
WWW Cache Modelling Toolbox

George Bilchev, Chris Roadknight, Ian Marshall, and Sverrir Olafsson

BT Research Laboratories, Martlesham Heath, Ipswich, Suffolk, IP5 3RE, UK
{george.bilchev, sverrir.olafsson}@bt-sys.bt.co.uk

{roadknic, marshall}@drake.bt.co.uk

Abstract. This paper develops and implements a World
Wide Web cache infrastructure model which is to be
used for analysis of features that are otherwise difficult
to get from existing log data or for evaluation of non-
existing cache scenarios. A prominent feature of our
model that differentiates it from other similar models is
its dynamical aspect, which allows for the investigation
of temporal features. Using the model we verify and
quantify an observation made from real log data that the
popularity of Web pages diversifies the higher we go in
the cache hierarchy. We then use the model to predict
the cache population dynamics in a hypothetical
scenario of sufficiently large caches.

1. Introduction
Proxy caching has become an established technique for
enabling effective file delivery within the World Wide
Web architecture [1][2]. The addition of file caching
agents adds many positive features including robustness
(by distributing files more widely), a possible reduction
in total bandwidth requirements (by moving popular
files near to the clients) and a reduction in pressure on
origin servers, especially on those serving popular files.
Understanding precise costs and benefits of inserting
caches into the network is a highly desirable goal for
network management and design.

To gain an understanding of what affects a cache’s
behaviour and performance it has been essential to
analyse behaviour of existing WWW caches currently
in operation [3][4][5]. This analysis gives us some
information about the inter-relationships of cache
metrics and possible causes of observed behaviour [6]
but only covers caches in existing locations, serving
existing communities. It is therefore highly desirable to
be able to model cache behaviour so that non-existing
cache scenarios can be evaluated. A cache enabled
WWW modelling toolbox would undoubtedly be of use
to network planners but also to many Internet
researchers looking for a simple, flexible model to test
theories with.

In this paper we develop a WWW cache model that is
easy to use, cheap to implement and fast to simulate.
The model only requires a few simple input values and
yet is realistic enough to verify observed data from real
caches. We believe the model will be of particular
interest to operator technical staff who are not PhDs
and work under short time scales.

2. Previous Work
There are two main types of WWW cache modelling
approaches. The first type concerns modelling
individual components such as generating
representative Web traffic and feeding real caches in
order to test and analyse them. Two well known
examples of this approach are the Wisconsin Proxy
Benchmark [7] and SURGE [8].

The second approach consists of mathematical
modelling at a higher level of abstraction where the
variables of interest usually represent average values.
For example, [9] develops explicit formulas for the hit
rate as a function of cache size of a single proxy using
probability theory. Another example is [10] where the
authors describe a model comprising various levels of a
caching infrastructure. The advantage of the
mathematical approach is that the models are relatively
fast to simulate. The disadvantage is that often these
models lack the desired detail, i.e., oversimplifying
assumptions are made which might turn out to be
significant.

In this paper we have adopted the second approach
since it allows for larger scale models that are cheap to
implement and easy to simulate.

3. Modelling WWW Caches
Previous mathematical models of WWW caching
[9][10] mostly consider variables representing some
aggregated average value, i.e., average distance of a
WWW server from its clients, average document size,
average number of requests made by a single client, etc.
Although these models are not computationally very
intensive to simulate, their modelling granularity makes

it difficult, if not impossible, to investigate parameters
of interest such as the effect of document modifications
for example [9, p.15].

Since one of our main goals in modelling Internet
caching is to carefully consider the dynamics of the
caching process and its scalability with respect to file
modifications rate, file popularity, cache size, cache
management algorithms, etc., we require greater
modelling detail. Therefore, we have selected to model
the individual pages with attributes such as popularity
rank and time-stamp. Also, in order to have a desired
degree of freedom in our simulations we have chosen to
use synthesised input data (as opposed to a log-based
trace-driven simulation). This has been achieved by
developing a realistic model of a user community,
which generates file requests from a Zipf-like
distribution following a specific daily activity pattern
[11]. The rest of this section is organised as follows.
First we develop models of a user community and a
single proxy. Then we describe how single proxy
models are connected into an overall model of a
caching infrastructure.

3.1. Model of a Single Proxy
A schematic representation of a single proxy cache as
seen in the simulation toolbox is shown in fig. 1. The
proxy can accept input from a number of user
communities. Each user community is modelled by
daily activity pattern (fig. 2a) and popularity statistics
(fig 2b).

Fig. 1. A schematic representation of a single proxy cache as
seen in the simulation toolbox. The cache is fed in by one user
community annotated as “User: 1”.

The daily activity pattern consists of an underlying
trend and a stochastic component. To model the
underlying trend we suggest using a superposition of
periodic functions:

{ })(max)(

0),2sin(max)(

trendtrend

trend

tyty

d
T

t
cbaty

i
i

iiiii

=

 ++= π

where ia is an amplitude shift, ib is the amplitude, ic

is the frequency, id is the phase and T is the period

during which cyclic patterns are observed.

Fig. 2. Interface to the user community model. The graph on
the left shows how the daily activity pattern can be tuned to
approximate an observed pattern. The graph on the right
shows the tuning of the file popularity as observed from the
user community model.

(1)

a)

b)

Once the trend has been approximated the stochastic
component can be modelled as a Brownian motion:

η+−=)1()(BMBM tyty

Two points are worth mentioning. First, since the
number of requested files is always non-negative we
have to truncate a negative value of)(BM ty to zero.

Second, bursts in positive direction are higher than
bursts in negative direction. To accommodate for this
we define η as:

 >

=
otherwise

’

0’ if ’

λ
η

ηη
η

where),0Norm(’ ση ∈ and λ is a parameter determining

the ratio between the heights of the positive and
negative bursts. The second modification also has the
effect of reducing the number of times the series has to
be truncated due to negative values.

Since the auto-correlated stochastic component (2) must
be superimposed on the trend (1), a way of “guiding”
the random walk of the Brownian motion towards the
trend without destroying the desired properties is
needed. We suggest using a sequence of non-
overlapping random walks each starting from around
the trend:

),0()()(trendtrend σNormtkytky +∆=∆

 i.e., at each time step ,...2,1,0, =∆ ktk , a Brownian

motion process begins for t∆ steps:

η+−+∆=+∆)1()(BMBM mtkymtky

where, 1,...,2,1 −∆= tm . Then it stops and a new

process begins. This completes our model of the
intensity of the http requests (i.e. the daily activity
pattern). But before we can use it in our simulations of
Internet caches we also need to define the popularity
distribution of the requests. There is significant
evidence in the literature suggesting that the popularity
distribution follows a Zipf’s-like law, where the relative
popularity of the ith most popular file is given by:

αi
p relative

i

1=

Therefore, we also need a random number generator
that produces Zipf’s distributed numbers. We define it
in the following way. First the total domain size N and
the exponent α must be specified. Then the probability
of selecting file i is given by:

∑
=

−

−

=
N

j

i

j

i
p

1

α

α

A uniform random number n is generated in the range
between 0 and 1 (most programming languages have
already defined uniform random number generators)
and an index k is found such that the following
inequalities hold:

∑

∑
+

=

=

>

≤

1

1

1

k

j
j

k

j
j

pn

pn

The index k is the desired random number coming from
the specified Zipf’s-like distribution.

After developing the user community model we
proceed with the cache proxy model. The cache proxy
is modelled by Web content expiry statistics (fig. 3) and
it also implements a simplified caching algorithm. The
expiry statistics models both the rate of change of Web
pages (reflecting server assigned TTL) and cache
purging due to stale data (i.e., cache assigned TTL). For
example, fig. 3 shows that in this particular case about
14% of the pages are not cacheable (i.e., cookies, stock
quotes, etc.) and that the cache purges all files older
than about two months (80640 minutes). These
parameters are, of course, flexible. If the cache is of
limited size, the model also implements a cache
replacement algorithm. Currently only the well-known
least recently used (LRU) data replacement algorithm is
considered.

Fig. 3. Parameters defining a proxy cache model. The
probability of expiry reflects both the server assigned TTL
and the cache assigned TTL.

(2)

(3)

(4)

(5)

(6)

(7)

8)

The simulation works as follows. The proxy cache
receives requests for individual files. It checks if the
requested file has already been registered in the cache
model before. If not, the file is time-stamped, registered
in the cache and a miss is reported (i.e., this reflects
downloading the file from the origin server and caching
it). If the requested file has been registered in the cache
before, the proxy checks the TTL. If the file has expired
the proxy verifies whether the file has changed. If so, a
miss is reported and the time stamp of the file is reset
(this reflects downloading of the new version of the file
from the origin server). If the file has not changed, a hit
is reported and again the time stamp is reset.

3.2. Overall Network Model
Once the single proxy has been modelled, we can build
meshes of interconnected proxy caches. To achieve this
the simulation toolbox allows two caches to be linked
together. We consider two types of links:

• Parental links in which a miss is propagated to
the parent cache and it is responsible for
providing that file back either from its cache
neighbourhood or from the origin server. On
its way back the file is cached at each parental
level.

• Peer or sibling links, in which a peer proxy
only checks if it has the file in its
neighbourhood, but does not download it from
the origin server in case of a miss.

Using the above-described links we can build a number
of caching structures. For example, fig. 4 shows how
two user communities can be “merged” together to use
the same proxy cache. This can be useful to analyse file
popularity (see end of next section), i.e., what happens
to the file popularity generated by a superposition of
user communities as compared to the individually
generated file popularity.

Fig. 4. Merging two user communities

As another example consider fig. 5, which shows how
several first level caches can be connected to a parental
higher level cache. This can be useful to analyse
indirect co-operation among caches from the same
level.

Fig. 5. A higher level cache.

4. Simulations and Analysis
In order to give an idea about what kind of analysis can
be done with our toolbox this section presents some
simulation examples.

In a previous paper [6] we have investigated file
popularity statistics from real log files. One of the
major hypotheses we attempted to analyse was how file
popularity changes at various levels of the caching
infrastructure. Two results have been found: 1) the time
during which samples are collected doesn’t affect the
file popularity curve, and 2) higher level caches exhibit
smaller absolute values for α, where α is a parameter
from the Zipf-like popularity distribution:

αipi =

and usually has negative values in the range between
−0.5 and −1. In order to test the above findings using
our toolbox we design three experiments. In each of the
experiments we use a user community that feeds a
single proxy cache (as shown in fig. 1). Three different
user communities have been tested: 1) a user
community that generates 15,500 file request per day
coming from a Zipf-like distribution with α=−0.75, 2) a
user community with the same activity, but with
α=−0.65, and 3) a more active user community
generating 50,000 requests per day with α=−0.75. We
have simulated the three cases and approximated the
popularity distribution using the same methods as in
[6]. Using a sample size of 500,000 requests we have
found that the approximation of α for user communities
one and three doesn’t seem to be affected by their
activity. In both cases the approximated value of α is

−0.73, which is 2.7% different than the expected. This
discrepancy has been observed in all three cases and
doesn’t seem to significantly decrease with increasing
the sample size beyond 500,000. The most probable
explanation for this is that the employed approximation
method gives a slightly biased estimate.

Fig. 6. Architecture of a higher level cache used in the
experiments.

A new experiment has been staged in order to verify
our second finding that the absolute value of the α
parameter decreases in higher cache levels. The
structure of the experiment is shown in fig. 6, where
five first level caches feed one parental second level
cache. All of the user communities generate file
requests with α=−0.75 (i.e., the measured approximated
value of α will be −0.73). We approximate the α
parameter at the second level cache using the same
methods as described in [6] and used in the previous
experiments. We repeat the above experiment for
various first level cache sizes (all first level caches have
the same size in this scenario). The following results
have been obtained:

Level 1 Cache Size (No.
of cached files as %
from the overall
simulated domain)

Level 2
α R2

10 −0.4632 0.9319
3 −0.5696 0.9050

1.5 −0.5986 0.9014
1 −0.6024 0.8973

0.5 −0.6166 0.9044
0.25 −0.6631 0.9365
0.1 −0.6858 0.9104
0.01 −0.6930 0.9566

Results indicate that the more effective the first level
caches (i.e., more cached files in this case), the smaller
the absolute value of the α parameter. This means that
the value of α in the higher level caches is significantly
affected by the filtering effect of the lower level caches.
In practice the cache efficiency due to cache size can be
roughly approximated using estimations of the total
static Web space. As of March 1998 the total number of
static Web pages was estimated at 275,000,000 pages
[12]. Assuming the average size of a page is 13K this
totals to 3,575 Gbytes. A first level cache such as Funet
[13] is 12Gbytes which is 0.34% of the total domain
size. Thus, for example, we would expect a cache
connected to a higher level cache such as NLANR [14]
to have absolute value of α about 0.1 larger, which is
approximately what was observed in [6].

In the above experiment we have used user
communities with the same file popularity and first
level caches with the same size. In practice, however, it
is more likely that user communities with different file
popularity will feed higher level caches and also that
the first level caches will be of different sizes and
efficiency. Moreover, most probably there will be other
features that will also affect the popularity exponent
value such as the popularity ranking order. The
developed toolbox can be used to further understand
these processes. For example, we have tested the
change in the popularity exponent α caused by
“merging” two user communities (fig. 4). The
simulation predicted that the absolute value of the
exponent of the merged user community would be
greater than the average of the two exponents, provided
that the user communities are equally active and using
the same ranking order. We have later verified these
predictions by analysing log data from Funet [13],
NLANR [14], and EduWeb [15]. In the first experiment
we have merged 500,000 requests received at each of
NLANR and EduWeb, and have calculated the new
popularity exponent. In the second experiment we have
taken two 500,000 requests from the same cache
(Funet) and after merging them we have calculated the
new popularity exponent. Results are shown in the
following table:

First
500,000
Requests

Second
500,000
Requests

Aver. Merged diff

Model
Prediction

−0.730 −0.624 −0.677 −0.690 1.92%

NLANR
and

EduWeb
−0.703 −0.858 −0.780 −0.794 1.79%

Funet −0.738 −0.676 −0.707 −0.718 1.56%

The calculated popularity exponent of the merged
requests in all cases is less than the average as predicted
by the model. It is possible, however, that sometimes
the prediction will fail due to features not yet
incorporated into the model such as dynamics of the
popularity ranking order.

5. Burstiness
Burstiness is a phenomenon frequently observed in data
networks [16]. It often has a crucial effect on system’s
performance and makes it more difficult to provision
the right network capacity. Any realistic model,
therefore, should accurately reflect the burstiness of the
real processes. To test our toolbox we compare the long
range correlations of the hit rate exhibited in real log
data and those observed in our model (fig. 7). As seen
by the values of the Hurst parameter, results clearly
indicate that the model provides sufficient degree of
burstiness, which agrees with the observed data. We
have also identified that the degree of burstiness of our
model is mostly affected by the domain size, the long
range correlations in the file request pattern and
probably the file popularity ranking dynamics. These
features are the likely reasons as to why the absolute
value of both graphs differs and we plan further studies
on the file ranking dynamics to validate in detail the
assumptions made in the model.

Fig. 7. Hurst parameter approximation for the hit rate
measured at NLANR and our toolbox model.

6. Discussion
The presented Internet cache toolbox is aimed at
helping to better understand the processes that take
place in real caching systems and to develop new
infrastructures for data dissemination on an ever-
increasing scale. The advantages of building realistic
WWW cache models can be exploited to investigate
features that are otherwise difficult if not impossible to
test with existing log data information. For example, we
can consider caches of “unlimited” size and ask the
question what is the maximal hit rate that can be
achieved. Assuming that the user community stays

constant (i.e., the generated file popularity stays the
same throughout the period of investigation) the hit rate
will mainly be determined by the number of cached
files. In general there are two opposite forces that drive
the dynamics of the cache population size (i.e., the
number of cached files). The incoming file requests
tend to build up the cache population while the file
expiry statistics and the cache purging heuristics tend to
reduce the cache population. We would expect that
these two processes eventually will negotiate an
equilibrium level, but it is difficult to guess the
dynamics of this equilibrium, i.e., is it stationary, self-
similar, etc. In order to answer these questions we can
run a simulation of a user community and a proxy
cache, where the cache is of “unlimited” size (in the
implementation the cache size is simply equal to the
total domain size). A typical run for a user community
generating 15,500 requests per day with popularity
α=−0.75 is shown in fig. 8. Clearly the dynamical
behaviour of the cache size level exhibits some long-
range dependencies as can be seen from the Hurst
parameter evaluated in fig. 9.

Fig. 8. Dynamics of cache population size of an “unlimited”
cache over a period of 200 days. The cache serves a user
community generating 15,500 requests per day on average,
choosing from a total of 1,000,000 files.

Fig. 9. Evaluation of the Hurst parameter H for the data from
fig. 8. The graph shows the variance of the cache population
size calculated for different non-overlapping time windows. H
is defined as β=2H−2, where β is the slope of the line fitted to
the calculated data points from the graph.

y = 21.304x-0.4086

y = 158.58x-0.4274

1

10

100

1 10 100 1000 10000

time window used (5 mins)

V
ar

(h
it

ra
te

)

H = 0.785

H = 0.795

NLANR lj

Toolbox

y = 2E+06x-0.1102

H=0.945

1000000

10000000

1 10 100

The above experiment can be used to give some
indication as to how to dimension the cache size. For
example, the cache size may be designed to be
proportional to the mean equilibrium cache size from
fig. 9.

7. Conclusions
In this paper we have presented an analytic WWW
cache model capable of realistically simulating
some aspects of real Internet cache structures in
real time, with a low overhead in terms of CPU
usage and log analysis. The model only requires a
few simple input values. Nevertheless, we have
demonstrated that the model can be used to verify
observed data from real caches and to predict
detailed new results. We therefore claim that the
simplifying assumptions we have made appear to
work. The savings will be of great benefit to
operators needing to plan capacity in their cache
networks. The model is not yet complete, as there
are some extra features to be incorporated such as
popularity dynamics.

References

[1] M. Abrams, C.R. Standridge, G. Abdulla, S.
Williams and E.A. Fox. Caching Proxies:
Limitations and Potentials. Proc. 4th Inter.
World-Wide Web Conference, Boston, MA,
Dec. 1995.

[2] M. Baentsch, L. Baum, G. Molter, S.
Rothkugel and P. Sturm. Enhancing the
web’s infrastructure: From caching to
replication. IEEE Internet Computing.
March 1997. pp. 18-27.

[3] C Roadknight, I Marshall, Variations in
cache behaviour, in Computer Networks and
ISDN systems 30 (1998), pp.733-735.

[4] I Marshall, C Roadknight, Linking cache
performance to user behaviour, Computer
Networks and IDSN Systems, 30, pp. 2123-
2131.

[5] M. Arlitt and C. Williamson. Web server
workload characterization: The search for
invariants. In Proceedings of the ACM
SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May
1996.

[6] C. Roadknight, I. Marshall and D. Vearer.
File Popularity Characterisation. Submitted
to the 2nd Workshop on Internet Server
Performance (WISP 99)

[7] Jussara Almeida and Pei Cao. Measuring
Proxy Performance with the Wisconsin
Proxy Benchmark. J. of Computer Networks
and ISDN Systems, To appear, 1999.

[8] Paul Barford and Mark Crovella. Generating
representative web workloads for network
and server performance evaluation. In
Proceedings of the Joint International
Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS
'98/PERFORMANCE '98), pages 151-160,
Madison, WI, June 1998.

[9] Lee Breslau, Pei Cao, Li Fan, Graham
Phillips and Scott Shenker, Web Caching and
Zipf-like Distributions: Evidence and
Implications,. To appear in Proceedings of
Infocom'99.

[10] M. Baentsch, A. Lauer, L. Baum, G. Molter,
S. Rothkugel, P. Strum, World-Wide Web
Caching: The Application-Level View of the
Internet, IEEE Communications, June 1997

[11] George Bilchev, Ian Marshall, Sverrir
Olafsson, and Chris Roadknight, Modelling
Http Traffic Generated by Community of
Users, High Performance Computing and
Networking Europe ‘99.

[12] Measuring the Web,
http://www.research.digital.com/SRC/whatsn
ew/sem.html

[13] Funet: The Finnish University and Research
Network, http://www.funet.fi/

[14] NLANR: A Distributed Testbed for National
Information Provisioning,
http://ircache.nlanr.net/

[15] EduWeb: The Leading Education Internet
Service, http://www.eduweb.co.uk/

[16] V. Paxson and S Floyd, Wide area traffic: the
failure of Poisson modeling. IEEE/ACM
Transactions on networking 3, p.226 - 244,
1995

