
A Bandwidth Friendly Search Engine

Clare Bradford and Ian.W.Marshall
BT Labs, Martlesham Heath, Ipswich, UK. IP5 3RE.

e-mail :clare.bradford@bt.com and ian.w.marshall@bt.com

Abstract
The Internet plays host to many millions of documents and
images and is increasing in size all the time. As a result
locating web content is becoming increasingly difficult for
users, and search traffic from users and spiders is
increasing rapidly. A directory of the contents of the
emerging cache hierarchy would be more complete than
existing tools and avoid the need for spider traffic.
However it is also essential to minimise the user traffic. A
promising approach is to encourage users to refine their
queries through categories. Automatic categorisation of a
cache directory is demonstrated, and an adaptive
categorisation scheme is proposed.

Introduction

The Internet has become a significant publication
medium, it plays host to many millions of documents and
images and is increasing in size all the time [1]. The
massive size of the internet has created a market need for
impressive navigational tools. The largest search engines
currently cover less than half the cacheable contents of the
Web [2], and are unable to accurately interpret the simple
search terms preferred by users. Should search engine
developers create bigger indexes to give better internet
coverage, thereby increasing the numbers of spiders
accessing and querying new sites ? We believe this would
simply add to network congestion without benefit. It would
merely increase the number of irrelevant search results the
user is required to sort through, thereby increasing not only
the spider traffic but the user traffic too. On the other hand,
in order to provide better chances of finding material the
user would find useful, the source database must clearly
become more comprehensive.
 The Harvest project partly addressed this by making
directories from a cache [3]. Providing a query interface to
a cache hierarchy will deliver two immediate benefits. It
provides access to a directory which is more complete than
any current search engine without requiring spiders to

populate the database, and it enables the query responses to
be ordered on the basis of file popularity, increasing the
probability that useful pages are early in the response list.

The Harvest catalogue servers maintained a flat
directory, similar to early search engines, that was not able
to prioritise responses to match user requirements. This
approach is not scalable since the user has to filter too many
responses. We have attempted to address this issue by
structuring the database and enabling the structure to adapt
to changing user requirements.

Ordering responses on the basis of file popularity is
not sufficient – many popular pages are only relevant to a
minority of queries but are written so as to give them a high
probability of appearing in the response to any simple
query. It is necessary to enable users to ask the search tool
to filter responses which are not relevant, without
significantly increasing query complexity. A common
approach is to divide the directory into a number of
categories which the user can select before entering the
query.

In the next section we present a design for an adaptable
categorised query engine based on a hierarchy of cache
directories, and report some results derived from a partial
implementation. Our initial implementation demonstrates
for the first time that automated categorisation of a cache
directory, with sufficient accuracy to be useful, is possible.
Further work is required to implement adaptive
categorisation.

Design

The design, shown in Figure 1, consists of a server
based query engine that searches a local cache. The cache
has been categorised and indexed and the query engine
serves results from this sorted cache. The query engine,
proxy server and indexer are adequately documented
elsewhere [4], and we do not attempt to duplicate this here.
The next part of this section concentrates on the categoriser.

Figure 1 System Design

A schematic of our design for an adaptive categoriser
of a cache index is shown in Figure 2 and described in some
detail below

Figure 2 Adaptive categorisation at a single node

The category Proposer (A) is a learning agent whose
primary role is to collect and analyse information contained
in the search index, and propose category lists to the rule
generator (B). The analysis is initially based on
wordcounts, metadata expressions, origin server, and
update/time-to-live, but could be based on any information
stored in the index. The analysis could be performed by a
neural network, with adjustable weights for each input
metric. The network would be trained on a standard dataset
then allowed to adapt to the needs of its user community.
The index itself uses a static schema but the proposer is
intended to be adaptive, so that the agent will learn which
metrics are most useful and be able to react to underlying
trends which may render a particular metric more or less
useful with time. It should also be able to respond to
occasional new fields being added to the index, using an
operator initiated retrain function. The proposer will have
an internal feedback loop for learning purposes, enabling it
to autonomously learn how best to propose a fixed number
of categories with an evenly distributed population, and
with comprehensible descriptors derived from metadata
keywords or from popular query terms. External feedback
to enable adjustment of metrics is provided by the Measure
function (D). This feedback is primarily a list of popular
query terms generated by users. A will only initiate a
proposal when D supplies A with a significantly modified
list of popular queries, or when D reports a significant

failure such (e.g. falls in usage, repeated queries, and
identical queries of multiple categories), or when an
operator requests it. A sends the proposed categories, and a
listing of its node weights to the rule generator (B).

The rule generator, B, is responsible for converting the
neural net’s weights into a set of rules that can be used by
the categoriser, C. The rule generator is intended to use the
techniques described in [5], governed by a set of metarules
provided by the operator. The generator is able to modify
its metarules in response to feedback from the measure
function, from the operator, and from internal metrics. The
internal metrics would include consistency checks and
rulebase minimisation, but others may also be required.

The Categoriser, C, is the classification agent, which
uses input from its own ‘knowledge’ and the rules given via
B to associate objects in the index with categories. The
same object can appear within many categories, but the
categoriser will calculate a different degree of fit for each
association, and store it in the index. This enables the query
engine to order responses, to a search within a category, on
the basis of fit to the category. It is envisaged that the user
will have the option to specify different orderings of the
response when they make a query. The object associations
and metrics are located within a structured directory,
resulting in fast retrieval via the query engine. The feedback
loop throughout the system is continually active. Should D
determine that categories are not representative of the
searches requested, then A and B will suggest a re-analysis
of the knowledge base in C. This is to ensure that the system
is truly adaptive in a changing user environment. Without
this flexibility, the tool would lay idle in preference to more
customised alternatives.

The measure function, D, is the overall system
controller. It provides the management interface to the
operator, and the external feedback to the other modules.
The feedback is based on analysis of the query engine usage
logs. The logged parameters it monitors and acts on
determine the system’s ability to respond to changes in user
behaviour. For instance, consider a user returning to the
search page within a short time frame. This could be for
many reasons, each of which would result in the
communication of different messages. Firstly, the initial
search could have given inaccurate search results. In this
case user will probably refine their query, and D would
indicate this to A, sending parameters to convey the
specifics. A second reason for the subsequent visit is that
the search proved very useful, provided a directly relevant
result and the user simply wanted another query served.
Two different results from seemingly the same user action,
the second requiring no system update. D monitors
usability, in terms of how often the service is used by users.
Again there could be different reasons for the drop in usage,

A
Category
Proposer

B
Rule

Generator

C
Categoriser

D
Measure

Query
engine

Proxy server
and cache

Index

Categoriser

user

query

results

someone could change projects (requiring less searching),
they could be on leave, or in fact could be using other
search tools. If it was only used to search certain subjects
and generic search engines still used for others, then the
category scope is not broad enough for the users interest
and should be revised. D would indicate this requirement to
A. In the future, D might iteroperate with system
applications such as performance monitor tools to facilitate
effective user modelling. Our early design, however, will
encompass ‘best guess’ criteria based on past usage
patterns.

The categoriser enables the cache based search system
to be adaptive, in that metrics will report the success of user
queries. Metrics will provide information as to the
usefulness, usability and accuracy of the query engine by
analysing usage patterns of the service. The system is fully
automated and self modifying. User-input is not requested,
the metrics are fully automated and the system adaptive to
the results. This provides for consistency of analysis (human
determined feedback is very subjective) and, with the right
metrics, accurate user modelling. The combination of
metadata and XML aware resources, with intelligent agents
will give a tool capable of analysing and categorising both
structured and unstructured data. Integrating system
applications with intelligent agents can provide for a
powerful metrics tool and the system will be capable of
learning and modifying its actions.
The system described thus far is only what would be
implemented on a single cache.

The most obvious additional requirement in a
multinode implementation is to synchronise the actions of
the autonomous adaptive nodes. In the context of our
design this is expressed as the need to share knowledge of
categories across all nodes participating in a particular
query. There are several options for achieving this. The
parent could simply send hourly cache digests [6] to its
children, however the hashed information in current digests
is insufficient for categorisation, and it is not yet clear how
much more is required. Alternatively, it could periodically
send its entire index, but this would be very bandwidth
intensive (our current indexes are around 8% of the cache
size). The best answer is probably to send the rules used by
the categoriser, so that the children’s categorisers can
generate mappings between their own categories and those
of their parent. A global categorisation scheme does not
seem appropriate since this would not take advantage of
user communities and localisation. It would also require
universal agreement between cache administrators, which
could impede the uptake of the proposal. Hence our design
allows child nodes to define local categories, and map
queries to its parents categories if the user indicates a need
for broader search. A consequence of this decision is that

the categorisation becomes weaker as the hierarchy is
traversed. This is because the mappings will necessarily be
less reliable than local categorisation based on full
knowledge of the parent’s index. The child would make
requests of one or more parent categories in response to a
user query of a local category. It can map the responses
from its parent into its own categories before passing them
back to the user but there may be responses missing which
the local category would have caught but are not in the
parent category (or the converse). Since many searches
would be served by the local cache, and even a wider search
would still serve more relevant results that generic search
engines, this approach is considered to be well worth
investigating.

The design of the implemented hierarchy might also
include sibling searches prior to querying a parent,
however, this would be just an ordering process and does
not impact the need to provide category information to any
cache which is forwarding queries.

It only remains to specify how the user indicates the
desired breadth of search – at present we envisage a simple
slider on the query engine interface page.

Our implementation

For an initial study we created a categorised index of a
small 2-layer cache hierarchy used by our own research
team. The cache hierarchy was implemented using MS
Proxy Server and Microsoft Index Server was used to index
the cache directories [7]. The index contained filename,
metadata and unformatted text for each page, and was
approx 8% of the total size of the cache. The indexer
created an index for its local cache only. Queries could be
made on the local cache, or on both the local cache and its
parent. Queries of the parent cache were supported using a
copy of the parent cache’s index stored on the local cache,
and updated on a daily basis. A standard Microsoft Index
Server active server page query form was customised to
display the subject areas that represented our categories. A
smart spider [8] was used to categorise the cache indexes.
As the categories were not adaptive it was not necessary to
recategorise the index copied from the parent cache to
match the local categories. A team of volunteers were
requested to test the service. Users were requested to return
feedback to test the implementation in terms of relevancy of
results and their impression as to the idea of pre-searching
categorisation. This generated useful qualitative feedback
summarised in the next section. We also used the index
server query logs to get an idea of how frequently users
were entering the same query into different categories. Due
to the small community involved the results are not

quantitatively useful, but they were sufficient to show that
the query logs are a useful input for the category proposer in
our design

For a more controlled test, it was necessary to analyse
the effectiveness of the spider on a known set of categories.
The chosen source was an Encarta ’98 CD [9]. The subject
categories of the chosen pages were masked before the
spider analysed the pages, and the results compared
between the spider’s categorisation and the encyclopaedia’s
classification. The source pages were chosen completely at
random within a chosen classification on the CD, and in
addition to this, extra pages were extracted from
classifications not included in the spider’s categories. This
was to represent Web ‘junk’ pages, in that they weren’t
expected to fall into any of the chosen categories and hence
searching via categories should not have resulted in one of
the pages being served (thus testing whether irrelevant
documents are presented to a user’s query).

For each categorisation attempt we noted the number
of words required in the spider vocabulary files, the time it
took to analyse pages and the extent of human intervention
required to help the spider, in time and activity. The
categorisation was then characterised using several metrics.
The metrics were the number of pages accepted into the
correct category, the number of pages failed (not
categorised that should have been), and those ambiguously
categorised (accepted into more than one category, both
where this double classification was valid and where one of
the classifications was incorrect). Double classification is
characteristic of subject classification [10], however, this is
not necessarily a problem since many ‘distinct’ subject
areas overlap. For instance, if the page subject is an ice-
breaking trawler then from our categories, oceans and
transport could both be deemed correct classifications.
Sometimes, however, the second classification can be
incorrect, made because a couple of words lead to a
misleading diagnosis.

Results

The search engine was deemed easy to use and
informative by the users who tested it. Perhaps the most
important observation in the reports received was that all
search results were deemed 100% relevant. Although the
tests were carried out on a source which was not totally
representative of Web contents (our cache matches our
interests well), they do suggest the categorisation is of real
benefit. The benefit would remain for searching a larger,
less focused source. It would probably be greater. This is
largely because the search topic is selected before a search
actually takes place, hence users only search on a relevant
information source, and only receive relevant results.

Figure 3 Categorisation Results

The key results from the Encarta based tests are shown
in Figure 3. A 95% success rate in subject categorisation
was achieved using the Smart Spider to analyse Encarta.
There were 11 pages accepted into more than one category,
and upon further investigation all categories were deemed
valid. The spider used flat vocabulary files in order to
associate words with categories and used rules files in order
to specify acceptance criteria. Both rules files and
vocabulary files could be extended, and by using them
efficiently a 95% success rate was achieved with the
spider’s classifications. That is 95% of the source pages on
the Encarta CD, under the headings we used, were found by
the spider. The first time the spider categorised it’s source
led to a 70% success rate. Extending the vocabulary files
and rule base, using a simple heuristic of one additional rule
per new keyword, increased this number to first 80% and
then 95%. Further extension using the simple rule
generation strategy led to a reduction in performance
because inappropriate pages were captured. The
modification of the vocabulary files and the knowledge base
was very time consuming. Testing required 14 hours to
analyse the pages that were incorrectly classified and to
make appropriate changes to the associated rule and
vocabulary files. An agent with an automated learning
capability would significantly reduce the operator effort
required. However, by continually updating the words and
associations within a particular subject, using an
automateable rule generation heuristic, we can eventually
lose accuracy. Spider administrators would need to
intervene to perform more sophisticated rule generation if
more accuracy was required, seeking the best trade-off
between capturing more pages in a category and capturing
irrelevant pages.

This is best discussed by example. Should ‘ice-breaker
trawler’ be deemed to be correctly categorised as a subject
within oceans, the categoriser could ensure that terms such
as ice and ice breaker were within the oceans topic.
However, this could result in information concerning the
Antarctic and domestic ice-picks as being categorised
within this topic. Correct inclusion could increase only
slightly whilst incorrect inclusion would increase
dramatically. Our aim was to find the trade-off between

Categorisation Results

212

4

9

225

Correct Category
Wrong Category

Not Categorised
Total

source-page analysis accuracy and the strength of the
subject categorisation.

We believe that the feedback that all search results
were relevant to the search topic indicates the 95% accuracy
reached was satisfactory.

The feedback and results received from our testing
adds credibility to the concept that an efficient search
engine fronting a scalable, categorised cache hierarchy
would indeed be a tool worth developing.

Discussion

The work presented here has successfully shown that a
managed cache directory provides an effective search base.
In the future the directory will be exposed to a larger user
community in order to obtain more meaningful web based
measurements. In parallel with this we will implement the
adaptation mechanism and investigate the sharing of
categories between caches. We must also further automate
the categoriser, increasing intelligence and reducing the
human-hours required to ‘teach’ the agent. The end result
should be an automated and truly distributed, scalable
search engine that covers far more of the Web’s cachable
content, generates less traffic and is more attractive to end
users, than current search tools.

In order for communications between caches to be
effective, and to enable the largest traffic savings,
cooperation between cache owners and implementers will
be necessary. A standard is required in order for one cache
to be able to understand and make use of the categories
used by another. We have not yet progressed far enough to
be able to identify the minimum information that must be
shared, but it seems likely that caches will need to export
their categorisation rules in an agreed format.

The process overheads of the proposed adaptive
mechanism are not understood. Our experiments have run
on old PCs (180 MHz Pentium), for up to 10 concurrent
users, so we are confident the overheads are reasonable.

It is possible the categorisations will be unstable
(oscillatory) for some user communities, so we may need to
add an additional feedback loop to the design to damp
oscillations. The identification of this type of instability
could even be used to optimise the locality of user interests
and further enhance response times.

Cache studies [11] have shown that there are different
access patterns according to the culture of users, and the
choice of server locations should be directly related to the
findings of these studies. At present enough is known about
the locality of user diversity to justify our choice of local
categories rather than global categories, but further work is
required to identify an optimum granularity, and this work
is likely to be community specific. Highly diversified

companies (conglomerates) will have many communities
with only a small overlap of interests, whereas more
focused companies are likely to have only one or a few
distinct communities. The choice of location is thus
company dependent.

Conclusions

We have proposed a design for a search tool based on
adaptive categorisation of the contents of a cache hierarchy.
We have demonstrated that automatic indexing and
intelligent categorisation of Web cache content can provide
an effective search tool. We have discussed the extra work
required to fully justify our design, and the design issues
that remain to be resolved. Initial indications are that our
design is extremely promising and could potentially solve
many current problems in web content location.

References

[1]http://www.computer.org/internet/v2n5/w5news-data.htm

[2]K. Bharat and A.Broder “ A technique for measuring the
relative size and overlap of public Web search engines”.
Computer Networks and ISDN Systems, 30, pp379. 1998

[3]C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, and M.F.
Schwartz, The Harvest information discovery and access
system, in: Proc. of the 2nd World Wide Web Conference

[4]http://www.missouri.edu/~libnh/ASI/tools.htm

[5]C Roadknight et al “ Analysis of Artificial Neural Network
Data Models” Proceedings of Intelligent Data Analysis ’97.

[6]http://www.in.com.pl/linux/documentation/squid-
1.2.beta22/FAQ/FAQ-16.html

[7]http://www.microsoft.com/products/prodref/590_ov.htm

[8]http://www.smart-spider.com/

[9]Microsoft Encarta ’98 - British Edition

[10]N J Davies and M C Revett “Networked information
management” BT Technology Journal 15 No2, April 1997,
pp194

[11]“The influence of geographical and cultural issues on the
cache proxy server workload” Almeida et al,
Computer Networks and ISDN Systems, Vol. 30, issues 1-7.
Article SP4.

http://www.computer.org/internet/v2n5/w5news-data.htm
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/schwartz.harvest/schwartz.harvest.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/schwartz.harvest/schwartz.harvest.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/schwartz.harvest/schwartz.harvest.html
http://squid.nlanr.net/Squid/FAQ/FAQ.html#toc12
http://squid.nlanr.net/Squid/FAQ/FAQ.html#toc12
http://squid.nlanr.net/Squid/FAQ/FAQ.html#toc12
http://www.microsoft.com/products/prodref/590_ov.htm
http://www.smart-spider.com/

	A Bandwidth Friendly Search Engine
	
	
	
	
	Clare Bradford and Ian.W.Marshall

	A
	Abstract
	
	Design
	Our implementation
	Discussion

	References

