Lancaster EPrints

Controls on catchment-scale patterns of phosphorus in soil, streambed sediment, and stream water.

van der Perk, Marcel and Owens, Philip N. and Deeks, Lynda K. and Rawlins, Barry G. and Haygarth, Philip M. and Beven, Keith J. (2007) Controls on catchment-scale patterns of phosphorus in soil, streambed sediment, and stream water. Journal of Environmental Quality, 36 (3). pp. 694-708. ISSN 0047-2425

Full text not available from this repository.

Abstract

Many models of phosphorus (P) transfer at the catchment scale rely on input from generic databases including, amongst others, soil and land use maps. Spatially detailed geochemical data sets have the potential to improve the accuracy of the input parameters of catchment-scale nutrient transfer models. Furthermore, they enable the assessment of the utility of available, generic spatial data sets for the modeling and prediction of soil nutrient status and nutrient transfer at the catchment scale. This study aims to quantify the unique and joint contribution of soil and sediment properties, land cover, and point-source emissions to the spatial variation of P concentrations in soil, streambed sediments, and stream water at the scale of a medium-sized catchment. Soil parent material and soil chemical properties were identified as major factors controlling the catchment-scale spatial variation in soil total P and Olsen P concentrations. Soil type and land cover as derived from the generic spatial database explain 33.7% of the variation in soil total P concentrations and 17.4% of the variation in Olsen P concentrations. Streambed P concentrations are principally related to the major element concentrations in streambed sediment and P delivery from the hillslopes due to sediment erosion. During base flow conditions, the total phosphorus (<0.45 µm) concentrations in stream water are mainly controlled by the concentrations of P and the major elements in the streambed sediment.

Item Type: Article
Journal or Publication Title: Journal of Environmental Quality
Uncontrolled Keywords: GIS ; geographical information system • GPS ; global positioning system • RP ; reactive phosphorus • STW ; sewage treatment work • TP ; total phosphorus
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 27346
Deposited By: Mr Richard Ingham
Deposited On: 19 Oct 2009 15:07
Refereed?: Yes
Published?: Published
Last Modified: 26 Jul 2012 16:41
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/27346

Actions (login required)

View Item