Journal of Ecology, 85 (2) 125-132
695	
696	Bottrell, S.H. and Coulson, J.P. (2003) Preservation of environmental sulphur isotope
697	records in maritime peats: a test of baseline pre-anthropogenic signal and
698	diagenetic effects in a mid-Pleistocene peat. Chemical Geology, 201, 185-190.
699	
700	Bottrell, S.H. and Newton, R.J. (2006) Reconstruction of changes in global sulphur
701	cycling from marine sulphate isotopes. Earth-Science Reviews, 75, 59-83.
702	
703	Bottrell, S.H. (2007) Stable isotopes in aqueous sulphate as tracers of natural and
704	contaminant sulphate sources: a reconnaissance study of the Xingwen karst
705	aquifer, Sichuan, China. In: Natural and Anthropogenic Hazards in Karst
706	Areas: Recognition, Analysis and Mitigation (eds. Parise, M and Gunn, J.).
707	Geological Society, London, Special Publications, 279, 123-135
708	
709	Brunner, B., Bernasconi, S.M., Kleikemper, J. and Schroth, M.H (2005) A model for
710	oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate
711	reduction processes. Geochimica et Cosmochimica Acta, 69, 4773 – 4785.
712	

713	Calhoun, J., Bates, T and Charlson, R. (1991) Sulphur isotope measurements of
714	submicrometer sulphate aerosol particles over the Pacific Ocean. Geophysical
715	<i>Research Letters</i> , 18 , 1877 – 1880.
716	
717	Coulson, J.P. Bottrell, S.H. and Lee, J.A. (2005) Recreating atmospheric sulphur
718	deposition histories from peat stratigraphy: Diagenetic conditions required for
719	signal preservation and reconstruction of past sulphur deposition in the
720	Derbyshire Peak District, UK. Chemical Geology, 218, 223-248
721	
722	Einsiel, F and Mayer, B. 2005. Sources and processes affecting sulphate in a karstic
723	groundwater system of the Franconian Alb, Southern Germany.
724	Environmental Science and Technology, 39 , 7118-7125
725	
726	Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F
727	and E.I.M.F. (2006a) Modification and preservation of environmental signals
728	in speleothems. Earth-Science Reviews, 75, 105-153
729	
730	Fairchild, I.J., Tuckwell, G.W., Baker, A and Tooth, A.F. (2006b) Modelling of drip
731	water hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath,
732	UK): Implications for climate change studies. Journal of Hydrology, 321, 213-
733	231
734	
735	Fitzgerald, J.W. (1976) Sulphate ester formation and hydrolysis: a potentially
736	important yet often ignored aspect of the sulphur cycle of aerobic soils.
737	Bacteriological Reviews, 40, 698-721.

7	2	Q
1	J	O

739	Frisia, S., Borsato, A., Fairchild, I.J. and Susini, J. (2005) Variations in atmospheric
740	sulphate recorded in stalagmites by synchrotron micro-XRF and XANES
741	analyses. Earth and Planetary Science Letters, 235, 729-740
742	
743	Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., and Qureshi, R.M. (1989)
744	Oxygen isotope exchange between sulphate and water during bacterial
745	reduction of sulphate. Chemical Geology (Isotope Geoscience Section) 79, 99-
746	105.
747	
748	Fry, B., Silva, S.R., Kendall, C., Anderson, R.K. (2002) Oxygen isotope corrections
749	for online δ^{34} S analysis. Rapid Communications in Mass Spectrometry, 16,
750	854-858.
751	
752	Gellatly, A.M. and Lyons, T.W. (2005) Trace sulphates in mid-Proterozoic carbonates
753	and the sulphur isotope record of biospheric evolution. Geochimica et
754	<i>Cosmochimica Acta</i> , 69 , 3813-3829.
755	
756	Holland, H.D. (1978) The chemistry of the atmosphere and oceans. Wiley, New York.
757	
758	Holt, B.D., Cunningham, P.T and Kumar, R. (1981) Oxygen isotopy of atmospheric
759	sulphates. Environmental Science and Technology, 15, 804 – 808.
760	

761	Holt, B.D., Kumar, R. and Cunningham, P.T. (1982) Primary sulphates in
762	atmospheric sulphates: Estimation in oxygen isotope ratio measurements.
763	<i>Science</i> , 217 , 51-53.
764	
765	Holt, B.D and Kumar, R. (1991) Oxygen isotope fractionation for understanding the
766	sulphur cycle. In: Stable isotopes: natural and anthropogenic sulphur in the
767	environment. SCOPE 43 (eds. H.R. Krouse and V.A. Grinenko). Wiley, New
768	York. Pp. 27-41.
769	
770	Hurtgen, M.T., Arthur, M.A., Suits, N.S. and Kaufman, A.J. 2002. The sulphur
771	isotopic composition of Neoproterozoic seawater sulfate: implications for a
772	snowball Earth? Earth and Planetary Science Letters, 203, 413-429
773	
774	IAEA., 2004. Reference materials catalogue 2004-2005, Analytical Quality Control
775	Services, International Atomic Energy Agency, Vienna
776	
777	Isaksson, E., Kekonen, T., Moore, J and Mulvaney, R. (2005) The methanesulfonic
778	acid (MSA) record in a Svalbard ice core. Annals of Glaciology, 42, 345-351.
779	
780	Jamieson, R.E. and Wadleigh, M. A. (1999) A study of the oxygen isotopic
781	composition of precipitation sulphate in Eastern Newfoundland. Water, Air
782	and Soil Pollution, 110, 405-420.
783	

784	Jenkins, K.A. and Bao, H. (2006) Multiple oxygen and sulphur isotope compositions
785	of atmospheric sulphate in Baton Rouge, LA, USA. Atmospheric
786	Environment, 40 , 4528-4537
787	
788	Jordan, C. (1997) Mapping of rainfall chemistry in Ireland 1972-94. Biology and
789	Environment: Proceedings of the Royal Irish Academy, 97B (1), 53-73.
790	
791	Kawamura, H., Matsuoka, N., Momoshima, N., Koike, M and Takashima, Y. (2006)
792	Isotopic evidence in tree rings for historical changes in atmospheric sulphur
793	sources. Environmental Science and Technology, 40, 5750 – 5754.
794	
795	Krouse, R.H. and Mayer, B. (1999) Sulphur and oxygen isotopes in sulphate. In:
796	Environmental tracers in subsurface hydrology. (eds.Cook, P.G. and Herczeg,
797	A.L) Kluwer academic publishers. Pp. 195 – 231.
798	
799	Lefohn, A.S., Husar, J.D. and Rudolf, H.B. (1999) Estimating historical
800	anthropogenic global sulphur emission patterns for the period 1850-1990.
801	Atmospheric Environment, 33 , 3435-3444.
802	
803	Likens, G.E., Driscoll, C.T., Buso, D.C., Mitchell, M.J., Lovett, G.M., Bailley, S.W.,
804	Saiccama, T.G., Reiners, W.A. and Alewell, C. (2002) The biogeochemistry
805	of sulphur at Hubbard Brook. Biogeochemistry, 60, 235-316.
806	
807	Lloyd, R.M. (1967) Oxygen-18 composition of oceanic sulphate. Science, 156, 1228-
808	1231

809	
810	Lloyd, R.M. (1968) Oxygen isotope behaviour in the sulphate-water system. Journal
811	of Geophysical Research, 73, 6099-6110.
812	
813	Mayer, B., Fritz, P., Kneif, K., Li, G., Fischer, M., Rehfuess, K.E. and Krouse, H.R.
814	(1992) Evaluating pathways of sulphate between the atmosphere and
815	hydrosphere using stable sulphur and oxygen isotope data. In: Isotope
816	Techniques in Water Resources. Proceedings of an international conference in
817	Vienna, Austria. Pp3-17. IAEA, Vienna, Austria, March 11-15, 1991.
818	
819	Mayer, B., Fritz, P., Prietzel, J. and Krouse, H.R. (1995a) The use of stable sulphur
820	and oxygen isotope ratios for interpreting the mobility of sulphate in aerobic
821	forest soils. Applied Geochemistry, 10, 161-173.
822	
823	Mayer, B., Feger, K.H., Geisemann, A and Jäger, H. (1995b) Interpretation of sulphur
824	cycling in two catchments in the Black Forest (Germany) using stable sulphur
825	and oxygen isotope data. Biogeochemistry, 30, 31-58.
826	
827	Mayer, B. (1998) Potential and limitations of using sulphur isotope abundance ratios
828	as an indicator for natural and anthropogenic induced environmental change.
829	In: Isotope techniques in the study of environmental change. Proceedings of
830	an international conference in Vienna, Austria. Pp 423-435. IAEA, Vienna
831	Austria, 14-18 th April 1997.
832	

833	Mayer, B., Alpay, S., Gould, W.D., Lortie, L. and Rosa, F. (2007) The onset of
834	anthropogenic activity recorded in lake sediments in the vicinity of the Horne
835	smelter in Quebec, Canada: Sulphur isotope evidence. Applied Geochemistry,
836	22 , 397-414.
837	
838	McDermott, F., Frisia, S., Huang, Y., Longinelli, A., Spiro, B., Heaton, T.H.E.,
839	Hawkesworth, C.J., Borsato, A., Keppens, E., Fairchild, I.J., van der Borg, K.,
840	Verheyden, S. and Selmo, E. (1999) Holocene climate variability in Europe:
841	Evidence from δ^{18} O, textural and extension-rate variations in three
842	speleothems. Quaternary Science Reviews, 18, 1021-1038.
843	
844	Newton, R.J., Pevitt, E.L., Wignall, P.B. and Bottrell, S.H. 2004. Large shifts in the
845	isotopic composition of seawater sulphate across the Permo-Triassic boundary
846	in northern Italy. Earth and Planetary Science Letters, 218, 331-345
847	
848	Nielson, H. (1974) Isotopic composition of the major contributors to atmospheric
849	sulphur. Tellus, XXVI, 211-221.
850	
851	Novák, M., Vile, M.A., Bottrell, S.H., Štěpánová, M., Jačková, I., Buzek, F.,
852	Přechova, E. and Newton, R. (2005) Isotope sytematics of sulphate-oxygen
853	and sulphate-sulphur in six European peatlands. Biogeochemistry, 76, 187-
854	213.
855	
856	Patris, N., Delmas, R.J, and Jouzel, J. (2000) Isotopic signatures of sulphur in shallow
857	Antarctic ice cores. Journal of Geophysical Research, 105(D6), 7071-7078.

859	Patris, N., Delmas, R.J., Legrand, M., Angelis, M. De., Ferron, F.A., Stievenard, M
860	and Jouzel, J. (2002) First sulphur isotope measurements in central Greenland
861	ice cores along the preindustrial and industrial periods. Journal of Geophysical
862	Research, 107, D11 4115, ACH 6-1 - ACH 6-11.
863	
864	Pingitore, N., Meitzner, G and Love, K. (1995) Identification of sulphate in natural
865	carbonates by X-ray absorption spectroscopy. Geochimica et Cosmochimica
866	Acta, 59 , 2477-2483.
867	
868	Rees, C.E., Jenkins, W.J. and Monster, J. (1978) The sulphur isotopic composition of
869	ocean water sulphate. Geochimica et Cosmochimica Acta, 42 (4), 377-381
870	
871	Rozanski, K., Araguás- Araguás, L and Gonfiantini, R. (1993) Isotopic patterns in
872	modern global precipitation. In Climate Change in Continental Isotopic
873	Records, Geophysical Monograph Series, 78, (eds. P.K. Swart, et al.). pp. 1-
874	36, AGU, Washington, DC, 1993.
875	
876	Smart, P.L. and Friederich, H. (1986) Water movement and storage in the unsaturated
877	zone of a maturely karstified carbonate aquifer, Mendip Hills, England.
878	Proceedings of the Conference on Environmental Problems in Karst Terrains
879	and their Solutions. National Water Wells Association, Bowling Green, KY,
880	pp57-87, October 28-30 1986.
881	

882	Smith, R.J., Pitcher, H and Wigley, T.M.L. (2001) Global and regional anthropogenic
883	sulphur dioxide emissions. Global and Planetary Change, 29, 99-119.
884	
885	Taylor, B.E., Wheeler, M.C and Nordstrom, D.K. (1984) Stable isotope geochemistry
886	of acid mine drainage: Experimental oxidation of pyrite. Geochimica et
887	<i>Cosmochimica Acta</i> , 48 , 2669 – 2678.
888	
889	Tooth, A.F. (2000) Controls on the geochemistry of speleothem-forming karstic drip
890	waters. Ph.D thesis, University of Keele.
891	
892	Tooth, A.F. and Fairchild, I.J. (2003) Soil and karst aquifer hydrological controls on
893	the geochemical evolution of speleothem forming drip waters, Crag Cave,
894	southwest Ireland. Journal of Hydrology, 273, 51-68.
895	
896	Toran, L. and Harris, R.F. (1989) Interpretation of sulphur and oxygen isotopes in
897	biological and abiological sulfide oxidation. Geochimica et Cosmochimica
898	<i>Acta</i> , 53 , 2341 – 2348.
899	
900	Wadleigh, M.A., Schwarcz, H.P. and Kramer, J.R. (1996) Isotopic evidence for the
901	origin of sulphate in coastal rain. Tellus, 48B, 44-59.
902	
903	Wortmann, U.G., Chernyavsky, B.C., Bernasconi, S.M., Brunner, B., Böttcher, M.E.
904	and Swart, P.K (2007) Oxygen isotope biogeochemistry of pore water sulphate
905	in the deep biosphere: Dominance of isotope exchange reactions with ambient

906	water during microbial sulphate reduction (ODP Site 1130). Geochimica et
007	
907	Cosmochimica Acta, doi:10.1016/j.gca.2007.06.033
908	
909	Zhao, F.J., Spiro, B., Poulton, P.R and McGrath, S.P. (1998) Use of sulphur isotope
910	ratios to determine anthropogenic sulphur in a grassland ecosystem.
911	Environmental Science and Technology, 32 , 2288-2291.
912	
913	
914	
915	
916	
917	
918	
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	
939	
940	
941 042	
942 042	
945 011	
744 015	
74J 9/6	
940 9/7	
/+/	

Distance below top of stalagmite (mm)	Year of deposition	S (ppm)	δ ³⁴ S-SO ₄ Vs CDT (Rep 1)	δ ³⁴ S-SO ₄ Vs CDT (Rep 2)	δ ³⁴ S-SO ₄ Vs CDT (Average)	Standard deviation between replicates	δ ¹⁸ O-SO ₄ Vs V-SMOW (‰)
0-4	1995 - 1990	264	3.6	4.0	3.8	0.24	10.6
4-8	1990 - 1984	214	3.5	3.5	3.5	0.02	10.5
8-12	1984 - 1973	160	3.8	3.3	3.5	0.35	10.3
12-16	1973 - 1958	239	3.7	3.3	3.5	0.22	10.9
16-20	1958 - 1938	130		4.3	4.3		13.6
20-24	1938 - 1916	169		5.5	5.5		13.7

948 Table 1: Sulphur concentration and isotope ratios in stalagmite BFM-Boss949

Table 2: Bedrock sulphur concentrations and isotope ratios

Rock	S concentration (ppm)	Ca/SO₄ ratio (weight ratio)	δ ³⁴ S-SO ₄ Vs CDT		
Browns Folly Mine 1	166	806	22.0		
Browns Folly Mine 2	212	631	22.0		
Browns Folly Mine 3	269	497	17.6		
Browns Folly Mine 5	241	555	18.9		
Browns Folly Mine 6	191	700	21.3		
Browns Folly Mine 7	156	858	20.1		
Browns Folly Mine 10	312	429	17.9		
Crag Cave 1	52	2573	n.d		
Crag Cave 2	51	2623	n.d		
Crag Cave 3	92	1454	n.d		

Table 4: Sulphur concentration and isotope ratios in stalagmite CC-Bil

Distance below top of stalagmite (mm)	S concentration (ppm)	δ ³⁴ S-SO ₄ Vs CDT (‰)	δ ¹⁸ O-SO ₄ Vs V- SMOW (‰)
0-10	142	18.6	23.9
10-20	173	17.6	23.0
20-30	184	17.5	22.7
30-40	107	16.9	20.7
40-50	134	16.8	22.5
50-60	184	18.5	22.8
60-70	178	17.7	19.2
70-80	n.d	19.1	22.6
80-90	n.d	19.1	22.5
90-100	n.d	18.7	22.7

Cave Site	Drip site	<i>n</i> [*] =	Ca ²⁺ (mg/l)	SO ₄ ²⁻ (mg/l)	Cl (mg/l)	Ca/SO ₄ ratio	% SSS	% sulphur from bedrock CAS in drip waters
Browns Folly Mine, UK Midlands (January 1996 – February 1998)	BFM-Boss	14	99.0 (14.5)	11.0 (3.4)	24.2 (16.2)	9.0 (3.9)	28.7 (15.0)	1.4
Crag Cave, S.W Ireland. Lower chamber. 2006	CC-Bil Seepage flow	1	182.8	7.9	19.8	23.1	35.1	1.1
Crag Cave, S.W Ireland. Lower chamber. August 1997	R Seepage flow	8	113.7 (4.7)	8.2 (0.1)	21.6 (0.2)	13.8 (0.5)	36.7 (0.3)	0.7
Crag Cave, S.W Ireland. Lower chamber. August 1997	X Seepage flow	10	137.1 (33.2)	8.1 (0.1)	20.8 (0.3)	17.0 (4.4)	36.2 (0.6)	0.8
Crag Cave, S.W Ireland. Lower chamber. August 1997	Z Seepage flow	11	133.3 (31.7)	8.4 (0.05)	21.7 (0.1)	15.8 (3.8)	36.0 (0.2)	0.8

 Table 3: Drip site ion chemistry

Data from Crag Cave drip sites A-Z obtained from Tooth, 2000 **n* represents the number of field samples. 1 standard deviation (1 SD) is given in parentheses.

Figure 1: Sources and cycling of sulphur contributing to bulk stalagmite sulphate composition with characteristic δ³⁴S compositions. Values are given for predominantly anthropogenic sulphate in rain in industrialised countries of the northern hemisphere (range -3 to +9 ‰; Mayer, 1998); sulphate aerosol from ocean surface (+21 ‰; Rees, 1978); marine biogenic emissions as DMS (+15.6 +/- 3.1 ‰; Calhoun et al., 1991); continental and intertidal biogenic emissions (0 to -30 ‰; Nielson, 1974); volcanic eruptions (~ 0 ‰; Nielson, 1974).

Figure 2: Diagram showing the two approaches (centrifugation and filtration) to extracting and concentrating sulphate from speleothem calcite as barium sulphate prior to δ^{34} S and δ^{18} O analysis.

Figure 3: Sulphur concentration, $\delta^{34}S_{-CAS}$ and $\delta^{18}O_{-CAS}$ in stalagmite BFM-Boss.

Figure 4: Suphur concentration, δ^{34} S-_{CAS} and δ^{18} O-_{CAS} in stalagmite CC-Bil.

Year of stalagmite deposition

Figure 5: Diagram illustrating the range of δ^{34} S-_{CAS} and δ^{18} O-_{CAS} in stalagmite BFM-Boss compared to potential sulphate sources. The measured range of δ^{18} O in BFM-Boss is encompassed within the region of precipitation sulphate. Range of measured δ^{34} S-SO₄ in precipitation for industrialised countries of the northern hemisphere obtained from Mayer et al., 1998. Range of published δ^{18} O-SO₄ in precipitation for mid-latitude sites obtained from Jenkins and Bao, 2006; Jamieson and Wadleigh, 1999.

Figure 6: Diagram illustrating the range of δ^{34} S-_{CAS} and δ^{18} O-_{CAS} in stalagmite CC-Bil compared to potential sulphate sources. The range of measured δ^{34} S-_{CAS} and δ^{18} O-_{CAS} is distinct compared to other sources of sulphate, suggesting additional sulphur cycling must modify the composition of the source materials prior to incorporation into stalagmite calcite. Range of measured δ^{34} S-_{SO4} in precipitation for industrialised countries of the northern hemisphere obtained from Mayer et al., 1998. Range of published δ^{18} O-_{SO4} in precipitation for mid-latitude sites obtained from Jamieson and Wadleigh, 1999; Jenkins and Bao, 2006.

