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ABSTRACT Painlevé’s transcendental differential equation PV I may be expressed as the

consistency condition for a pair of linear differential equations with 2×2 matrix coefficients

with rational entries. By a construction due to Tracy and Widom, this linear system is

associated with certain kernels which give trace class operators on Hilbert space. This

paper expresses such operators in terms of Hankel operators Γφ of linear systems which are

realised in terms of the Laurent coefficients of the solutions of the differential equations.

For such, the Fredholm determinant det(I − Γφ) gives rise to the τ function, which is

expressed in terms of the solution of a matrix Gelfand Levitan equation. For suitable

values of the parameters, solutions of the hypergeometric equation give a linear system

with similar properties. For meromorphic transfer functions φ̂ that have poles on an

arithmetic progression, the corresponding Hankel operator has a simple form with respect

to an exponential basis in L2(0,∞); so det(I − ΓφP(t,∞)) can be expressed as a series of

finite determinants. This applies to elliptic functions of the second kind, such as satisfy

Lamé’s differential equation.
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1. Introduction

Tracy and Widom [29] observed that many important kernels in random matrix theory

arise from solutions of linear differential equations with rational coefficients. In this paper,

we extend the scope of their investigation by analysing kernels associated with Lamé’s

equation and Painlevé’s equation VI. As these differential equations have solutions which

may be expressed in terms of elliptic functions, we begin by reviewing and extending the

definitions from [29].

Let P (x, y) be an irreducible complex polynomial, and n the degree of P (x, y) as a

polynomial in y. Then we introduce the curve E = {(λ, µ) ∈ C : P (λ, µ) = 0}, and observe

that E ∪{(∞,∞)} gives a compact Riemann surface which is the n-sheeted branched cover

of Riemann’s sphere P1. Let K be splitting field of P (x, y) over C(x), so we can regard K
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as the space of functions of rational character on E . Let g be the genus of E , and introduce

the Jacobi variety J of E , which is the quotient of Cg by some lattice L in Cg.

Definition. By a Tracy–Widom system [29] we mean a differential equation

d

dx

[

f
g

]

=

[

α β
−γ −α

] [

f
g

]

(1.1)

where α, β, γ belong to K or more generally are locally rational functions on J. Then for

solutions with f, g ∈ L∞((0,∞);R), we introduce an integrable operator on L2(0,∞) by

the kernel

K(x, y) =
f(x)g(y)− f(y)g(x)

x− y
(x 6= y;x, y ∈ R) (1.2)

The kernel K compresses to give an integral operator KS on L2(S; dx) for any subin-

terval S of (0,∞) and it is important to identify those KS such that KS is of trace class

and 0 ≤ KS ≤ I. In such cases, the Fredholm determinant det(I+λKS) is defined and KS

is associated with a determinantal random point field on S. In particular, det(I −K(t,∞))

gives the probability that there are no random points on (0,∞).

Definition (τ -function). Suppose that K : L2(0,∞) → L2(0,∞) is a self-adjoint operator

such that K ≤ I, K is trace class and I −K is invertible. For a measurable subset S of

(0,∞), let PS : L2(0,∞) → L2(S) be the orthogonal projection given by f 7→ fIS , where

IS is the indicator function of S. Then the τ function is

τ(t) = det(I −KP[t,∞)) (t > 0). (1.3)

The purpose of this paper is to compute τ for certain kernels that are given by Tracy–

Widom systems, and variants thereof. Our technique involves linear systems, and extends

ideas developed in [6].

Let H be a complex separable Hilbert spaces, known as the state space, and let

(e−tA)t>0 a bounded C0-semigroup of linear operators on H; so that D(A) is a dense linear

subspace of H, and ‖e−tA‖ ≤M for all t > 0 and some M < ∞. Then let B : C → D(A)

and C : D(A) → C be bounded linear operators, and introduce the linear system

dX

dx
= −AX + BU (X(0) = 0),

Y = CX (1.4)

known as (−A,B,C). Under further conditions to be discussed below, the integral

Rx =

∫ ∞

x

e−tABCe−tA dt (1.5)
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converges and defines a trace class operator on H. The notation suggests that Rx is a

resolvent operator.

In section 2, we consider integral operators on L2(0,∞) with kernels of the form

R0 ↔ c(s)b(t)

s+ t
(s, t > 0). (1.6)

When c(s) = b(t) = 1 we obtain the Carleman operator on L2(0,∞), which is bounded

with continuous spectrum [0, π] of multiplicity two; see [26, p. 56]. If b and c satisfy the

hypotheses of Theorem 2.1, then R is a trace class operator, and we can define

Φ = log det(I + R0) − log det(I −R0). (1.7)

In quantum field theory, Φ arises in the Thermodynamic Bethe Ansatz and was considered

in [30]. We introduce a linear system such that R2
x is an integrable kernel, and we derive

an integral equation for Φ. This integral equation resembles the Gelfand–Levitan equa-

tion that arises in the scattering problem for the sinh-Gordon equation. Some additional

information about Φ emerges when we introduce an appropriate Hankel operator.

Definition (Hankel operator). For a linear system as above, we introduce the symbol

φ(x) = Ce−xAB, which gives a bounded function φ : (0,∞) → C; this term should not be

confused with the different usage in [26, p6]. Generally, for E a separable complex Hilbert

space and φ ∈ L2((0,∞);E), let Γφ be the Hankel operator

Γφh(x) =

∫ ∞

0

φ(x+ y)h(y) dy (1.8)

defined on a suitable domain in L2(0,∞) into L2((0,∞);E).

By forming orthogonal sums of the state space and block operators, we can form sums

of symbol functions. Likewise, by forming tensor products of state spaces and operators,

we can from products of symbol function. Using these two basic constructions, we can

form some apparently complicated symbol functions, starting from the basic multiplication

operator A : f(t) 7→ tf(t) in L2(0,∞). Thus we extend the method of section 2 to a more

intricate problem.

In section 3, we consider operators related to the solution of Painlevé’s transcendental

equation VI. Jimbo, Miwa and Ueno [15, 16] showed that the nonlinear differential equation

PV I is the compatibility condition for the pair of linear differential equations

dΦ

dλ
=

(W0

λ
+

W1

λ− 1
+

Wt

λ− t

)

Φ (1.9)

dΦ

dt
=

−Wt

λ− t
Φ (1.10)
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on the punctured Riemann sphere with 2 × 2 complex matrices W0,W1,Wt depending

upon t; see (3.8) for the entries. Using the Laurent series of Φ(λ), we introduce a linear

system (−A,B,C) that realises Φ and deduce information about the Hankel operator ΓΦ.

In previous papers [5,6], we have considered kernels that factorize as K = Γ†
φΓφ where

Γφ is Hilbert-Schmidt, so that K ≥ 0 and K is trace class. In the context of PV I , we

show that the prescription (1.2) gives a kernel K that admits a factorization K = Γ†
φσΓφ,

where σ is a constant signature matrix. In section 5 we introduce a suitable τ function

and express it as the solution of an integral equation of Gelfand–Levitan type, which we

can solve in terms of the linear system. A similar approach works for suitable solutions

of Gauss’s hypergeometric equation with a restricted choice of parameters, as we show in

section 5.

Definition (Transfer function). Given a Hilbert space E, for φ ∈ L2((0,∞); dt;E) let

φ̂(s) =

∫ ∞

0

e−stφ(t) dt (1.11)

be the transfer function of φ, otherwise known as the Laplace transform, which gives an

analytic function from {s : <s > 0} into E.

We assume that φ̂ is meromorphic, and that, by virtue of the Mittag-Leffler theorem,

one can express φ as a series

φ(x) =
∞
∑

j=1

ξje
−λjx (1.12)

in which we shall always assume that <λj > 0 and that the e−λjx are linearly independent

in L2(0,∞). We wish to express various τ functions in terms of the determinants

DS×T = det
[ 1

λj + λ̄k

]

(j,k)∈S×T
(1.13)

where S and T are finite subsets of N of equal cardinality. In sections 6, we consider Hankel

operators with symbols as in (1.11), and establish basic results about the expansions of

det(I − Γφ) in terms of the bases.

In section 7, we consider the Bessel kernel, which arises in random matrix theory as

the hard edge of the eigenvalue distribution from the Jacobi ensemble [28]. Let Jν be

Bessel’s function of the first kind of order ν, and let u(x) =
√
xJν(2

√
x), which satisfies

d2u

dx2
+

( 1

x
+

1 − ν2

4x2

)

u(x) = 0. (1.14)

We introduce φ(e) = u(e−x), and the Hankel operator Γφ with symbol φ. The transfer

function φ̂ is meromorphic with poles on an arithmetic progression on the positive real
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axis, so we are able to obtain a simple expansion for τ(t) = det(I−Γ2
φP[t,∞)), and identify

the determinants DN×N with combinatorial objects.

In section 8 we consider solutions of Lamé’s equation

−
(

2
√

(x− e1)(x− e2)(x− e3)
d

dx

)2

ψ(x) + 2xψ(x) = Bψ(x) (1.15)

which is associated with the elliptic curve Z2 = 4(X − e1)(X − e2)(X − e3). The solution

gives rise to an elliptic function φ such that φ̂ has poles on a bilateral arithmetic procession

parallel to the imaginary axis in C. Hence we can prove results concerning the Fredholm

determinant of Γφ.

2. The τ function associated with the Thermodynamic Bethe Ansatz

Following the terminology of [9], we recall a class of operators which includes the

kernels K of (1.2) as a special case.

Definition (Integrable operators). Let f1, . . . , fN , g1, . . . , gN ∈ L∞(0,∞) satisfy

N
∑

j=1

fj(x)gj(x) = 0.

Then the bounded linear operator K that has kernel

K ↔
∑N
j=1 fj(x)gj(y)

x− y
(2.1)

is said to be an integrable operator.

Let D(A) = {f ∈ L2(0,∞) : tf(t) ∈ L2(0,∞)} and for b, c ∈ D(A) introduce the

operators:
A : D ⊂ L2(0,∞) → L2(0,∞) : f(x) 7→ xf(x)

B : C → D(A) : α 7→ bα;
C : D(A) → C : f 7→

∫ ∞

0
f(s)c(s) ds

Θx : L2(0,∞) → L2(0,∞) : Θxf(t) = e−xtc̄(t)f̂(t)

Ξx : L2(0,∞) → L2(0,∞) : Ξxf(t) = e−xtb(t)f̂(s)

(2.2)

Then we introduce φ(s) = Ce−sAB and φ(x)(s) = φ(s + 2x), and the Hankel integral

operator Γφ(x)
with kernel φ(s + t + 2x). Then we introduce Rx =

∫ ∞

x
e−tABCe−tA dt

which has kernel

Rx ↔ b(t)c(s)e−x(s+t)

s+ t
(s, t > 0). (2.3)

Lemma 2.1. Suppose that c(t)/
√
t and b(t)/

√
t belong to L2(0,∞), and that c and b

belong to L∞(0,∞).
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(i) Then Γφ(x)
and Rx are trace class operators for all x ≥ 0.

(ii) Suppose further that I + λRx is invertible. Then

Tλ(x, y) = −λCe−xA(I + λRx)
−1e−yAB (2.4)

gives the solution to the equation

λφ(x+ y) + Tλ(x, y) + λ

∫ ∞

x

Tλ(x, z)φ(z + y) dz = 0 (0 < x < y) (2.5)

and

Tλ(x, x) =
d

dx
log det(I + λΓφ(x)

). (2.6)

(iii) The operator R2
x is an integrable operator with kernel

R2
x = e−xub(u)

fx(u) − fx(t)

t− u
c(t)e−xt (2.7)

where

fx(u) =

∫ ∞

0

b(t)c(t)e−tx

u+ t
dt. (2.8)

(iv) If I + λRx and I − λRx are invertible, then there exists an integrable operator

Lx(λ) such that

I + Lx(λ) = (I − λ2Rx)
−1. (2.9)

Proof. (i) One checks that Θx has kernel e−ste−xtc̄(t) and that Ξx has kernel e−st−xsb(s);

hence Θ†
x and Ξx are Hilbert–Schmidt operators. One verifies that their products are

Rx = ΞxΘ
†
x and Γφx

= Θ†Ξx, and hence Rx and Γx are trace class.

(ii) Using (i), we can check that det(I + λRx) = det(I + λΓφ(x)
). Then one verifies

the remainder by using Lemma 5.1(iii) of [6].

(iii) This result is essentially contained in lemma 2.18 of [9], but we give a proof for

completeness. The kernel of R2
x is

b(s)e−sxc(u)e−ux
∫ ∞

0

b(t)c(t)e−2tx

(s+ t)(u+ t)
dt (u, s > 0), (2.10)

and one can decompose this expression by using partial fractions. By the Cauchy–Schwarz

inequality, |fx(u)|2 ≤
∫ ∞

0
t−1b(t)2dt

∫ ∞

0
t−1c(t)2dt, so fx is bounded.

(iv) Furthermore,

(I − λ2R2
x)

−1 = (I − λRx)
−1(I + λRx)

−1 (2.11)
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is a bounded linear operator; so by Lemma 2.8 of [9], there exists an integrable operator

Lx such that (I + Lx(λ))(I − λ2R2
x) = I.

Our first application is to the study of the integral operator on L2(R) that has kernel

E(x)E(y)

cosh 1
2
(x− y)

. (2.12)

By changes of variable, we replace this by the integral operator on L2(0,∞) with kernel

Rx ↔ e−(s+t)xb(s)b(t)

s+ t
(s, t > 0), (2.13)

and we introduce φ(s) =
∫ ∞

0
b(t)2e−st dt. In applications to physics associated with the

Thermodynamic Bethe Ansatz [30], the following quantity is important.

Definition (Φ-function). Given R as above, the Φ function is

Φ = log det(I + R0) − log det(I −R0). (2.14)

For φ depending upon t, let

u(x, t) = −2
(

log det(I + Γφ(x)
) − log det(I − Γφ(x)

)
)

. (2.15)

As an application of Theorem 2.1, we recover and extend some results due to Tracy and

Widom [30], and show how to calculate Φ by the techniques of linear systems. Specifically,

Rx appears in the scattering theory of the Zakharov–Shabat system of ordinary differential

equations, and b is part of the scattering data. One can allow the scattering data to evolve

with respect to time t as u evolves under the sine-Gordon equations.

Theorem 2.2. Suppose that u satisfies the sinh-Gordon equation

∂2u

∂x∂t
= sinhu. (2.16)

Suppose that b is real valued and that b(x)/
√
x is in L2(0,∞); suppose that (I − Rx) is

invertible for all x ≥ 0.

(i) Let V (x, y) = −2Ce−Ax(I−R2
x)

−1e−AyC† be the solution of the integral equation

V (x, y) + 2φ(x+ y) −
∫ ∞

x

V (x,w)

∫ ∞

x

φ(w + z)φ(z + y)dzdw = 0. (2.17)
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Then

Φ = −
∫ ∞

0

V (x, x) dx. (2.18)

(ii) Then R0 and Γφ are of trace class and

Φ = log det(I + Γφ) − log det(I − Γφ) = −1

2
u(0, 0), (2.19)

thus u(x, t) determines the evolution of Φ through time.

(iii) The function

f(λ) =
det(I + λR0)

det(I − λR0)
(2.20)

is meromorphic, and there exists ε > 0 such that all the poles of f are simple and lie in

(ε,∞), whereas all the zeros of f are simple and lie in (−∞,−ε].
Proof. (i) We observe that V (x, y) = T1(x, y) − T−1(x, y) satisfies the integral equation

(2.14), and one verifies that the given V is such a solution. We recall that A = A† and

B = C†, so the calculations here are simpler than the versions in section 6 of [6]. One

checks that

V (x, x) =
d

dx

(

log det(I +Rx) − log det(I −Rx)
)

(2.21)

and Rx → 0 in the trace class operators as x → ∞, so we can recover Φ by integrating.

Observe that x 7→ Rx is decreasing, and log is operator monotone increasing on (0,∞), so

V (x, x) ≤ 0.

(iii) Consider the differential equations

dΨ

dt
=

i

4ζ

[

cosh u − sinhu
sinhu − cosh u

]

Ψ (2.22)

and
dΨ

dx
=

[ −iζ 1
2
∂u
∂x

1
2
∂u
∂x iζ

]

Ψ. (2.23)

Since u satisfies the sine-Gordon equations, one can easily check that ∂2

∂x∂t
Ψ = ∂2

∂t∂x
Ψ

follows so the systems are consistent.

We recover a result of Tracy and Widom that Φ satisfies the sinh-Gordon hierarchy.

To solve this equation by the method of inverse scattering, we introduce scattering data

φ(x) = Ce−xAC† and solve the Gelfand–Levitan equation

T (x, y) + Φ(x+ y) +

∫ ∞

x

T (x, z)Φ(z + y) dz = 0 (0 < x < y) (2.24)
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where

T =

[

U W
W U

]

Φ =

[

0 φ
φ 0

]

. (2.25)

This reduces to the pair on scalar integral equations

U(x, y) +

∫ ∞

x

W (x, z)φ(z + y) dz = 0

W (x, y) + φ(x+ y) +

∫ ∞

x

U(x, z)φ(z + y) dz = 0 (0 < x < y) (2.26)

with solutions

W (x, y) = −Ce−xA(I −R2
x)

−1e−AyC†

U(x, y) = Ce−xA(I − R2
x)

−1Rxe
−yAC†. (2.27)

The differential equation

−d
2Ψ

dx2
+

1

4

[

u2
x 2uxx

2uxx u2
x

]

Ψ = ζ2Ψ (2.28)

has a solution of the form

Ψ(x) =

[

αeiζx

βe−iζx

]

+

∫ ∞

x

T (x, y)

[

αeiζy

βe−iζy

]

dy, (2.29)

where ∂2T
∂x2 = ∂2T

∂y2 − 2( d
dx
T (x, x))T, and from the integral equation (), we obtain

−2
d

dx

[

U(x, x) W (x, x)
W (x, x) U(x, x)

]

=
1

4

[

u2
x 2uxx

2uxx u2
x

]

, (2.30)

so
d

dx
V (x, x) = 2

d

dx
W (x, x) = −1

2

∂2u

∂x2
. (2.31)

Hence the Φ function appears as Φ = −2−1u(0, 0) where

−1

2
u(x, t) =

(

log det(I + Rx) − log det(I − Rx)
)

. (2.32)

(iii) The spectrum of R0 equals the spectrum of Γφ, where Γφ is a compact and

self-adjoint Hankel operator such that Γφ ≥ 0. Ober has shown that Γφ all the positive

eigenvalues are simple. See [26].

3. A linear system associated with Painlevé’s equation VI
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Suppose that F (x,w, p) is a rational function of (w, p) that is analytic as a function

of z; consider the differential equation

w′′(z) = F (z, w, w′). (3.1)

Painlevé considered those differential equations such that the solutions have all their branch

points and essential singularities in Σ = {a1, . . . , am} so that w is meromorphic on P1 \
Σ. Subsequently, there emerged six new equations that cannot generally be solved in

terms of closed form expressions involving only standard functions that were previously

known; these are the Painlevé transcendental differential equations. R. Fuchs discovered

the equation

PV I :
d2y

dt2
=

1

2

(1

y
+

1

y − 1
+

1

y − t

)(dy

dt

)2

−
(1

t
+

1

t− 1
+

1

y − t

)dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(

α+
βt

y2
+
γ(t− 1)

(y − 1)2
+
δt(t− 1)

(y − t)2

)

(3.2)

with constants

α =
1

2
(θ∞ − 1)2, β = −1

2
θ2
0, γ =

1

2
θ2
1, δ =

1

2
(1 − θ2

t ) (3.3)

and

θ∞ = −2(z0 + z1 + zt) − (θ0 + θ1 + θt). (3.4)

The Painlevé equations can be expressed as Hamiltonian systems in the canonical

variables (λ, µ), where the Hamiltonian is a rational function of (λ, µ); see [24] for a list.

In particular,

HV I(λ, µ; t) =
1

t(t− 1)

(

λ(λ− 1)(λ− t)µ2 −
(

θ0(λ− 1)(λ− t) + θ1λ(λ− t)

+ (θt − 1)λ(λ− 1)
)

+ κ(λ− t)
)

(3.5)

where

α =
1

2
θ2
∞; β = −1

2
θ2
0 γ =

1

2
θ2
1 δ =

1

2
(1−θ2

t ), κ =
1

4

(

(θ0+θ1 +θt−1)2−θ2
∞

)

. (3.6)

Okamoto [24] showed that there exists a holomorphic function τ on the universal covering

surface of P1 \ Σ such that H(t, λ(t), µ(t)) = d
dt log τ(t).

Borodin and Deift [7] have identified a kernel K such that τ(t) = det(I − P(t,∞)K).

The methods used in [11, 15, 16] involve complex analysis and differential geometry, and
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are not intended to address the properties of the operator K. Here obtain a suitable K by

introducing a linear system.

The Painlevé equation PV I is associated with the system

dΦ

dλ
=

(W0

λ
+

W1

λ− 1
+

Wt

λ− t

)

Φ (3.7)

dΦ

dt
=

−Wt

λ− t
Φ (3.8)

where the fixed singular points are {0, 1,∞} and

Wν = Wν(t) =

[

zν + θν/2 −uνzν
u−1
ν (zν + θν) −zν − θν/2

]

(ν = 0, 1, t) (3.9)

with parameters θν and zν satisfying various conditions specified in [16]. The consistency

condition for the system (3.7) and (3.8)

∂W

∂t
− ∂Ω

∂λ
= WΩ − ΩW. (3.10)

reduces to the identity

1

λ

∂W0

∂t
+

1

(λ− 1)

∂W1

∂t
+

1

(λ− t)

∂Wt

∂t
=

[W0,Wt]

λ(λ− t)
+

[W1,Wt]

(λ− 1)(λ− t)
, (3.11)

which leads, after a lengthy computation given in Appendix C of [16], to the equation PV I .

Jimbo et al [15, 16, 17] introduced pairs of differential equations (1.1) and such that

(3.11) reduces to one of the Painlevé equations. In the present context (3.7) are known

as the deformation equations and (3.11) is associated with the names of Schlesinger and

Garnier [10]. Note that traceW = 0 if and only if JW is symmetric; also W is nilpotent

if and only if JW is symmetric and det(JW ) = 0.

First we introduce a linear system for the differential equation (3.16); later we in-

troduce a linear system that realises the kernel most naturally associated with PV I . The

following result is a consequence of results of Turrittin [31], who clarified certain facts

about the Birkhoff canonical form for matrices.

Lemma 3.1. Let W∞ = −(W0 + W1 + Wt) and suppose that the eigenvalues of W∞

are ∓θ∞/2 where ±θ∞ is not a positive integer. Then there exist 2 × 2 complex matrices

C0 = I and Cj for j = 1, 2, . . . such that

Φ(x) =
(

I +

∞
∑

j=1

Cj
xj

)

x−W∞Φ0 (|x| > t) (3.12)
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satisfies the differential equation (3.7).

Proof. We can define x−W∞ = exp(−W∞ logx) as a convergent power series. By consider-

ing terms in the convergent Laurent series, one requires to show that there exist coefficients

Cj that satisfy the recurrence relation

Cn(−W∞ − nI) = −W∞Cn +W1(C0 + . . .+ Cn−1)

+ tWt(t
n−1C0 + tn−2C1 + . . .+ Cn−1), (3.13)

where W∞ + nI and W∞ have no common eigenvalues. Sylvester showed that, given

square matrices V,W and Z such that V and W have no eigenvalues in common, the

matrix equation CV −WC = Z has a unique solution C; see [31, Lemma 1]. Hence unique

Cn exist, and one shows by induction that ‖Cn‖ is at most of geometric growth in n. In

particular, if ‖W∞‖ < 1, then the solution of W∞Cn − Cn(W∞ + nI) = Dn is

Cn = −
∫ ∞

0

esW∞Dne
−s(W∞+nI) ds. (3.14)

We have proved that (3.7) has a solution in a neighbourhood of infinity, and one

can show that it extends to an analytic solution on the universal cover of the punctured

Riemann sphere P1 \ {0, 1, t,∞}. (Jimbo, Miwa and Ueno [15] have shown that any C2

solution of the pair (3.7) and (3.8) on R extends to a meromorphic solution on C; see [10,

Remark 4.7].)

Extending the construction of (2.2), we realise this solution via a linear system. We

introduce the output space H0 = C2, then the Hilbert space H1 = `2(H0), the state space

H = L2((t,∞); ds;H1) and then let D(A) = {f ∈ H : sf(s) ∈ H}; then we choose

bj(s) = Γ(jI +W∞)−1sj−1+W∞ (j = 0, 1, . . .), (3.15)

recalling that Γ(z)−1 is entire. With this choice and some convergence factor κ0 > 1, we

introduce linear maps

A : D(A) → H : f(s) 7→ sf(s);

BW : β 7→ (κj0bj(s)β)∞j=0;

C : D(A) → C2 : (fj)
∞
j=0 7→

∞
∑

j=0

∫ ∞

0

κ−j0 Cjfj(s) ds. (3.16)
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As usual, we introduce Ξx : L2(0,∞) → H such that

Ξxf =

∫ ∞

x

e−sABW f(s) ds (3.17)

and the observability operator Θx : L2((0,∞);H0) → L2((t,∞);H1) by

Θxf =

∫ ∞

x

e−sA
†

C†
W f(s) ds. (3.18)

Proposition 3.2. (i) There exist κ0, x0 > 0 such that the operators Θx : L2((0,∞);H0) →
H and Ξx : L2((0,∞);H0) → H are Hilbert–Schmidt for x > x0.

(ii) For x > x0, the linear system (−A,BW , CW ) realises the solution Φ of (3.7), so

that

Φ(x; t) = CW e
−xABWΦ0. (3.19)

(iii) Let φW (x; t) = CW e
−xABW . Then the Hankel operator on L2((x0,∞);H0) with

symbol φW is trace class.

Proof. We note that Θx has kernel (e−suκ−j0 C†
j )

∞
j=0, and hence the Hilbert–Schmidt norm

satisfies

‖Θx‖2
HS =

∞
∑

j=0

∫ ∞

t

∫ ∞

x

e−2suκ−2j
0 dsdu ‖C†

j ‖2
HS

≤
∞
∑

j=0

‖C†
j ‖2
HSe

−2xt

κ2j
0 4xt

; (3.20)

so we choose κ0 so that this series converge. Next we observe that Ξx : L2((x,∞);H0) →
L2((t,∞);H1) has kernel (e−suκj0bj(u))

∞
j=0, and hence has Hilbert–Schmidt norm

‖Ξx‖2
HS =

∞
∑

j=0

∫ ∞

x

∫ ∞

t

e−2suκ2j
0 ‖bj(u)‖2

HS duds

≤ κW

∞
∑

j=0

Γ(j)−2

∫ ∞

t

κ2j
0 u

2j−1e−2xu du

≤ κW

∞
∑

j=0

κ2j
0 Γ(2j)

Γ(j)2(2x)2j
(3.21)

for some κW > 0. Having chosen κ0, we then select x0 so that the series converges for all

x > x0; then both Θx and Ξx are Hilbert–Schmidt.

13



(ii) Hence we can calculate

CW e
−xABW =

∞
∑

j=0

∫ ∞

0

Cje
−xsbj(s) ds

=
∞
∑

j=0

CjΓ(jI +W∞)−1

∫ ∞

0

sj+W∞−1e−sx ds

=

∞
∑

j=0

Cjx
−W∞−j . (3.22)

Clearly the Cj and hence the operators CW and BW depend upon t. By differentiating

(3.20), one can obtain a recurrence relation for the derivatives
dCj

dt
. We have Φ(x; t) =

CW e
−tABWΦ0 and (3.7) reduces to

dCW
dt

e−tABW + CW e
−xA dBW

dt
=

−Wt

x− t
CW e

−xABW .

(iii) By (i), the operator Θ†
xΞx is trace class on L2((0,∞);H0) for all x > x0.

Furthermore, the operator Rx =
∫ ∞

x
e−sABWCW e

−sA ds on H may be represented as

a kernel with values in a doubly infinite block matrix with 2 × 2 matrix entries, namely

Rx ↔
[κj−k0 bj(u)Cke

−x(u+v)

u+ v

]

j,k=0,1,...
; (3.23)

this generalises (2.3). Consequently one can in principle compute the kernel

GW (x, y) = −CW e−xA(I − Rx)
−1e−yABW , (3.24)

which satisfies

GW (x, y) + φW (x+ y) +

∫ ∞

x

GW (x,w)φW (w + y) dw = 0 (t < x < y) (3.25)

where φW (x; t) = CW e
−xABW .

We also introduce

σj,k =

[

Ij 0
0 −Ik

]

(3.33)

which has rank j + k and signature j − k.
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Theorem 3.3. Suppose that W∞ is as in Lemma 3.1. Let Φ(λ; t) be a bounded solution

of (3.7) in L2((t,∞); dλ;R2) such that
∫ ∞

t
λ−1‖Φ(λ; t)‖2dλ <∞, and let

K(λ, µ; t) =
〈JΦ(λ; t),Φ(µ; t)〉

λ− µ
. (3.26)

(i) Then there exists φ ∈ L2((0,∞);λdλ;R6) such that

K(λ, µ; t) =

∫ ∞

0

〈σ3,3φ(λ+ s; t), φ(µ+ s; t)〉 ds (λ, µ > t;λ 6= µ). (3.27)

and hence K defines a trace class operator on L2((t,∞); dλ).

(ii) The kernel ∂
∂tK(λ, µ; t) is of finite rank in (λ, µ).

Proof. Jimbo [14] has shown that the fundamental solution matrix to (3.16) satisfies

Y (x, t) =
(

1 + O(x−1)
)

[

x−θ∞/2 0
0 xθ∞/2

]

; (3.28)

hence there exist solutions that satisfy the hypotheses.

(i) We suppress the parameter t to simplify notation. From the differential equation

(3.7), we have

( ∂

∂λ
+

∂

∂µ

) 〈JΦ(λ),Φ(µ)〉
λ− µ

=
( 1

λ− µ

)

∑

ν=0,1,t

〈( JWν

λ− ν
+
W †
νJ

µ− ν

)

Φ(λ),Φ(µ)
〉

. (3.29)

Now

JWν =

[

−(zν + θν)/uν zν + θν/2
zν + θν/2 −uνzν

]

(ν = 0, 1, t) (3.30)

which have rank two and signature zero since detWν = −θ2
ν/4 < 0. Hence JWν =

V †
ν σ1,1Vν for some 2 × 2 real matrix Vν , and JWν = V †

ν σ1,1Vν . Thus we find that (3.30)

reduces to

−〈σ1,1V0Φ(λ), V0Φ(µ)〉
λµ

− 〈σ1,1V1Φ(λ), V1Φ(µ)〉
(λ− 1)(µ− 1)

− 〈σ1,1VtΦ(λ), VtΦ(µ)〉
(λ− t)(µ− t)

. (3.31)

Let

φ(λ) =







V0Φ(λ)
λ

V1Φ(λ)
λ−1
VtΦ(λ)
λ−t






, (3.32)

which satisfies, after we permute the coordinates in the obvious way,

−
∑

ν=0,1,t

〈σ1,1VνΦ(λ), VνΦ(µ)〉
(λ− ν)(µ− ν)

= −〈σ3,3φ(λ), φ(µ)〉

=
( ∂

∂λ
+

∂

∂µ

)

∫ ∞

0

〈σ3,3φ(λ+ s), φ(µ+ s)〉 ds. (3.33)
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We observe that both sides of (3.33) converge to zero as λ → ∞ and as µ → ∞. By

comparing the derivatives as in (3.27) and (3.33), we deduce (3.35).

Then K = Γ†
φσ3,3Γφ. We observe that the Hilbert–Schmidt norm of Γφ satisfies

‖Γφ‖2
HS =

∫ ∞

t

(λ− t)‖φ(λ)‖2 dλ

≤ κ

∫ ∞

t

‖Φ(λ)‖2

λ
dλ (3.34)

for some κ > 0, so K gives a trace class operator on L2(t,∞).

(ii) By a similar calculation, one can compute the derivative of K with respect to the

position of the critical point, and find

∂

∂t
K(λ, µ; t) =

1

(λ− t)(µ− t)

〈

[

−(zt + θt)/ut zt + θt/2
zt + θt/2 −utzt

]

Φ(λ; t),Φ(µ; t)
〉

; (3.35)

evidently this is a finite sum of products of functions of λ and functions of µ for each t.

4. The τ function associated with Painlevé’s equation VI

We now derive an integral equation for det(I −KP(x,∞)). From Proposition 3.2, we

recall the linear system (−AW , BW , CW ) that realises φW , and likewise we introduce a

linear system (−AV , BV , CV ) that realises φV = diagonal(V0/x, V1/(x − 1), Vt/(x − t));

then by considering

(−(AV ⊗ I + I ⊗ AW ), BV ⊗ BW , CV ⊗ CW )

we introduce a new linear system that realises φ from Theorem 3.3, so that φ(x) = Ce−xAB.

Next we let Γφ be the Hankel integral operator with symbol φ; also let φ(x)(y) =

φ(y + 2x) and let Lx be observability Gramian

Lx =

∫ ∞

x

e−tABB†e−tA
†

ds = ΞxΞ
†
x. (4.1)

To take account of the signature, we introduce the the modified controllability Gramian

Qσx =

∫ ∞

x

e−sA
†

C†σ3,3Ce
−sA ds. (4.2)

We also introduce the (6 + 1) × (6 + 1) block matrices

G(x, y) =

[

U(x, y) V (x, y)
T (x, y) ζ(x, y)

]

(4.3)
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and

Φ(x) =

[

0 φ(x)
φ(x)† 0

]

, (4.4)

and the integral equation

G(x, y) + Φ(x+ y) +

∫ ∞

x

G(x,w) ∗ Φ(w + y) dw = 0, (4.5)

where we have introduced a special matrix product to incorporate the signature, namely

∫ ∞

x

G(x,w) ∗ Φ(w + y) dw

=

[
∫ ∞

x
V (x,w)φ(w + y)†σ3,3dw

∫ ∞

x
U(x,w)φ(w + y)dw

∫ ∞

x
ζ(x, y)φ(w+ y)†dw

∫ ∞

x
T (x,w)σ3,3φ(w + y)dw

]

. (4.6)

Theorem 4.1. Suppose that x > t is such that Qx and Lx are trace-class operators with

operator norms less than one. Then there exists a solution to the integral equation (4.5)

such that τK(x) = det(I − P(x,∞)K) satisfies

d

dx
log τK(x) = traceG(x, x). (4.7)

Proof. By Theorem 3.3, we have K = Γ†
φσ3,3Γφ, and so

τK(x) = det(I − P(x,∞)Γ
†
φσ3,3Γφ)

= det(I − Ξ†
xΘxσ3,3Θ

†
xΞx)

= det(I − ΞxΞ
†
xΘxσ3,3Θ

†
x)

= det(I −QσxLx). (4.8)

One can verify that

[

U(x, y) V (x, y)
T (x, y) ζ(x, y)

]

(4.9)

=

[

Ce−xA(I − LxQ
σ
x)

−1Lxe
−yA†

C†σ3,3 −Ce−xA(I − LxQ
σ
x)

−1e−yAB

−B†e−xA
†

(I −QσxLx)
−1e−yA

†

C† B†e−xA
†

(I −QσxLx)
−1Qσxe

−yAB

]

gives a solution to (4.6), so that

traceU(x, x) = trace
(

(I − LxQ
σ
x)

−1Lxe
−xA†

C†σ3,3Ce
−xA

)

= −trace
(

(I − LxQ
σ
x)

−1Lx
dQσx
dx

)

. (4.10)
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Likewise we have

ζ(x, x) = trace
(

(I −QxLx)
−1Qσxe

−xABB†e−xA
†
)

= −trace
(

(I −QσxLx)
−1Qσx

dLx
dx

)

. (4.11)

Adding and rearranging, we obtain

traceG(x, x) = ζ(x, x) + traceU(x, x)

= −trace
(

(I − LxQ
σ
x)

−1Lx
dQσx
dx

)

− trace
(

(I − LxQ
σ
x)

−1 dLx
dx

Qσx

)

=
d

dx
trace log(I − LxQ

σ
x)

=
d

dx
log τK(x). (4.12)

We introduce the new variable u by the elliptic integral

u =

∫ y

∞

dλ
√

λ(λ− 1)(λ− t)
, (4.13)

then we let Z = ∂y
∂u

and Y = y, so (Y, Z) lies on the elliptic curve Z2 = Y (Y − 1)(Y − t)

which depends upon the parameter t. Soon after his discovery of PV I , R. Fuchs showed

that if y(t) satisfies PV I , then u(t) satisfies

−t(1 − t)
d2u

dt2
+ (2t− 1)

du

dt
+
u

4

= −
√

y(y − 1)(y − t)

t(1 − t)

(

2α+
2βt

y2
+
γ(t− 1)

(y − 1)2
+ (δ − 1/2)

t(t− 1)

(y − t)2

)

, (4.14)

where we recognise Legendre’s differential operator on the left-hand side. By analysing

these solutions, Guzzetti [13] obtains various series representations and bounds on the

growth of y(t).

5. Kernels associated with the hypergeometric equation

The PV I equation is closely related to Gauss’s hypergeometric equation

λ(1 − λ)
d2f

dλ2
+ (c− (a+ b+ 1)λ)

df

dλ
− abf(λ) = 0. (5.1)
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We introduce c0 = c and c1 = a+ b− c+ 1, then the matrix

W (λ) =

[

0 λ−c0(λ− 1)−c1

−abλc0−1(λ− 1)c1−1 0

]

(5.2)

so that we can express (5.1) in the form of a first order linear differential equation as in

(5.4). For special choices of the parameters a, b, c, we can obtain a factorization For a

separable Hilbert space H we introduce the identity operator IH and

σH,H =

[

IH 0
0 −IH

]

. (5.3)

Theorem 5.1. Suppose that 0 ≤ c ≤ 1 and a+ b = 0, that 2
√
−ab is not an integer, and

that −ab− (2c− 1)2/4 > 1, and let Ψ be a bounded solution for the equation

dΨ

dλ
= W (λ)Ψ(λ), (5.4)

such that
∫ ∞

1
x‖Ψ(x)‖2dx <∞; then let

K(x, y) =
〈JΨ(x),Ψ(y)〉

x− y
(x 6= y;x, y > 1). (5.5)

(i) Then there exists a separable Hilbert space H and φ : (1,∞) → H2 such that
∫ ∞

1+δ
x‖φ(x)‖2

H2 dx < ∞ and K = Γ†
φσH,HΓφ so that K defines a trace class kernel on

L2((1 + δ,∞); dx) for all δ > 0.

(ii) The statement of Theorem 4.1 applies to

τK(s) = det(I −KP(s,∞)) = det(I − Γ†
φ(s/2)

σH,HΓφ(s/2)
), (5.6)

with obvious changes to notation.

(iii) If moreover c is rational, then K arises from a Tracy–Widom system as in (1.1).

Proof. Let

q(λ) =
−ab

λ(λ− 1)
− 1

4

( c

λ
− 1 − c

λ− 1

)2

, (5.7)

which is positive for large λ. By the Liouville–Green transformation [25, p.229] , we can

obtain solutions to (5.1) of the form

f±(λ) � λ−c/2(λ− 1)−(1−c)/2q(λ)−1/4 exp
(

±
∫ λ

2

q(x)1/2 dx
)

(λ→ ∞), (5.8)

and one can deduce that
∫ ∞

2
xf−(x)2 dx <∞. Hence there exist solutions that satisfy the

hypotheses.
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(i) We observe that c1 + c0 = 1, so 0 ≤ c0, c1, 1 − c0, 1 − c1 ≤ 1; we assume that

0 < c0, c1 < 1, as the cases of equality are easier. Evidently the functions λ−c0(λ− 1)c0−1

and λc1−1(λ− 1)−c1 are operator monotone decreasing on (1,∞) in Loewner’s sense and

by [1, p.577]

λ−c0(λ− 1)c0−1 =
sinπc0
π

∫ 0

−1

(−u)−c0(1 + u)c0−1 du

λ+ u
(x > 1); (5.9)

clearly a similar representation holds for λ−c1(λ−1)c1−1 with c1 instead of c0. Hence there

exist positive measures ω1 and ω0 on [−1, 0] such that

JW (x) +W (y)†J

x− y
=

[

abx
−c1 (x−1)c1−1−y−c1 (y−1)c1−1

x−y 0

0 x−c0 (x−1)c0−1−y−c0 (y−1)c0−1

x−y

]

=

∫ 0

−1

1

(x+ u)(y + u)

[

−abω1(du) 0
0 −ω0(du)

]

(5.10)

in which −ab ≥ 0. The matrix kernel (JW (x) + W (y)†J)/(x − y) operates as a Schur

multiplier on the rank one tensor Ψ(x)⊗Ψ(y) in L2((1 + δ,∞);R2); hence for each δ > 0,

there exists κδ > 0 such the Schur multiplier norm is bounded by κδ. Since Ψ(x+ s) gives

a Hilbert–Schmidt kernel, the operator
∫ ∞

0
Ψ(x + s) ⊗ Ψ(y + s) ds is trace class, and it

follows that

K(x, y) =

∫ ∞

0

〈JW (x+ s) +W (y + s)†J

x− y
Ψ(x+ s),Ψ(y + s)

〉

ds (5.11)

is also trace class on L2((1 + δ,∞); dx). As in Theorem 1.1 of [4], we can introduce the

Hilbert space H, φ ∈ L2((1 + δ,∞);xdx;H2) and the Hankel operator Γφ with symbol φ

such that K = Γ†
φσH,HΓφ, so

K(x, y) =

∫ ∞

0

〈σH,Hφ(x+ s), φ(y + s)〉H2 ds (5.12)

where σH,H takes account of the fact that the Schur multiplier is positive on the top left

matrix block and negative on the bottom right matrix block.

(ii) We observe that

W (λ) =
1

λ

[

0 1
−ab 0

]

+ O(λ−2) (|λ| → ∞), (5.13)

is analytic at infinity and the residue matrix has eigenvalues ±
√
−ab which do not differ

by a positive integer. Hence we can repeat the proof of Lemma 3.1 and realise the solution
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Ψ of (5.4) by a linear system involving the coefficients in the Laurent series of Ψ. Then

we can realise φ ∈ L2((0,∞);H2) by means of a linear system (−A,B,C), where the state

space is L2((0,∞);H2). We can now follow through the proof in section 4 as express τ in

terms of the Gelfand–Levitan equation.

(iii) Let c = k/n; then {(X,Z) : Zn = Xk(X − 1)n−k} gives a n-sheeted cover of

P1, ramified at 0, 1. On this compact Riemann surface, the functions λ−c0(λ− 1)c0−1 and

λc0−1(λ− 1)−c0 are rational.

6. The τ function associated with a Hankel operator on exponential bases

We wish to find a more explicit expression for τ and for σ(t) = d
dt log τ(t) for suitable K,

especially those K that factor as K = Γ†
φΓφ. We can obtain an explicit formula for τ when

φ has the exponential expansion

φ(x) =

∞
∑

j=1

ξje
−λjx (6.1)

where the coefficients ξj lie in some Hilbert space E. In this section we establish the

existence of such expansions by using the theory of approximation of compact Hankel

operators, whereas in subsequent sections we consider the transfer function φ̂(s) of φ and

use the Mittag-Leffler expansion to give explicit formulas. The Hankel operator with

symbol φ can be expressed in terms of the exponential basis as a relatively simple matrix,

so we can derive expressions for its Fredholm determinant. Our applications in sections 6

and 7 are to cases in which the poles lie on an arithmetic progression, which occurs when

φ is a theta function.

We suppose that λj ∈ C with <λj > 0 are such that (e−tλj )∞j=1 are linearly independent

exponentials, so that

DN = det
[ 1

λj + λ̄k

]N

j,k=1
> 0 (N = 1, 2, . . .). (6.2)

Suppose that ξ = (ξj)
∞
j=1 ∈ `1 and introduce the operators

B : C → `1 ⊂ `2 : a 7→ aξ
e−tA : `2 → `2 : (αj)

∞
j=1 7→ (e−tλjαj)

∞
j=1

C : `1 ⊂ `2 → C : (αj)
∞
j=1 7→ ∑∞

j=1 αj

Θ : L2(0,∞) → `2 : f 7→ (
∫ ∞

0
e−λ̄jsf(s) ds)∞j=1.

(6.3)

Theorem 6.1. Suppose that Θ is bounded and that there exist constants δ,M > 0 such

that <λj ≥ δ and
∑∞
k=1 |λj + λk|−2 ≤ M for all j; let ξ ∈ `1.
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(i) Then φ(x) = Ce−xAB gives rise to a Hankel operator Γφ : L2(0,∞) → L2(0,∞)

with symbol φ, which is trace class.

(ii) The operator

Rx =

∫ ∞

x

e−sABCe−sA ds (6.4)

on `2 is trace class, and for µ is an open neighbourhood of zero, the kernel Tµ(x, y) =

−µCe−xA(I + µRx)
−1e−yAB gives a solution to the integral equation

Tµ(x, y) + µφ(x+ y) + µ

∫ ∞

x

Tµ(x, z)φ(z + y) dz = 0 (0 < x ≤ y). (6.5)

(iii) Suppose that (I − Rt) is invertible for all t > 0. Then the Hankel operator Γφ(t)

with kernel φ(x+ y + 2t) satisfies

det(I − Γφ(t)
) = exp

(

−
∫ ∞

t

T−1(u, u) du
)

. (6.6)

Proof. (i) The kernel may be expressed as a sum of rank-one kernels

Γφ ↔
∞
∑

j=1

ξje
−λj(x+y) (6.7)

where
∑∞
j=1 |ξj|/<λj converges, so Γφ is trace class.

(ii) By considering the rows of the matrix

Rx ↔
[ξje

−(λj+λk)x

λj + λk

]∞

j,k=1
(6.8)

we see that Rx is also trace class. When |µ|‖Rx‖ < 1, the kernel Tµ(x, y) is well defined,

and one verifies the identity (6.5) by substituting.

(iii) The operators

C : `1 → C, e−tA : `1 → `1, Rx : `1 → `1, B : C → `1 (6.9)

are all bounded, and ξ 7→ Rx is continuous from `1 to the trace class; hence T (x, y) depends

continuously on ξ in a neighbourhood of 0 in `1. Suppose that (ξ(n))∞n=1 is a sequence of

vectors in `1 that have only finitely many nonzero terms, and that ξ(n) → ξ as n → ∞.

Denoting the operators corresponding to ξ(n) by R
(n)
x etcetera, we can manipulate the

finite matrices and deduce that

T
(n)
−1 (x, x) =

d

dx
log det(I −R(n)

x ) (6.10)

22



and hence
∫ t

s

T
(n)
−1 (x, x) dx = log det(I −R

(n)
t ) − log det(I − R(n)

s ); (6.11)

so letting n→ ∞, we deduce that

∫ t

s

T−1(x, x) dx = log det(I −Rt) − log det(I −Rs). (6.12)

The operator Ξ : L2(0,∞) → `2 given by

Ξf =

∫ ∞

0

e−tABf(t) dt (6.13)

has matrix representation

ΞΞ† ↔
[ ξj ξ̄k
λj + λ̄k

]∞

j,k=1
(6.14)

with respect to the standard basis (ej), and hence Ξ is Hilbert–Schmidt since
∑∞
j=1 ‖Ξ†ej‖2 <∞. The operator Θ is bounded by hypothesis, hence Θ† is also bounded;

so R0 = ΞΘ† is also Hilbert–Schmidt.

The operator Γφ is trace class by (ii), and the non-zero eigenvalues of Γφ = Θ†Ξ and

R0 = ΞΘ† are equal, hence

det(I − Γφ(x)
) = det(I − Rx) (6.15)

which when combined with (6.12), implies that

log det(I − Γφ(t)
) − log det(I − Γφ(s)

) =

∫ s

t

T−1(u, u) du. (6.16)

Evidently Γφ(s)
→ 0 as s→ ∞, and hence (6.6) follows from (6.16).

Theorem 6.2. Let K be an integral operator on L2((0,∞); dt;C) such that:

(i) 0 ≤ K ≤ I and I −K is invertible;

(ii) there exists a separable Hilbert space E and φ ∈ L2((0,∞); tdt;E) such that

K = Γ†
φΓφ.

Then K has a τ -function τK and there exists a sequence (Kn)
∞
n=1 of finite rank integral

operators with corresponding τ -functions τKn
such that:

(1) Kn → K in trace class norm;

(2) τKn
(x) → τK(x) uniformly on compact sets as n→ ∞;
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(3) τKn
(x) =

∑Nn

j=1 ajne
−µjnx for some ajn, µjn ∈ C with <µjn > 0 that are given in

Proposition 6.4 below.

Proof. (1) For φ ∈ L2((0,∞); tdt;E), the operator Γφ is Hilbert–Schmidt and hence K is

trace class. By the Adamyan–Arov–Krein theorem [26], there exists a sequence (Γφ(n))∞n=1

of finite-rank Hankel operators such that Γφ(n) → Γφ in Hilbert–Schmidt norm.

Kronecker showed that a Hankel operator Γφ(n) has finite rank if and only if the

transfer function φ̂(n)(s) is rational; see [26]. Hence the typical form for φ(n) is a finite

sum

φ(n)(t) =
∑

j,k

ξk,jt
ke−λj t (6.17)

where ξk,j ∈ E and <λj > 0; the terms with factor tk give poles of order k+ 1. To resolve

the poles of order greater than one into sums of simple poles, we introduce the difference

operator ∆ε by ∆εg(λ) = ε−1(g(λ + ε) − g(λ)), which satisfies limε→0 ∆k
εg(λ) = g(k)(λ)

whenever g is k-times differentiable with respect to λ. By the dominated convergence

theorem,
∫ ∞

0

t|k!(−∆ε)
ke−λj t − tke−λj t|2 dt→ 0 (6.18)

as ε → 0, so we can replace tke−λj t by k!(−∆ε)
ke−λj t at the cost of a small change in

the operator Γφ(n) in Hilbert–Schmidt norm. Thus we eliminate poles of order greater

than one, and we can ensure that 0 ≤ Γ†
φ(n)Γφ(n) ≤ I, with I − Γ†

φ(n)Γφ(n) invertible. Let

Kn = Γ†
φ(n)Γφ(n) so that Kn has finite rank and Kn → K as in trace norm as n→ ∞.

(2) Let φ(x)(t) = φ(t+2x) and φ
(n)
(x)(t) = φ(n)(t+2x). We have Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

→ Γφ(x)
Γφ(x)

in trace class norm as n→ ∞ so

τ(x) = det(I −KP(x,∞))

= det(I − Γ†
φ(x)

Γφ(x)
)

= lim
n→∞

det(I − Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

)

= lim
n→∞

τKn
(x) (6.19)

since the Fredholm determinant is a continuous functional on the trace class operators.

(3) To calculate the function τKn
(x) in (3) of Theorem 6.2, we assume that φ(n) has

the form

φ(n)(t) =

N
∑

j=1

ξ†je
−λ̄j t (t > 0) (6.20)
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where ξj ∈ E and <λj > 0. Without loss of generality we can replace E by the subspace

span(ξj)
N
j=1 and for notational simplicity we take ξj ∈M1,ν(C) where ν ≤ N.

We introduce

aj = row
[ξje

−2λjx

λj + λ̄k

]

∈M1,νN(C) (6.21)

and

bm = column
[ξ†ke

−2λ̄kx

λ̄k + λm

]N

k=1
∈MνN,1(C). (6.22)

Lemma 6.3. The matrix

K = [ajbm]Nj,m=1 (6.23)

represents the operator Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

with respect to the (non-orthogonal) basis (e−λjs)Nj=1

of span(e−λjs)Nj=1.

Proof. We observe the Laplace transform of φ
(n)
(x) is the rational function

φ̂
(n)
(x)(s) =

ν
∑

j=1

ξ†je
−2λjx

s+ λj
. (6.24)

The operator Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

has kernel in the variables (s, t)

∫ ∞

0

〈φ(n)(2x+ s+ u), φ(n)(2x+ t+ u)〉 du (6.25)

and hence one computes

Γ†

φ
(n)

(x)

Γ
φ

(n)

(x)

: e−λms 7→
N

∑

j,k=1

〈ξj, ξm〉e−2(λ̄k+λj)x

(λj + λ̄k)(λ̄k + λm)
e−λjs. (6.26)

Recalling the definitions (6.21) and (6.22), one computes

ajbm =
N

∑

j=1

〈ξj, ξk〉e−2(λj+λ̄k)x

(λj + λ̄k)(λ̄k + λm)
(6.27)

and by comparing this with (6.23), one obtains the stated identity.

We can proceed to compute the τ function when φ(n) is as in Theorem 6.2. For S, T ⊆
{1, . . . , N}, let KS,K be the submatrix of Kn that is indexed by (j, k) ∈ S × T , and let ]S

be the number of elements of S.
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Proposition 6.4. (i) Suppose that φ(n) : (0,∞) → C is as in (6.20). Then

τKn
(x) =

N
∑

`=0

(−1)`
∑

T,S:]S=]T=`

∏

j∈S

ξje
−2λjx

∏

k∈T

ξ̄ke
−2λ̄kx det

[ 1

λj + λ̄k

]2

j∈S,k∈T
. (6.28)

(ii) Suppose that φ(n) : (0,∞) → E where E has orthonormal basis (er)
ν
r=1 and let

ξ
(r)
j = 〈ξj , er〉. Then

τKn
(x) =

∑

S,T :]S=]T

(−1)]S det
[ξ

(r)
j e−2λjx

λj + λ̄k

]

j∈S;(k,r)∈T
det

[ ξ̄
(r)
k e−2λ̄kx

λm + λ̄k

]

m∈S;(k,r)∈T
(6.29)

and the sum is over all pairs of subsets S ⊆ {1, . . . , N} and T ⊆ {1, . . . , N} × {1, . . . , ν}
that have equal cardinality.

Proof. (i) By the Lemma we have τKn
(x) = det(I − Kn), and by expansion of the

determinant we have

det(I −Kn) =
∑

S:S⊆{1,...,N}

(−1)]S detKS,S (6.30)

where detK∅,∅ = 1 and otherwise

detKS,S = det
[

N
∑

k=1

ξj ξ̄ke
−2(λj+λ̄k)x

(λj + λ̄k)(λ̄k + λm)

]

j,m∈S
(6.31)

which reduces by the Cauchy–Binet formula to

∑

T :]T=]S

det
[ξje

−2λjx

λj + λ̄k

]

j∈S,k∈T
det

[ ξ̄ke
−2λ̄kx

λ̄k + λm

]

k∈T,m∈S
(6.32)

=
∑

T :]T=]S

(

∏

j∈S

ξje
−2λjx

∏

k∈T

ξ̄ke
−2λ̄kx

)

det
[ 1

λj + λ̄k

]

j∈S,k∈T
det

[ 1

λm + λ̄k

]

m∈S,k∈T
.

By taking the sums over both S and T , we obtain the stated formula.

(ii) To prove (ii) one follows a similar route until line (6.32), except that we have

〈ξj, ξk〉 =
∑ν
r=1 ξ

(r)
j ξ̄

(r)
k , so the indices in the Cauchy–Binet formula are over the product

set T ⊆ {1, . . . , N} × {1, . . . , ν}.

7. The τ function for the hard edge

Our first application of section 5 is to the hard edge ensemble. The Jacobi polynomials

arise when one applies the Gram–Schmidt process to (xk)∞k=0 with respect to the weight
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(1−x)α(1+x)β on [−1, 1] for α, β > −1. The zeros of the polynomials of high degree tend

to accumulate at the so-called hard edges 1− and (−1)+. According to [28], the kernel

that describes the limiting behaviour of the joint distribution of the scaled zeros near to

the hard edges is given by

Jν(2
√
x)
√
yJ ′

ν(2
√
y) −√

xJ ′
ν(2

√
x)Jν(2

√
y)

x− y
=

∫ 1

0

Jν(2
√
tx)Jν(2

√
ty) dt (7.1)

on L2((0, 1); dt); here Jν is Bessel’s function of the first kind of order ν. Hence we change

variables and introduce the Hankel operators on L2((0,∞); dt).

Proposition 7.1. For ν > −1, let φ(x) = e−x/2Jν(2e
−x/2) and let Γφ be the Hankel

integral operator on L2(0,∞) with symbol φ. Then Theorem 3.2 applies to Γφ.

Proof. From the power series for Jν , we obtain a rapidly convergent series

φ(x) =

∞
∑

n=0

(−1)ne−(2n+ν+1)x/2

n!Γ(ν + n+ 1)
(x > 0) (7.2)

giving a meromorphic transfer function

φ̂(s) =

∞
∑

n=0

(−1)n

n!Γ(ν + n+ 1)(s+ n+ (ν + 1)/2)
, (7.3)

for which the poles form an arithmetic progression along the negative real axis.

We choose λn = (2n+ν+1)/2, which gives an arithmetic progression along the positive

real axis, starting at (ν + 1)/2 > 0, and
∑∞
n=0 λ

−2
n <∞. The operator Θ : `2 → L2(0,∞)

is bounded by duality since

∫ ∞

0

∣

∣

∞
∑

n=0

ane
−λnx

∣

∣

2
dx =

∞
∑

n,m=0

anām
λn + λm

≤ C

∞
∑

n=0

|an|2 (7.4)

by Hilbert’s inequality. Hence Γφ is a self-adjoint trace class operator, and Theorem 7.2

applies.

We can now compute some of the finite determinants that appear in the expansion of

det(I − Γ2
φ(x)

) from Proposition 7.4.

Definition (Partition). By a partition λ we mean a list n1 ≥ n2 ≥ . . . ≥ n` of positive

integers, so that the sum |λ| =
∑`
j=1 nj , is split into ` = `(λ) parts. For each λ, the
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symmetric group on |λ| letters has an irreducible unitary representation on a complex

inner product space Sλ, known as the Specht module. For notational convenience, we

introduce a null partition with `(∅) = 0 and write dim(S∅) = 1.

Proposition 7.2. Suppose that ν = 0. Let K = Γ2
φ and τ(x) = trace(I−KP[x,∞)). Then

K is a trace class operator on L2(0,∞) such that 0 ≤ K ≤ I and

τ(x) =
∑

λ

(−1)`(λ) dim(Sλ)
2

(|λ|!)2 e−2|λ|x (7.5)

where the sum is over all partitions.

Let En = span{e−(2j+ν+1)x : j = 0, . . . , n} and let Qn : L2(0,∞) → En be the

orthogonal projection; likewise we introduce the closure E∞ of the subspace ∪∞
n=1En and

the corresponding orthogonal projection Q∞ : L2(0,∞) → E∞. Observe that Qn →
Q∞ in the strong operator topology as n → ∞ and that Γφ(x)

Q∞ = Q∞Γφ(x)
; hence

det(I − Γ2
φ(x)

) = limn→ det(I −QnΓ
2
φ(x)

Qn).

The matrix of QnΓ
2
φ(x)

Qn with respect to (e−(2j+ν+1)s)nj=0 satisfies

QnΓ
2
φ(x)

Qn ∼
[ (−1)j+me−2x(j+m+ν+1)

j!m!Γ(ν + j + 1)Γ(m+ ν + 1)

∞
∑

k=0

1

(j + k + ν + 1)(m+ k + ν + 1)

]n

j,m=0
.

(7.6)

We observe that the corresponding infinite matrix for Q∞Γ2
φ(x)

has entries that summable

with respect to j and m over j,m = 0, 1, . . . ; thus det(I − Γ2
φ(x)

) is a determinant of Hill’s

type.

We consider the determinant in (3.14). We change notation so as to allow the running

indices in sums to be j, k = 0, 1, . . . , and we let S and T be subsets of {0, 1, 2, . . .} that are

finite and of equal cardinality. Suppose that the elements of S are m1 > m2 > . . . > m`,

while the elements of T are k1 > k2 > . . . > k`; then let N = `+
∑`
i=1(mi + ki). Then in

Frobenius’s coordinates [9, 21], there is a partition λ ↔ (m1, . . . ,m`; k1, . . . , k`) with |λ|
with a corresponding Specht module Sλ such that

det
[ 1

m!Γ(m+ 1)(m+ k + 1)

]

m∈S,k∈T

∏

k∈T k!
∏

m∈Sm!

dim(Sλ)

(|λ|)! (7.7)

as in the hook length formula of representation theory; see in [21]. Hence the pair of sets

S and T , each with `(λ) elements give rise to the product of determinants

det
[ 1

j!Γ(j + 1)(j + k + 1)

]

j∈S,k∈T
det

[ 1

m!Γ(m+ 1)(m+ k + 1)

]

m∈S,k∈T
=

dim(Sλ)
2

(|λ|!)2
(7.8)
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and the exponential

e
−

∑

j∈S
(2j+1)x−

∑

k∈T
(2k+1)x

= e−2|λ|x. (7.9)

Conversely, each partition λ of some positive integer gives a Ferrers diagram and we

can introduce subsets S, T ⊂ {0, 1, . . .} that are finite and of equal cardinality which gives

a contribution to the sum (3.14) from the prescription of (7.9) and (7.10). By summing

over all partitions, or equivalently all pairs of sets S and T , we obtain the series (7.6).

Remark. Borodin, Okounkov and Olshanski [8] have computed a Fredholm determinant

for the discrete Bessel kernel, and derived a result vaguely similar to (7.6). The determinant

det(I − KP(0,s)) was computed by Forrester, and Forrester and Witte have considered

various circular ensembles [11].

8. A τ function related to Lamé’s equation

To conclude this paper, we consider Hankel operators related to Lamé’s equation.

First we review some ideas that originate with Hochstadt and are developed by McKean

and van Moerbecke in [23].

Let E be a compact Riemann surface of genus g, and J the Jacobi variety of E ,

which we identify with Cg/L for some lattice L in Cg. An abelian function is a locally

rational function on J, or equivalently a periodic meromorphic function on Cg with 2g

complex periods. A theta function (or elliptic function of the second kind) θ : Cg → P1

with respect to L is a meromorphic function, not identically zero, such that there exists

a linear map x 7→ L(x, u) for x ∈ Cg and u ∈ L and a function η : L → C such that

θ(x+u) = θ(x)e2πi(L(x,u)+η(u)) for all x ∈ Cg and u ∈ L. The pair (L, η) is called the type

of θ, as in [20].

Suppose that q : R → R is infinitely differentiable and periodic with period one. Let

Uλ be the fundamental solution matrix for Hill’s equation

− d2

dt2
f + q(t)f(t) = λf(t) (8.1)

so that Uλ(0) = I, and let ∆(λ) = traceUλ(1) be the discriminant. Suppose in particular

that λ lies inside the Bloch spectrum of − d2

dt2 + q(t), but that 4 − ∆(λ)2 6= 0. Then any

nontrivial solution of (8.1) is bounded but not periodic.

We suppose that 4 − ∆(λ)2 has only finitely many simple zeros 0 < λ
(1)
0 < λ

(1)
1 <

. . . < λ
(1)
2g , and let λ

(2)
k be double zeros for k = 1, 2, . . . ; then

4 − ∆(λ)2 = c1

2g
∏

j=0

(

1 − λ

λ
(1)
j

)

∞
∏

k=1

(

1 − λ

λ
(2)
k

)2

. (8.2)
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Proposition 8.1. Suppose that the discriminant has this form. Then Hill’s equation gives

a Tracy–Widom system on a hyperelliptic curve of genus g.

Proof. The equation (8.1) has nontrivial bounded solutions if and only if |∆(λ)| < 2, so

that λ lies in an interval of stability. Hence the spectrum of − d2

dt2 + q in L2(R) has the

form

[λ
(1)
0 , λ

(2)
1 ] ∪ [λ

(1)
2 , λ

(1)
3 ] ∪ . . . ∪ [λ2g,∞). (8.3)

The zeros of ∆′(λ) consist of all the λ
(2)
k together with zeros λ′j that interlace the simple

zeros of 4 − ∆(λ)2, so λ
(1)
2j−1 < λ′j < λ

(1)
2j for j = 1, . . . , g; hence

∆′(λ)
√

4 − ∆(λ)2
=

∏g
j=1

(

1 − λ
λ′

j

)

√

∏2g
j=0

(

1 − λ

λ
(1)
j

)

. (8.4)

We introduce a new variable by the integral

t = −
∫

∆′(X)dX
√

4 − ∆(X)2
(8.5)

so that 2 cos t = ∆(X). We invert this relation by introducing a hyperelliptic function Q(t)

so that 2 cos t = ∆(Q(t)). We introduce the hyperelliptic curve

E : Z2 =

2g
∏

j=0

(

1 − X

λ
(1)
j

)

, (8.6)

which has genus g. After a little reduction, Hill’s equation becomes

−
( Z

∏g
j=1

(

1 −X/λ′j)

d

dX

)2

f + q(Q−1(X))f = λf. (8.7)

Now by results of McKean and van Moerbeke, q(Q−1(X)) is an abelian function on E and

may be viewed as a locally rational function on the Jacobian variety J over E . Hence we can

express (8.6) as a matrix differential equation with coefficients in the field of locally rational

functions on J.

Suppose in particular that q is elliptic with periods 2K and 2K ′i where K,K ′ > 0.

Gesztesy and Weikard [12] have shown that the spectrum has only finitely many gaps if

and only if z 7→ Uλ(z) is meromorphic for all λ ∈ C. By a classical result of Picard,

there exists a nonsingular matrix Aλ such that Uλ(z+ 2K) = Uλ(z)Aλ. If Aλ has distinct

eigenvalues, then there exists a solution f to (8.1) that is a theta function with respect to

the lattice L = {2Km+ 2K ′in : m,n ∈ Z}.
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Next we describe in more detail the case of genus one. We recall Jacobi’s sinus

amplitudinus of modulus k is sn(x | k) = sinψ where

x =

∫ ψ

0

dθ
√

1 − k2 sin2 θ
. (8.8)

For 0 < k < 1, let K(k) be the complete elliptic integral

K(k) =

∫ π/2

0

dt
√

1 − k2 sin2 t
; (8.9)

next let K ′(k) = K(
√

1 − k2); then sn(z | k)2 has real period K and complex period 2iK ′.

For ` = 1, 2, . . ., the standard form of Lamé’s equation is

(

− d2

dz2
+ `(`+ 1)k2sn(z | k)2

)

Φ(z) = λΦ(z). (8.10)

We introduce
(

e1, e2, e3) =
(2 − k2

3
,
2k2 − 1

3
,−k

2 + 1

3

)

, (8.11)

and

g2 =
4(k4 − k2 + 1)

3
, g3 =

4(k2 − 2)(2k2 − 1)(k2 + 1)

27
; (8.12)

then let the Weierstrass function P(z) = P(z; g2, g3) be

P(z) = e3 + (e1 − e2)
(

sn(z | k)
)−2

. (8.13)

Likewise, P(z) has periods 2K and 2iK ′, and P(x+iK ′) is bounded, real and 2K-periodic.

In terms of the new variable x = z + iK ′ and the constant B = −λ(e1 − e2) − `(`+ 1)e3,

the differential equation becomes

(

− d2

dx2
+ `(`+ 1)P(x)

)

Φ(x) +BΦ(x) = 0. (8.14)

For ` = 1 and λ ∈ [k2, 1]∪ [k2 +1,∞), all solutions to (8.10) are bounded; however, except

for the countable subset of values of λ that gives the periodic spectrum, these solutions

are not K or 2K periodic; see [22]. Suppose that ` = 1 and write B = P(α) where a is

the spectral parameter. We introduce Weierstrass’s functions

σ(z) = z
∏

ω∈L∗

(

1 − z

ω

)

exp
( z

ω
+

1

2

( z

ω

)2)
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where L∗ = L \ {(0, 0)}, and ζ(z) = σ′(z)/σ(z) so that P = −ζ ′. Then by [19, (13)] the

equation (8.10) has a nontrivial solution

Φ(x;α) = − σ(x− α)

σ(α)σ(x)
eζ(α)x (8.15)

such that Φ(x;α)Φ(−x;α) = P(α) − P(x) and α 7→ Φ(x;α) is doubly periodic.

Writing X = P(x), Y = P(y) and Z = P ′(x), the point (X,Z) lies on the elliptic

curve

E : Z2 = 4(X − e1)(X − e2)(X − e3) (8.16)

and the elliptic function field K consists of the field of rational functions of X with Z

adjoined and we think of B as a point on E . The solutions give rise to a natural kernel, for

after we make the local change of independent variable x 7→ X and write f(X) = Φ(x;α)

and g(X) = Φ′(x;α), we have

d

dX

[

f(X)
g(X)

]

=
1

Z

[

0 1
2X + P(α) 0

] [

f(X)
g(X)

]

(8.17)

and by [19, (18)]
f(X)g(Y ) − g(X)f(Y )

X − Y
= Φ(x+ y;α). (8.18)

The right-hand side has the shape of the kernel of Hankel integral operator. In the remain-

der of this section we introduce this operator, and compute the corresponding Fredholm

determinant.

Lemma 8.2. Let β = −2Kζ(α) + αζ(α + 2K) − αζ(α), suppose that <β > 0 and let

t ∈ C such that Φ(x + 2t;α) is analytic for x ∈ [0, 2K]. Let φ(t)(x) = Φ(x + 2t;α) and

h(s) =
∫ 2K

0
e−suφ(t)(u) du. Then φ(t) is a theta function and has an exponential expansion

φ(t)(x) =

∞
∑

m=−∞

1

2K
h
(2πim− β

2K

)

ex(2πim−β)/(2K) (x > 0) (8.19)

and φ̂(t) is a meromorphic function with poles in an arithmetic progression.

Proof. We introduce η = ζ(α + 2K) − ζ(α) and η′ = ζ(α + 2iK ′) − ζ(α). Then σ is a

theta function and satisfies a simple functional equation given in [20, p.109]; from this we

deduce that Φ is also a theta function and satisfies the functional equations

Φ(x+ 2K;α) = Φ(x;α)e2Kζ(α)−αη, Φ(x+ 2iK ′;α) = Φ(x;α)e2iK
′ζ(α)−αη′ . (8.20)

Hence x 7→ Φ(x+ 2t;α) is of exponential decay as x→ ∞ through real values.
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Due to (8.20), the transfer function of φ(t)(x) is

φ̂(t)(s) =
∞
∑

k=0

∫ 2K(k+1)

2Kk

e−suΦ(u+ 2t;α) du

= (1 − e−2Ks+2Kζ(α)−αη)−1

∫ 2K

0

Φ(u+ 2t;α)e−su du (8.21)

which is meromorphic with possible poles at the points s = (2K)−1(2Kζ(α)−αη+ 2πmi)

for m ∈ Z which form a vertical arithmetic progression in the left half plane. The position

of the poles is determined by the type of the theta function.

We can deduce the exponential expansion by inverting the Laplace transform. Let

T = (2m + 1)π/(2K) let x > 0 and consider the contour [−iT, iT ] ⊕ ST , where ST is the

semicircular arc in the left half plane with centre 0 that goes from −iT to iT ; then by

Cauchy’s Residue Theorem we have

∫

ST

esxφ̂(t)(s) ds+

∫

[−iT,iT ]

esxφ̂(t)(s) ds =
πi

K

m
∑

n=−m

h
(2πni− β

2K

)

ex(2πin−β)/(2K). (8.22)

We integrate
∫ 2K

0
Φ(u+ 2t;α)e−su du by parts and write

esxφ̂(t)(s) =
esx

s(1 − e−2Ks−β)

(

−e−2Ksφ(t)(2K) + φ(t)(0) +

∫ 2K

0

e−suφ′(t)(u) du
)

(8.23)

and then use Jordan’s Lemma to show that
∫

ST
esxφ̂(t)(s) ds→ 0 as T → ∞. Hence

φ(t)(x) =
1

2πi

∫ i∞

−i∞

esxφ̂(t)(s) ds =

∞
∑

n=−∞

1

2K
h
(2πni− β

2K

)

ex(2πin−β)/(2K). (8.24)

Theorem 8.3. Let φ(t)(x) = Φ(x + 2t;α) and let Γφ(t)
be the Hankel integral operator

on L2(0,∞) with symbol φ(t). Then the conclusions of Theorem 8.1 hold for Γφ(t)
.

Proof. Let λn = (2πin+β)/(2K) where <β > 0. Then by a standard argument from the

calculus of residues, we have

∞
∑

k=−∞

1

|λj + λk|2
=

K2

β tanhβ
(j ∈ Z); (8.25)

The operator Θ : L2(0,∞) → `2 given by

f 7→
(

∫ ∞

0

e−λ̄jsf(s) ds
)∞

j=−∞
(8.26)
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is bounded. Indeed, we observe that the sequence (e−λnx)∞n=−∞ forms a Riesz basic se-

quence in L2(0,∞), in the sense that there exists a constant C > 0 such that

C−1
∞
∑

n=−∞

|an|2 ≤
∫ ∞

0

∣

∣

∣

∞
∑

n=−∞

ane
−λnx

∣

∣

∣

2

dx ≤ C

∞
∑

n=−∞

|an|2 (8.27)

for all (an) ∈ `2. To prove this, one uses a simple scaling argument and orthogonality of

the sequence (e2πinx)∞n=−∞ in L2[0, 1]. In particular, this shows that Θ† : `2 → L2(0,∞)

is bounded, so Θ is bounded.

We can now use the general Theorem 8.1. Given this rapid decay and the fact that

Φ(x+ y + 2t; a) is analytic, one can easily check that Γφ(t)
is trace class.

Let

DN = det
[ 1

λj + λ̄k

]N

j,k=1
.

Proposition 8.4. Suppose that λj = (2πij + β)/(2K) where <β > 0 and K > 0. Let

µ be the Haar probability measure on the unitary group U(N), and let arg eiθ = θ for

0 < θ < 2π. Then

DN =
( 2K

1 − e−2<β

)N
∫

U(N)

exp
(

−<β
π

trace argU
)

µ(dU). (8.28)

(ii) There exists a constant c > 0 such that

( K

sinh<β
)N

e−(2c)1/3N2/3(<β)2/3 ≤ DN ≤
( K

sinh<β
)N

e(2c)
1/3N2/3(<β)2/3

. (8.29)

so

D
1/N
N → Kcosech<β (N → ∞). (8.30)

Proof. (i) Let

f(u) =
2Ke−2<βu

1 − e−2<β
(0 < u < 1) (8.31)

and let the Fourier coefficients of f be ak =
∫ 1

0
f(u)e−2πikudu, which we compute and find

1

λj + λ̄k
= aj−k. (8.32)

Then we can use an identity due to Heine, and express the Toeplitz determinant of [aj−k]

as an integral

det[aj−k]j,k=1,...,N =
1

N !

∫

[0,1]N

∏

1≤j<k≤N

∣

∣e2πiθj − e2πiθk
∣

∣

2
N
∏

j=1

f(θj) dθ1 . . . dθN , (8.33)
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which we regard as an integral over the maximal torus in U(N), and hence we convert the

expression into an integral over the group U(N), obtaining

det
[ 1

λj + λ̄k

]N

j,k=1
=

∫

U(N)

exp
(

trace log f(argU/(2π))
)

µ(dU). (8.34)

(ii) Let U ∈ U(N) have eigenvalues eiθ1 , . . . , eiθN where 0 ≤ θ1 ≤ . . . ≤ θN ≤ 2π; then

the expression

trace argU − πN = θ1 + . . .+ θN −Nπ (8.35)

satisfies a central limit theorem, but we need to adjust the functions slightly to accommo-

date the discontinuity of arg. Let g1, g2 : R → R be Lipschitz functions with Lipschitz

constant L, that are periodic with period 2π, and satisfy g1(θ) ≤ θ ≤ g2(θ) for 0 ≤ θ < 2π,

and

π − 1

L
≤

∫ 2π

0

g1(θ) dθ ≤
∫ 2π

0

g2(θ) dθ ≤ π +
1

L
. (8.36)

By Szegö’s asymptotic formula [18], there exists a constant c such that

∫

U(N)

exp
(

−<β
π

N
∑

j=1

θj

)

µ(dU) ≤
∫

U(N)

exp
(

−<β
π

N
∑

j=1

g1(θj)
)

µ(dU)

≤ exp
(

−N<β
∫ 2π

0

g1(θ)
dθ

π
+ c(<β)2L2

)

; (8.37)

hence we have an upper bound on DN of

( 2K

1 − e−2<β

)N
∫

U(N)

exp
(

−<β
π

N
∑

j=1

θj

)

µ(dU) ≤
( 2K

e<β − e−<β

)N

e<βN/L+c(<β)2L2

.

(8.38)

Using g2 instead of g1, one can likewise obtain a lower bound on DN . To conclude the

proof, we choose L = N1/3(2c<β)−1/3.
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